首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Crop yield is primarily water-limited in areas of West Asia and North Africa with a Mediterranean climate. Ten years of supplemental irrigation (SI) experiments in northern Syria were conducted to evaluate water–yield relations for bread wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum L.), and optimal irrigation scheduling was proposed for various rainfall conditions. The sensitive growth stages of wheat to water stress were from stem elongation to booting, followed by anthesis, and grain-filling. Water stress to which crop subjected depends on rainfall and its distribution during the growing season; the stress started from early March (stem-elongation stage) or even in seedling stage in a dry year, and from mid-April (anthesis) in an average or wet year. Crop yield linearly increased with increase in evapotranspiration (ET), with an increase of 160 kg for bread wheat and of 116 kg for durum wheat per 10 mm increase of ET above the threshold of 200 mm. Water-use efficiency (WUE) with a yield ≥3 t ha−1 was ca. 60% higher than that with yield <3 t ha−1; this emphasises the importance of that to achieve effective use of water, optimal water supply and relatively high yields need to be ensured. Quadratic crop production functions with the total applied water were developed and used to estimate the levels of irrigation water for maximizing yield, net profit and levels to which the crops could be under-irrigated without reducing income below that which would be earned for full SI under limited water resources. The analysis suggested that irrigation scenarios for maximizing crop yield and/or the net profit under limited land resource conditions should not be recommended. The SI scenarios for maximizing the profit under limited water resource conditions or for a targeted yield of 4–5 t ha−1 were recommended for sustainable utilization of water resources and higher WUE. The time of irrigation was also suggested on the basis of crop sensitivity index to water stress taking rainfall probability and available soil water into account.  相似文献   

2.
In the Mesilla Valley of southern New Mexico, furrow irrigation is the primary source of water for growing onions. As the demand for water increases, there will be increasing competition for this limited resource. Water management will become an essential practice used by farmers. Irrigation efficiency (IE) is an important factor into improving water management but so is economic return. Therefore, our objectives were to determine the irrigation efficiency, irrigation water use efficiency (IWUE) and water use efficiency (WUE), under sprinkler, furrow, and drip irrigated onions for different yield potential levels and to determine the IE associated with the amount of water application for a sprinkler and drip irrigation systems that had the highest economic return.Maximum IE (100%) and economic return were obtained with a sprinkler system at New Mexico State University’s Agriculture Science Center at Farmington, NM. This IE compared with the 54–80% obtained with the sprinkler irrigation used by the farmers. The IEs obtained for onion fields irrigated with subsurface drip irrigation methods ranged from 45 to 77%. The 45% represents the nonstressed treatments, in which an extra amount of irrigation above the evapotranspiration (Et) requirement was applied to keep the base of the onion plates wet. The irrigation water that was not used for Et went to deep drainage water. The return on the investment cost to install a drip system operated at a IE of 45 was 29%. Operating the drip system at a IE of 79% resulted in a yield similar to surface irrigated onions and consequently, it was not economical to install a drip system. The IEs at the furrow-irrigated onion fields ranged from 79 to 82%. However, the IEs at the furrow-irrigated onion fields were high because farmers have limited water resources. Consequently, they used the concept of deficit irrigation to irrigate their onion crops, resulting in lower yields. The maximum IWUE (0.084 t ha−1 mm−1 of water applied) was obtained using the sprinkler system, in which water applied to the field was limited to the amount needed to replace the onions’ Et requirements. The maximum IWUE values for onions using the subsurface drip was 0.059 and 0.046 t ha−1 mm−1 of water applied for furrow-irrigated onions. The lower IWUE values obtained under subsurface drip and furrow irrigation systems compared with sprinkler irrigation was due to excessive irrigation under subsurface drip and higher evaporation rates from fields using furrow irrigation. The maximum WUE for onions was 0.009 t ha−1 mm−1 of Et. In addition, WUE values are reduced by allowing the onions to suffer from water stress.  相似文献   

3.
Effects on water use, green bean yield, irrigation water-use efficiency (IWUE), water-use efficiency (WUE), plant dry weight and crop water relationship were investigated for two-drip irrigation techniques and four irrigation water levels in the Mediterranean region of Turkey. The treatments were conventional (SDI) and alternating subsurface drip irrigation (SPRD). At each irrigation event, half of the volume of water applied to the SDI was applied to one side of the crop, representing the partial rootzone-drying treatment. All treatments received 295 mm of irrigation during crop establishment, prior to beginning the different irrigation regimes. Differing irrigation amounts corresponded to four crop-pan coefficients (Kcp1 = 0.6, Kcp2 = 0.8, Kcp3 = 1.0 and Kcp4 = 1.2), appropriate to pan data. Total water applied to the SDI and SPRD treatments ranged from 366 to 437 mm and from 331 to 366 mm, respectively, depending on Kcp values, with water uptake varying from 396 to 470 mm and 364 to 409 mm, respectively. While differences of green bean yield and dry plant weights were not significantly affected by the SDI and SPRD irrigation techniques, the overall irrigation water saving was found to be 16% for the SPRD irrigation treatment compared with the SDI treatment. SPRD irrigation techniques increased IWUE, WUE, and slopes of yield water relationships. Increase in slopes of the yield–irrigation water and yield–water-use function of SPRD according to the equivalent slopes of the SDI were 215.8 and 151.4%, respectively. SPRD increased the green bean yield response factor (ky) with value of 128.4% according to the equivalent slopes of the SDI. In conclusion, irrigation scheduling based on a 0.8 crop-pan coefficient is recommended for conventional SDI, with 1.0 being more appropriate for partial rootzone-drying practice.  相似文献   

4.
This study was designed to evaluate the yield response of low-energy precision application (LEPA) and trickle-irrigated cotton grown on a clay-textured soil under the arid Southeast Anatolia Project (GAP) area conditions during the 1999 growing season at Koruklu in Turkey. The effects of four different irrigation levels (100, 75, 50, and 25% of cumulative Class-A pan evaporation on a 6-day basis) for LEPA, and two irrigation intervals (3-day and 6-day) and three different levels (100, 67, and 33% of cumulative Class-A pan evaporation on a 3-day and 6-day basis) for the trickle system on yield were investigated. Water was applied to alternate furrows through the double-ended Fangmeier drag-socks in the LEPA system. Trickle irrigation laterals were laid out on the soil surface at a spacing of 1.40 m. A total of 814 mm of water was applied to the full-irrigation treatments (100%) for both irrigation systems. Seasonal water use ranged from 383 to 854 mm in LEPA treatments; and 456 to 868 mm in trickle treatments. Highest average cotton yield of 5850 kg/ha was obtained from the full-irrigation treatment (100%) in trickle-irrigated plots with 6-day intervals. The highest yield in LEPA plots was obtained in LEPA-100% treatment with an average value of 4750 kg/ha. Seed cotton yields varied from 2660 to 5040 kg/ha and 2310 to 5850 kg/ha in trickle irrigation plots with 3-day and 6-day intervals, respectively, and from 2590 to 4750 kg/ha in LEPA plots. Irrigation levels both in LEPA and trickle-irrigated plots significantly increased yield. However, there was no significant yield difference between 100 and 67% irrigation levels in trickle-irrigated plots. Maximum irrigation water use efficiency (IWUE) and water use efficiency (WUE) were found as 0.813 and 0.741 kg/m3 in trickle-irrigated treatment of 67% with 6-day interval. Both IWUE and WUE values varied with irrigation quantity and frequency. The research results revealed that both the trickle and LEPA irrigation systems could be used successfully for irrigating cotton crop under the arid climatic conditions of the GAP area in Turkey.  相似文献   

5.
Field experiments were conducted in a tropical region to determine the water-use efficiency (WUE), yield (Y) and evapotranspiration (ET) of a 6-year-old dwarf-green coconut (Cocos nucifera L.) orchard. Three water levels were applied in plots with nine palms. The irrigation treatments denoted as T:50, T:100 and T:150 received 50, 100 and 150 L/plant/day, respectively. The actual evapotranspiration was obtained by the soil water balance (SWB) method. Yield and water-use efficiency were assessed in terms of bunches per plant, fruits per plant and water volume per fruit. The application of the SWB resulted in mean daily ET values of 2.5; 2.9 and 3.2 mm/day for irrigation treatment of T:50, T:100 and T:150, respectively, while the cumulative ET varied from 900 to 1100 mm as irrigation treatment increased from T:50 to T:150. Results also showed that ET values were higher in the beginning and end of the year and lower in the middle of the experimental period. The application of a high irrigation water volume does not necessarily resulted in high coconut fruits yield. Evapotranspiration, fruits yield and water-use efficiency were strongly affected by irrigation water volume in coconut palms. WUE values decreased with increasing irrigation water level for all productivity parameters.  相似文献   

6.
The West Asia and North Africa (WANA) region, with a Mediterranean climate type, has an increasing deficit in cereal production, especially bread wheat. Rainfed cropping in the highlands of this region coincides with the severely cold winter with mostly, snow from November to April. Cereal yields, are low and variable mainly as a result of inadequate and erratic seasonal rainfall and associated management factors, such as late sowing (or late crop emergence). In an area where water is limited, small amounts of supplemental irrigation (SI) water can make up for the deficits in seasonal rain and produce satisfactory and sustainable yields. This field study (1999–2002) on a deep clay silty soil in north west of Iran was conducted with four SI levels (rainfed, 1/3, 2/3 and full irrigation requirements) combined with different N rates (0, 30, 60, 90 and 120 kg ha−1) with one wheat variety (Sabalan). Yields of rainfed wheat varied with seasonal rainfall and its distribution. A delay in the crop emergence from October (SI treatment) to November (rainfed) consistently reduced yields. With irrigation, crop responses to nitrogen were generally significant up to 60 kg N ha−1. An addition of only limited irrigation (1/3 of full irrigation) significantly increased yields and maximized water use efficiency (WUE). Use efficiency for water and N was greatly increased by SI. Under deficit irrigation, maximum WUE would be achieved when 60 kg N ha−1 is combined with 1/3 of full SI. Early crop germination is essential to ensure adequate crop stand before the winter frost and to achieve high yield. Early emergence can be achieved by applying a small amount (40–50 mm) of SI after sowing. Thus, when limited SI is combined with appropriate management, wheat production can be substantially and consistently increased in this highland semi-arid zone.  相似文献   

7.
Based on a field study on the semi-arid Loess Plateau of China, the strategies of limited irrigation in farmland in dry-period of normal-precipitation years are studied, and the effects on water use and grain yield of spring wheat of dry-period irrigation and fertilizer application when sowing are examined. The study includes four treatments: (1) with 90 mm dry-period irrigation but without fertilizer application (W); (2) with fertilizer application but without dry-period irrigation (F); (3) with 90 mm dry-period irrigation plus fertilizer application (WF); (4) without dry-period irrigation and fertilizer application (CK). The results indicate that dry-period irrigation resulted in larger and deeper root systems and larger leaf area index (LAI) compared with the non-irrigated treatments. The root/shoot ratio (R/S) in the irrigated treatments was significantly higher than in the non-irrigated treatments. The grain yields in F, W and WF are 1509, 2712 and 3291 kg ha−1, respectively, which are 13.7, 104.3 and 147.9% higher than that (1328 kg ha−1) of CK, and at the same time the grain yields in W and WF are also significantly higher than in F. Water use efficiencies (WUE) in terms of grain yield are 5.70 and 6.91 kg ha−1 mm−1 in W and WF, respectively, being 65.7 and 101.1% higher than that (3.44 kg ha−1 mm−1) of CK. The highest WUE and grain yield consistently occurred in WF, suggesting that the combination of dry-period irrigation and fertilizer application has a beneficial effect on improving WUE and grain yield of spring wheat.  相似文献   

8.
Water research studies in Saudi Arabia clearly showed sever depletion of groundwater. Therefore, the scientifically applied research program related to water saving and conservation in agriculture is essential, where agricultural activities account for more than 85% of the total water consumed. This study aims to investigate the effect of four irrigation levels, two irrigation methods and three clay deposits on water-use efficiency (WUE) of squash and the distributions of salts and roots in sandy calcareous soils. A field experiment was conducted at the college experimental station in 2002 and 2003. It consists of three clay deposits, three rates (CO = 0, C2 = 1.0 and C3 = 2.0%), four irrigation levels (T1 = 60, T2 = 80, T3 = 100 and T4 = 120% of Eto) using surface (IM1) and subsurface (IM2) drip irrigation.Results indicated that squash fruit yield was significantly increased with the increase in irrigation water level for each season. Generally, WUE values were increased as linearly with applied irrigation water and decreased at the highest irrigation level. Types of clay deposits significantly affected fruit yields compared with the control. The yield increase was 12.8, 8.35 and 6.4% for Khulays, Dhruma and Rawdat clay deposits, respectively. The differences between surface and subsurface drip on fruit yields and WUE were also significant. Results indicated that moisture content of subsurface-treated layer increased dramatically, while salts were accumulated at the surface and away from the emitters in subsurface drip irrigation. Intensive root proliferation is observed in the clay-amended subsurface layer compared with non-amended soil. The advantages of subsurface drip irrigation were related to the relative decrease in salt accumulation in the root zone area where the plant roots were active and water content was relatively higher.  相似文献   

9.
The effect of irrigation frequency on soil water distribution, potato root distribution, potato tuber yield and water use efficiency was studied in 2001 and 2002 field experiments. Treatments consisted of six different drip irrigation frequencies: N1 (once every day), N2 (once every 2 days), N3 (once every 3 days), N4 (once every 4 days), N6 (once every 6 days) and N8 (once every 8 days), with total drip irrigation water equal for the different frequencies. The results indicated that drip irrigation frequency did affect soil water distribution, depending on potato growing stage, soil depth and distance from the emitter. Under treatment N1, soil matric potential (ψm) Variations at depths of 70 and 90 cm showed a larger wetted soil range than was initially expected. Potato root growth was also affected by drip irrigation frequency to some extent: the higher the frequency, the higher was the root length density (RLD) in 0–60 cm soil layer and the lower was the root length density (RWD) in 0–10 cm soil layer. On the other hand, potato roots were not limited in wetted soil volume even when the crop was irrigated at the highest frequency. High frequency irrigation enhanced potato tuber growth and water use efficiency (WUE). Reducing irrigation frequency from N1 to N8 resulted in significant yield reductions by 33.4 and 29.1% in 2001 and 2002, respectively. For total ET, little difference was found among the different irrigation frequency treatments.  相似文献   

10.
A field experiment was conducted in 2003 and 2004 growing seasons to evaluate the effects of regulated deficit irrigation on yield performance in spring wheat (Triticum aestivum) in an arid area. Three regulated deficit irrigation treatments designed to subject the crops to various degrees of soil water deficit at different stages of crop development and a no-soil-water-deficit control was established. Soil moisture was measured gravimetrically in the increment of 0–20 cm every five to seven days in the given growth periods, while that in 20 increments to 40, 40–60, 60–80, and 80–100 cm depth measured by neutron probe. Compared to the no-soil-water-deficit treatment, grain yield, biomass, harvest index, water use efficiency (WUE), and water supply use efficiency (WsUE) in spring wheat were all greatly improved by 16.6–25.0, 12.4–19.2, 23.5–27.3, 32.7–39.9, and 44.6–58.8% under regulated deficit irrigation, and better yield components such as thousand-grain weight, grain weight per spike, number of grain, length of spike, and fertile spikelet number were also obtained, but irrigation water was substantially decreased by 14.0–22.9%. The patterns of soil moisture were similar in the regulated deficit treatments, and the soil moisture contents were greatly decreased by regulated deficit irrigation during wheat growing seasons. Significant differences were found between the no-soil-water-deficit treatment and the regulated soil water deficit treatments in grain yield, yield components, biomass, harvest index, WUE, and WsUE, but no significant differences occurred within the regulated soil water deficit treatments. Yield performance proved that regulated deficit irrigation treatment subjected to medium soil water deficit both during the middle vegetative stage (jointing) and the late reproductive stages (filling and maturity or filling) while subjected to no-soil-water-deficit both during the late vegetative stage (booting) and the early reproductive stage (heading) (MNNM) had the highest yield increase of 25.0 and 14.0% of significant water-saving, therefore, the optimum controlled soil water deficit levels in this study should range 50–60% of field water capacity (FWC) at the middle vegetative growth period (jointing), and 65–70% of FWC at both of the late vegetative period (booting) and early reproductive period (heading) followed by 50–60% of FWC at the late reproductive periods (the end of filling or filling and maturity) in treatment MNNM, with the corresponding optimum total irrigation water of 338 mm. In addition, the relationships among grain yield, biomass, and harvest index, the relationship between grain yield and WUE, WsUE, and the relationship between harvest index and WUE, WsUE under regulated deficit irrigation were also estimated through linear or non-linear regression models, which indicate that the highest grain yield was associated with the maximum biomass, harvest index, and water supply use efficiency, but not with the highest water use efficiency, which was reached by appropriate controlling soil moisture content and water consumption. The relations also indicate that the harvest index was associated with the maximum biomass and water supply use efficiency, but not with the highest water use efficiency.  相似文献   

11.
A study was conducted to determine the effects of different drip irrigation regimes on yield and yield components of cucumber (Cucumbis sativus L.) and to determine a threshold value for crop water stress index (CWSI) based on irrigation programming. Four different irrigation treatments as 50 (T-50), 75 (T-75), 100 (T-100) and 125% (T-125) of irrigation water applied/cumulative pan evaporation (IW/CPE) ratio with 3-day-period were studied.Seasonal crop evapotranspiration (ETc) values were 633, 740, 815 and 903 mm in the 1st year and were 679, 777, 875 and 990 mm in the 2nd year for T-50, T-75, T-100 and T-125, respectively. Seasonal irrigation water amounts were 542, 677, 813 and 949 mm in 2002 and 576, 725, 875 and 1025 mm in 2003, respectively. Maximum marketable fruit yield was from T-100 treatment with 76.65 t ha−1 in 2002 and 68.13 t ha−1 in 2003. Fruit yield was reduced significantly, as irrigation rate was decreased. The water use efficiency (WUE) ranged from 7.37 to 9.40 kg m−3 and 6.32 to 7.79 kg m−3 in 2002 and 2003, respectively, while irrigation water use efficiencies (IWUE) were between 7.02 and 9.93 kg m−3 in 2002 and between 6.11 and 8.82 kg m−3 in 2003.When the irrigation rate was decreased, crop transpiration rate decreased as well resulting in increased crop canopy temperatures and CWSI values and resulted in reduced yield. The results indicated that a seasonal mean CWSI value of 0.20 would result in decreased yield. Therefore, a CWSI = 0.20 could be taken as a threshold value to start irrigation for cucumber grown in open field under semi-arid conditions.Results of this study demonstrate that 1.00 IW/CPE water applications by a drip system in a 3-day irrigation frequency would be optimal for growth in semiarid regions.  相似文献   

12.
Field experiments were conducted at the Luancheng Agro-Ecosystem Experimental Station of the Chinese Academy of Sciences during the winter wheat growing seasons in 2006-2007 and 2007-2008. Experiments involving winter wheat with 1, 2, and 3 irrigation applications at jointing, heading, or milking were conducted, and the total irrigation water supplied was maintained at 120 mm. The results indicated that irrigation during the later part of the winter wheat growing season and increase in irrigation frequency decreased the available soil water; this result was mainly due to the changes in the vertical distribution of root length density. In ≤30-cm-deep soil profiles, 3 times irrigation at jointing, heading, and milking increased the root length density, while in >30-cm-deep soil profiles, 1 time irrigation at jointing resulted in the highest root length density. With regard to evapotranspiration (ET), there was no significant (LSD, P < 0.05) difference between the regimes wherein irrigation was applied only once at jointing; 2 times at jointing and heading; and 3 times at jointing, heading, and milking. Compared with 1 and 3 times irrigation during the winter wheat growing season, 2 times irrigation increased grain yield and 2 times irrigation at jointing and heading produced the highest water-use efficiency (WUE). Combining the results obtained regarding grain yield and WUE, it can be concluded that irrigation at the jointing and heading stages results in high grain yield and WUE, which will offer a sound measurement for developing deficit irrigation regimes in North China.  相似文献   

13.
Eight-year-old Murcott orange trees grown in greenhouse lysimeters filled with sandy soil were subjected to irrigation with saline water to investigate the influence of salinity on daily evapotranspiration (ET). The study was conducted in Japan from 1 August to 15 September 2000. The study duration was divided into three periods of about 2 weeks each. In period I, all lysimeters planted with a tree were irrigated with 60 mm of non-saline water at the water content of 70% of field capacity (FC). Salinity treatments for period II started on 14 August. The treatments during period II were as follows: Lysimeter 1 (L1) had 32 mm non-saline water with an electrical conductivity (ECI) of 1.0 dS/m applied. At the same time Lysimeter 2 (L2) had 32 mm of saline water with an ECI of 8.6 dS/m applied when the water content decreased to 70% of FC. Lysimeter 3 (L3) had 16 mm saline water (ECI=8.6 dS/m) applied at 85% of FC. The irrigation amounts during period II were equal to those corresponding to 1.2 times of water required to reach FC. Treatments in period III were the same as in period I.Daily ET was similar for all weighing lysimeters during period I. The average relative ET for L2 and L3 with respect to L1 (L2/L1 and L3/L1) were similar during this period, with a mean value of 0.99. During period II, ET from L1 was consistently higher than that from L2 and L3. In addition, L3 with a higher irrigation frequency because of irrigation at higher soil water content resulted in higher ET than L2. The average relative ET of period II was 0.71 and 0.88 for both L2 and L3. During the last half of period III, reductions occurred in the ET differences between the saline treatments (L2 and L3) and non-saline control (L1).Evaporation rates from soil did not exceed 0.7 mm per day. Transpiration rates from L1, L2 and L3 during period II varied between 6.3 and 3.1 mm per day, 4.5 and 2.2 mm per day, and 5.8 and 3.0 mm per day, respectively. The results reflected a tangible difference of water extraction by roots from individual soil layers. Maximum water uptake by these trees was observed at layer of 30–60 cm. Nevertheless, no clear differences in water extraction pattern between trees were observed.Approximately, 95% of drainage occurred during the first 2 days following irrigation. The electrical conductivity of soil water (ECS) and the electrical conductivity of drainage water (ECD) for the saline water treatments (L2 and L3), compared to the control (L1) were significantly different during period II. ECS values were 2–5 times higher in saline treatments compared to the control treatment. After irrigating trees with saline water, ECS increased from 5 to 14 and 16 dS/m in L2 and L3, respectively. Similarly, in both saline treatments, ECD values were greatly increased after irrigation. During period III, ECD values increased from 5 to 8 dS/m in L2, and from 3 to 11 dS/m in L3. By contrast, ECS declined from 14 to 5 dS/m in L2, and from 16 to 3 dS/m in L3 over the same period.  相似文献   

14.
This research was conducted during the spring seasons of 2000 and 2002 in Hatay province located in the East Mediterranean Region of Turkey. The research investigated the effects of two drip irrigation methods and four different water stress levels on potato yield and yield components. The surface drip (SD) and subsurface drip (SSD) irrigation methods were used. The levels were full irrigation (I100), 66% of full irrigation (I66), 33% of full irrigation (I33) and un-irrigated (I0) treatments. Five and three irrigation were applied in 2000 and 2002 early potato growing seasons, respectively. Total irrigation amount changed from 102 to 302 mm and from 88 to 268 mm in 2000 and 2002, respectively. Seasonal evapotranspiration changed between 226 and 473 mm and 166 and 391 mm in 2000 and 2002, respectively. SD and SSD irrigation methods did not result in a significant difference on yield. However, SD method has more advantages than SSD method, which has difficulties in replacement and higher system cost. Irrigation levels resulted in significant difference in both years on yield and its components. Water stress significantly affected the yield and yield parameters of early potato production. Water deficiency more than 33% of the irrigation requirement could not be suggested.Water use efficiency (WUE) of SD irrigation methods had generally higher values than SSD irrigation methods. Treatment I33 gave maximum irrigation water use efficiency (IWUE) for both years. SSD irrigation method did not provide significant advantage on yield and WUE, compared to SD irrigation in early potato production under experimental conditions. Therefore, the SD irrigation method would be recommended in early potato production under Mediterranean conditions.  相似文献   

15.
A field experiment was conducted during summer season of 1998 at the Main Research Station, University of Agricultural Sciences, Hebbal, Bangalore. Experiment consisted of four irrigation levels and two methods of planting. Drip irrigation at 0.8 Epan with normal planting recorded significantly higher green cob (20.07 t ha−1) and fodder yield (24.87 t ha−1) compared to either drip at 0.6 Epan or weekly surface irrigation at 0.8 Epan, while drip at 0.4 Epan under paired planting (10.53 and 15.23 t ha−1, respectively registered the lowest. Drip at 0.4 Epan with normal planting recorded higher WUE of green cob and fodder (48.21 and 61.22 kg ha mm−1) with total water requirement of 330.46 mm. With increase in water use (drip at 0.6 Epan, drip/surface irrigation at 0.8 Epan) the water use efficiency decreased. Drip irrigation at 0.8 Epan resulted in higher leaf water potential (−4, −7, −8 bars) at 20, 40 and 60 DAS before irrigation. Consequently, the RWC in the leaf was 81.10% and the available soil moisture ranged from 55.62 to 61.91%.  相似文献   

16.
The wheat- (Triticum aestivum L.) and corn- (Zea mays L.) rotation system is important for food security in Northwest China. Grain yield and water-use efficiency [WUE: grain yield/estimated evapotranspiration (ET)] were recorded during a 24-year fertilization trial in Pingliang (Gansu, China). Mean yields of wheat for the 16 years, starting in 1981, ranged from 1.29 Mg ha−1 for unfertilized plots (CK) to 4.71 Mg ha−1 for plots that received manure (M) annually with nitrogen (N) and phosphorus (P) fertilizers (MNP). Corn yields for the 6 years, starting in 1979, averaged 2.29 and 5.61 Mg ha−1 for the same respective treatments. Whether the years were dry, normal or wet, average grain yields and WUEs for both crops were consistently highest in the MNP and lowest in the CK treatment, and were always lower in the N than in the M treatment and in all others treatments that received N along with P fertilizers. More importantly, WUEs for MNP and for straw along with N annually and P every second year (SNP) were always higher than the other fertilized treatments in dry years. Compared to yield data, coefficients of variance (CV) for WUEs were consistently low for all treatments, suggesting that WUEs were relatively stable from year to year. Yields and WUEs declined over time, except in the CK and MNP treatments for wheat. Declined yields of wheat for the N and M treatments were comparable, and the decline for the NP treatment was similar to that for the SNP treatment. Likewise, corn yields and WUEs declined for all treatments. Grain yields were significantly correlated with ET, with slopes ranging from 0.5 to 1.27 kg m−3 for wheat and from 1.15 to 2.03 kg m−3 for corn. Balanced fertilization and long-term addition of organic material to soil should be encouraged in this region to maximize the use of stored soil water, arrest grain yields decline, and ensure sustainable productivity using this intensive cereal cropping system.  相似文献   

17.
Study was undertaken to assess the water use, moisture extraction and water use efficiency (WUE) of irrigated wheat, when grown in association with boundary plantation of poplar, at different distances (0–3, 3–6, 6–9, 9–12, 12–15 and >15 m (control)) from poplar (Populus deltoides M.) tree line. Presence of 3-year old poplar plantation at the boundary of wheat field caused 7.5% higher water use than control (plots having no effect of tree line) up to 3 m distance from tree line which further intensified up to 12.7% and extended up to 6 m distance with 4-year old plantation. Similarly, maximum moisture extraction, both laterally and vertically, observed near the tree line. Contrary to this, WUE of wheat was reduced by 4.6% between 0 and 3 m distance from tree line with 3-year old plantation, decline intensified further to 18.6% with 4-year old plantation. However, wheat was benefited by boundary plantation of trees between 3 and 9 m distance from the base of the tree line which resulted in increased WUE of the wheat crop up to 9%.  相似文献   

18.
Vast rainfed rice area (12 million ha) of eastern India remains fallow after rainy season rice due to lack of appropriate water and crop management strategies inspite of having favourable natural resources, human labourers and good market prospects. In this study, a short duration crop, maize, was tried as test crop with different levels of irrigation during winter season after rainy season rice to increase productivity and cropping intensity of rainfed rice area of the region. Maize hybrid of 120 days duration was grown with phenology based irrigation scheduling viz., one irrigation at early vegetative stage, one irrigation at tassel initiation, two irrigation at tassel initiation + grain filling, three irrigation at early vegetative + tassel initiation + grain filling and four irrigation at early vegetative + tassel initiation + silking + grain-filling stages. Study revealed that one irrigation at tassel initiation stage was more beneficial than that of at early vegetative stage. Upto three irrigation, water use efficiency (WUE) was increased linearly with increased number of irrigation. With four irrigations, the yield was higher, but WUE was lower than that of three irrigations, which might be due to increased water application resulted in increase crop water use without a corresponding increase of yield for the crop with four irrigations. The crop coefficients (Kc) at different stages of the crop were derived after computing actual water use using field water balance approach. The crop coefficients of 0.42–0.47, 0.90–0.97, 1.25–1.33, and 0.58–0.61 were derived at initial, development, mid and late season, respectively with three to four irrigation. Study showed that leaf area index (LAI) was significantly correlated with Kc values with the R2 values of 0.93. When LAI exceeded 3.0, the Kc value was 1. Study revealed that the Kc values for the development and mid season stage were slightly higher to that obtained by the procedure proposed by FAO, which might be due to local advection.  相似文献   

19.
The ridge and furrow rainfall harvesting (RFRH) system with mulches is being promoted to increase water availability for crops for higher and stable agricultural production in many areas of the Loess Plateau in northwest China. In the system, plastic-covered ridges serve as rainfall-harvesting zones and stone-, straw- or film-mulched furrows serve as planting zones. To adopt this system more effectively, a field study (using corn as an indicator crop) was conducted to determine the effects of different ridge:furrow ratios and supplemental irrigation on crop yield and water use efficiency (WUE) in the RFRH system with mulches during the growing seasons of 1998 and 1999.The results indicated that the ridge:furrow ratios had a significant effect on crop yield and yield components. The 120:60 cm ridge and furrow (120 cm wide ridge and 60 cm wide furrow) system increased yield by 27.9%, seed weight per head by 14.8%, seed number per head by 7.4% and 1000-seed weight by 4.7%, compared with the 60:60 cm ridge and furrow (60 cm wide ridge and 60 cm wide furrow) system. No differences in WUE were found between the two ratio systems. For corn and winter wheat, the optimum ridge:furrow ratio seems to be 1:1 in the 300-mm rainfall area, 1:2 in the 400-mm rainfall area and 1:4 in the 500-mm rainfall area. The optimum ridge:furrow ratio seems to be 1:3 for millet in the 300-mm rainfall area, although it is unnecessary to adopt RFRH practice in regions with more than 400 mm rainfall. The most effective ridge size for crop production seems 60 cm in the Loess Plateau. Implementing supplemental irrigation in the RFRH system is also a useful way to deal with the temporal problem of moisture deficits. In the case of corn, supplemental irrigation at its critical growth stage can increase both grain yield and WUE by 20%. The combination of in situ RFRH system with supplemental irrigation practice will make the RFRH system more attractive.  相似文献   

20.
A validated agro-hydrological model soil water atmosphere plant (SWAP) was applied to formulate guidelines for irrigation planning in cotton–wheat crop rotation using saline ground water as such and in alternation with canal water for sustainable crop production. Six ground water qualities (4, 6, 8, 10, 12 and 14 dS/m), four irrigation schedules with different irrigation depths (4, 6, 8 and 10  cm) and two soil types (sandy loam and loamy sand) were considered for each simulation. The impact of the each irrigation scenario on crop performance, and salinization/desalinisation processes occurring in the soil profile (0–2 m) was evaluated through Water Management Response Indicators (WMRIs). The criterion adopted for sustainable crop production was a minimum of pre-specified values of ETrel (≥0.75 and ≥0.65 for wheat and cotton, respectively) at the end of the 5th year of simulation corresponding to minimum deep percolation loss of applied water. The extended simulation study revealed that it was possible to use the saline water upto 14 dS/m alternatively with canal water for cotton–wheat rotation in both sandy loam and loamy sand soils. In all situations pre-sown irrigation must be accomplished with canal water (0.3–0.4 dS/m). Also when the quality of ground water deteriorates beyond 10 dS/m, it was suggested to use groundwater for post-sown irrigations alternately with canal water. Generally, percolation losses increased with the increase in level of salinity of ground water to account for leaching and thus maintain a favourable salt balance in the root zone to achieve pre-specified values of ETrel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号