首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 859 毫秒
1.
浮萍吸收不同形态氮的动力学特性研究   总被引:23,自引:0,他引:23  
吸收试验结果表明,浮萍(Spirodela oligorrhiza)吸收铵态氮和硝态氮的动力学特性可用M ichaelis-M enten方程来描述。浮萍对铵态氮的亲和力大于对硝态氮的亲和力,证实了浮萍“优先吸收净化铵态氮”的观点。研究还发现,浮萍吸收硝态氮的最大速率大于吸收铵态氮的最大速率,基于浮萍吸收不同形态氮的动力学特性,提出了构建物理作用(增氧工艺)—微生物(硝化作用)—植物(浮萍)复合污水净化体系的见解。  相似文献   

2.
【目的】 利用拟南芥生态型群体研究拟南芥耐铵毒害的生理机制,为挖掘耐铵基因提供生理基础及理论指导。 【方法】 共收集了95份生态型拟南芥材料,采用水培实验方法,将拟南芥幼苗移栽后在正常培养液(2 mmol/L NO3–-N处理)中培养8天,然后转移至含有1 mmol/L (NH4)2SO4的营养液(2 mmol/L NH4+-N处理)中培养8天,收获后,测定植株全氮量、地上部游离铵含量,以及谷氨酰胺合成酶 (GS) 活性;培养3天后取样,采用RT-PCR技术分析根部主要的铵态氮转运蛋白基因AMT1;1和AMT1;2的表达水平;拟南芥幼苗移栽后在正常培养液中培养8天,转移至丰度为5%的1 mmol/L (15NH4)2SO4中培养,分别处理3 h、6 h和24 h取样,用于同位素分析。 【结果】 2 mmol/L铵态氮处理下拟南芥群体地上部的生长被显著抑制,并且大量游离铵离子累积于地上部,铵态氮下拟南芥群体体内铵含量是对照硝态氮下的1.5倍以上,其中Si-0生态型在铵态氮下铵含量为19.17 μmol/g, FW,是对照的20倍。在硝态氮培养条件下,内源铵的含量与拟南芥地上部生长呈显著负相关,铵态氮培养条件下,地上部生长与铵含量同样呈较高的负相关性,因此内源铵含量少的生态型拟南芥在铵态氮下亦耐铵,所以本研究以拟南芥群体组织内铵含量为主因子,筛选出耐铵拟南芥生态型Or-1、Ta-0,HSM和铵敏感拟南芥生态型Rak-2、Lpv-18、Hi-0,结果表明铵敏感生态型在硝态氮下铵含量是耐铵生态型的1.7倍至10倍。耐铵拟南芥生态型铵转运蛋白基因AMT1;1和AMT1;2的表达水平较铵敏感拟南芥高,植株全氮和地上部15N标记试验结果表明,耐铵拟南芥铵态氮吸收速率高于敏感型。并且耐铵拟南芥生态型在两种氮形态下其谷氨酰胺合成酶 (GS) 活性均显著高于铵敏感生态型,在硝态氮培养条件下GS活性是铵敏感生态型的1.1~1.8倍,在铵态氮培养条件下是1.2~1.6倍,说明耐铵拟南芥生态型的铵同化能力强于敏感型。 【结论】 耐铵生态型拟南芥是通过更高的谷氨酰胺合成酶 (GS) 活性将大量的游离铵同化以减少植株体内游离铵含量,从而减轻植株铵毒害;而不是通过减少铵态氮的吸收。   相似文献   

3.
  【目的】  温度直接影响植物对养分的吸收能力,而植物对氮素形态具有偏好性。研究不同温度和氮形态营养条件下荔枝根系吸收氮和磷能力的差异,为荔枝不同季节 (物候期) 合理施用氮、磷肥提供依据。  【方法】  以‘黑叶’荔枝实生苗为材料,采用水培方法进行了试验。设置6个生长温度 (10℃、15℃、20℃、25℃、30℃和35℃) 和3种氮形态营养液 (硝态氮、1/2硝态氮 + 1/2铵态氮和铵态氮,分别表示为NN、1/2NN + 1/2AN和AN),共18个处理。将饥饿48 h的荔枝苗置于营养液中,于处理0、1、2、3、4、6、8、10和12 h后采集营养液样本,测定其中氮、磷含量。计算荔枝吸收氮、磷养分离子的动力学参数变化,并比较根系吸收氮、磷养分能力的差异。  【结果】  温度和氮形态对荔枝吸收氮和磷养分均有显著影响 (P < 0.01)。随温度升高,NN和1/2NN + 1/2AN处理下荔枝对总氮的最大吸收速率 (Imax) 呈现“下降–升高”的交替变化,但AN处理下的Imax受影响较小。15℃和30℃时AN处理荔枝对总氮的Imax显著高于其他两种氮形态营养处理,其他温度下则以1/2NN + 1/2AN处理最高;单一氮形态营养下,荔枝对氮素的亲和力 (Am) 和离子补偿点 (Cmin) 随着温度升高而发生波动;同时供应两种氮素形态时,Am随温度升高(10℃~30℃)而增加,而Cmin随温度升高而下降。氮形态对荔枝吸收总氮的Imax的影响与温度有关,但不同温度下均以NN处理的Imax最低、Am最高及Cmin最低。在1/2NN + 1/2AN处理中,荔枝吸收NH4+的Imax显著高于NN处理,但NN处理的Am更高且Cmin更低。氮素供应形态对荔枝吸收H2PO4–的影响也与温度有关,在15℃和25℃时荔枝吸H2PO4–的Imax表现为1/2NN + 1/2AN > AN > NN,其他温度下的氮形态处理间没有明显差别。除15℃时NN处理荔枝对H2PO4–的Am、Cmin分别显著低于、高于其他两个处理外,其他温度下3种氮形态营养处理的Am和Cmin接近。  【结论】  荔枝为喜硝植物,但吸收铵态氮的能力更强。在生长介质温度为15℃和30℃时单独供应铵态氮及在其他温度下同时供给两种氮形态,有利于荔枝对氮素的吸收。在15℃和25℃时,同时供应硝态氮和铵态氮最有利于荔枝吸收H2PO4–,供应铵态氮次之;其他温度下氮供应形态对荔枝吸收H2PO4–没有明显影响。为提高荔枝吸收氮磷营养能力,建议生产上避免一次性大量施用硝态氮肥。  相似文献   

4.
【目的】 土壤盐渍化在干旱和半干旱灌溉区是制约农业生产的非生物因素之一,合理的调控措施可以减轻盐渍化对植物的危害,本文探讨了氮源调节豆科植物盐胁迫的生理生态机制。 【方法】 采用砂培试验,以3个豌豆品种 (银豌1号、S5001-1和Ha) 为供试材料,设定三个盐分浓度(0、50、100 mmol/L),分别供应铵态氮和硝态氮4 mmol/L,每个品种均设六个处理。培养29天后对豌豆幼苗生物量、根系生长参数、根系呼吸及植株盐分离子含量进行测定。 【结果】 1) 三个盐分浓度相比,50 mmol/L NaCl处理下的3个豌豆品种幼苗的地上生物量和根系生长指标(根干重、根长和根表面积)显著高于0和100 mmol/L NaCl处理,且硝态氮处理显著高于铵态氮;2) 与无NaCl处理相比,3个豌豆品种植株含水量在100 mmol/L NaCl处理下明显降低,且硝态氮处理的显著低于铵态氮处理;3)豌豆根系呼吸速率均随着盐分浓度的增加和培养时间的延长总体呈降低趋势。3个豌豆品种根系呼吸速率对硝态氮和铵态氮的反应不同,相同盐分水平下,银豌1号铵态氮处理的高于硝态氮,Ha品种则相反,而S5001-1品种在两种氮源间差异不大。在50 mmol/L NaCl胁迫下,豌豆品种S5001-1与Ha硝态氮处理的根系呼吸累积量明显高于铵态氮,而银豌1号则相反;100 mmol/L NaCl胁迫下,豌豆品种Ha硝态氮处理的根系呼吸累积量显著高于铵态氮,其他两个品种在不同氮源处理间无差异。相同盐分胁迫水平下,银碗1号铵态氮处理的根系呼吸累积量明显高于品种S5001-1和Ha,而硝态氮处理下,品种Ha的根系呼吸累积量最高。4) 3个豌豆品种幼苗地上部Na+和Cl–含量均随盐浓度的增加而增加,而不同氮源对Na+在豌豆体内累积的影响因豌豆品种而异。 【结论】 在中度盐分胁迫下,施氮肥可缓解盐分胁迫对豌豆幼苗生长的影响,硝态氮缓解能力高于铵态氮,但在重度盐分胁迫下,盐胁迫是影响植物生长和离子吸收的主导因子,氮源调节作用变弱。尽管不同豌豆品种的根系呼吸对NH4+-N与NO3–-N的反应不同,但NO3–-N缓解盐胁迫的效果总体上好于NH4+-N。   相似文献   

5.
为探讨不同梨实生苗对硝态氮和铵态氮的利用特性,以一年生杜梨、豆梨、川梨、木梨为试验材料,采用15NH4NO3和$NH_{4}^{15}$NO3分别标记的方法,研究不同氮素形态对4种梨实生苗生长发育、根系形态及氮素吸收的影响。结果表明,木梨的地上部干重和总干重均最大,分别为20.56和29.21 g,其次是川梨和豆梨,杜梨最小。川梨根系干重最大,为8.80 g,其次是木梨,二者均显著高于豆梨和杜梨。根系总表面积、总根长、根尖数均以川梨最大,杜梨最小;根系活力以木梨最大,为2.04 mg·g-1·h-1,杜梨最小。4种实生苗标记硝态氮处理各器官吸收分配到的15N量对该器官全氮量的贡献(Ndff)均高于标记铵态氮处理;不管是标记硝态氮还是铵态氮,15N分配率均以叶最高,其次是根和茎。4种实生苗对硝态氮的利用率均高于铵态氮,其中木梨对硝态氮的利用率最高,为16.37%,且显著高于其他3种实生苗;川梨对铵态氮的利用率最高,为7.92%,但与木梨差异不显著,显著高于杜梨和豆梨。本研究为不同梨实生苗的氮素吸收特性和氮素营养管理的深入研究提供了科学依据。  相似文献   

6.
根系高效铵吸收系统是玉米获取氮素的重要补充机制   总被引:1,自引:0,他引:1  
【目的】本研究旨在通过对植株根系铵吸收特征研究,揭示旱地玉米的氮素营养特征,研究结果为玉米补充氮素营养提供了一定的理论依据。 【方法】以玉米高产品种“郑单 958”为供试材料,采用水培试验模拟了玉米植株生长中的氮素营养环境,研究了玉米幼苗生长对不同氮素形态的反应;采用非损伤微测技术 (NMT),重点研究了不同供氮状况下玉米根系对 NH4+ 的吸收特征,并与其吸收硝态氮的规律进行了比较;利用实时定量 PCR 技术,初步揭示了玉米根系中的铵吸收蛋白 (AMT) 基因对铵的响应特征。 【结果】单一供应铵态氮条件下,玉米地上部鲜重、全株干重及根系含氮量与纯硝态氮条件下相近,表明铵态氮也可作为玉米的有效氮源。非损伤微测研究结果表明,玉米幼苗根系铵吸收过程呈典型的高亲和吸收特征 (表观 Km 值约为 60 μmol/L),推测这一过程是由高亲和的转运体蛋白介导。氮饥饿预处理使根系的铵吸收速率 Vmax 和 Km 值分别降低了约 3 倍和 1 倍。这一现象与水稻等作物不同,暗示玉米的铵吸收过程可能不存在反馈抑制现象。另外,介质中硝态氮的存在对根系的铵吸收具有显著抑制作用 (抑制效果 > 20%);在供试微摩尔浓度范围内,根系对 NO3– (100 μmol/L) 的吸收速率显著低于对相同浓度 NH4+ 的吸收。进一步对主要在玉米根系中表达的铵吸收蛋白基因 ZmAMT1;1a 和 ZmAMT1;3 的定量 PCR 分析表明,上述基因在维持供铵状态下的表达量较缺氮处理均有显著提高,与铵吸收测定结果相符。 【结论】玉米根系中保留着高效铵吸收系统,在低硝态氮浓度下,该系统对铵态氮的高效吸收可作为其获取足够氮源的一个重要的机制。高硝态氮则抑制玉米根系对铵态氮的吸收,以避免氮素吸收利用系统在功能上的冗余。  相似文献   

7.
【目的】作物选择性吸收铵态氮或硝态氮是导致根际p H发生变化的主要原因,本文探索旱地作物根系细胞膜质子泵对铵硝营养及p H的反应机制。【方法】采用水培方法,分别用NH+4-N和NO-3-N培养高粱幼苗,并控制营养液的p H。高粱生长三周以后,用葡聚糖两相法分离根系细胞膜,测定细胞膜质子泵的水解活性、酶动力学特征,利用免疫杂交方法测定质子泵蛋白浓度。【结果】培养三周后,供给铵态氮的高粱根际p H下降到3,质子泵活性最高,达到Pi 8.81μmol/(mg·min);供给硝态氮的高粱根际p H上升至7,质子泵活性最低,为Pi 3.82μmol/(mg·min)。将铵态氮处理的营养液p H人为上调到7,而将硝态氮处理下调到3后发现,铵态氮培养的高粱根系细胞膜质子泵活性在p H 7时低于p H 3,但仍高于p H 3时硝态氮处理。酶动力学特征的测定结果表明,铵态氮营养(p H3)时,酶反应最大速率最高,亲和性也最高,而硝态氮营养(p H 7)时酶反应最大速率最小,亲和性也最低。质子泵活性与其蛋白浓度之间具有正相关性。【结论】无论是铵还是硝态氮处理,根际p H降低都会导致高粱根系细胞膜质子泵活性升高,这说明,质子泵具有适应根际酸化而提高自身活性的基本功能。但是,在相同的p H下,铵态氮都导致高粱根系细胞膜质子泵活性比硝态氮处理更高,这说明铵态氮在根系细胞中同化产生氢离子,而硝态氮的还原不产生氢离子,因此,吸收铵态氮的细胞需要进一步提高细胞膜质子泵的活性将氢离子排出体外。这很可能是高粱根系在铵态氮营养下的一种反应机制。  相似文献   

8.
铵态氮肥和硝态氮肥施入时期对小麦增产的影响   总被引:2,自引:0,他引:2  
在陕西永寿和河南洛阳进行2年大田试验,研究铵态和硝态氮肥在小麦不同播期施用和播前15~20天施用的效果。试验设不施氮、施铵态氮和硝态氮各100kg/hm2 3个处理;试验期间分别测定根际与非根际土壤铵、硝态氮和pH变化,以及不同时期植物体内铵态氮、硝态氮和酰胺态氮的含量。试验表明,在硝态氮含量低的土壤上,硝态氮肥效果一般优于铵态氮肥,但效果大小和播期早晚、施氮早晚有关。早期播种硝态氮对籽粒增产量比铵态氮高出0.68倍,晚期播种增产1.75倍;播前15天施氮,硝态氮和铵态氮的增产率分别为10.7%和8.8%,无显著差异,而晚期施氮,分别为10.5%和6.2%,差异显著。施用硝态氮,小麦根际土壤pH有上升而施用铵态氮有下降现象,升降幅度为0.1左右pH单位。非根际土壤向根际土壤的养分传输低于作物吸收速率,根际内土壤的硝态氮有耗竭现象,非根际土壤硝态氮平均浓度为11.7mg/kg,而根际土壤仅为4.4mg/kg,后者仅为前者的38%。硝态氮肥不但能使小麦吸收较多的硝态氮,而且能将吸收的硝态氮较快地转化为铵态氮和酰胺态氮,及时转送到茎叶生长部位,对保证作物氮素营养有更好效果。  相似文献   

9.
以早熟马铃薯品种石薯1号为试验材料,通过田间小区试验,研究不同形态氮素(铵态氮、硝态氮、酰胺态氮)对早熟马铃薯干物质积累和氮素吸收动态的影响。结果表明:各处理马铃薯干物质积累符合Logistic生长曲线,铵态氮(NF1)、硝态氮(NF2)和酰胺态氮(NF3)处理成熟期干物质量分别为16401.6、15603.6和16383.0 kg·hm-2。各处理马铃薯氮素累积速率均在现蕾期前显著上升,之后下降,进入成熟期后再次上升,并且NF3处理成熟期后氮累积速率显著高于其他处理,达5.53 kg·hm-2·d-1。成熟期氮素累积量NF3显著大于NF2和CK处理,与NF1处理差异不显著。NF3处理马铃薯氮素表观利用率显著高于NF1和NF2处理,为39.69%,且农学效率显著大于NF2处理,为52.67 kg·kg-1。NF3处理商品薯产量显著大于其他处理,为56688 kg·hm-2;总产量为59460 kg·hm-2,显著大于不施氮对照和NF2处理。综合来看,在河北...  相似文献   

10.
NaCl对真盐生植物囊果碱蓬硝态氮吸收亲和力系统的影响   总被引:1,自引:0,他引:1  
采用营养液培养方法,研究了真盐生植物囊果碱蓬(Suaeda physophora Pall.) 在不同盐度和氮水平中预处理21 d后硝态氮的吸收动力学特征。结果表明,氮饥饿后,囊果碱蓬对NO-3吸收符合离子吸收动力学模型,其吸收动力学参数表现为NO-3预处理浓度增加后,高亲和力系统中Vmax增大,Km值增加,但增加的幅度不一致。经过低氮高盐预处理的囊果碱蓬高亲和力系统增加的幅度比经过高氮高盐预处理的囊果碱蓬高亲和力系统增加的幅度大; 对于低亲和力系统,NaCl长期胁迫对高氮预培养的囊果碱蓬的低亲和力系统吸收速率有抑制作用,而对低氮预培养的囊果碱蓬的低亲和力系统吸收速率有促进作用。结果说明,真盐生植物囊果碱蓬长期生长在低氮高盐条件下,为了适应特殊的环境条件,形成了耐盐的硝态氮吸收系统。  相似文献   

11.
添加葡萄糖对红壤农田肥料氮转化及其酸化的影响   总被引:1,自引:0,他引:1  
采用室内培养实验,初步研究了外加葡萄糖对红壤肥料氮素转化及其酸化作用的影响,其中葡萄糖添加量充足,为8 g·kg–1干土,氮肥以(NH4)2SO4和KNO3为例。结果表明,在对照、单施(NH4)2SO4或KNO3处理中,土壤中氮转化过程主要以有机氮净矿化和铵态氮净硝化为主,这主要是由于红壤可利用碳源较少。而外加足够葡萄糖碳源可快速(2 d内)促进土壤及其100 mg·kg–1氮肥中的NH4+-N和NO3--N几乎全部被微生物同化,30 d培养期间微生物同化促进28%~50%的肥料氮迅速转化为固相有机态氮。单施(NH4)2SO4或KNO3主要通过硝化作用和盐效应降低土壤pH,但微生物对NH4+-N的生物固定可抑制其硝化导致的酸化作用,而微生物对NO3--N的生物固定可提高土壤pH高达0.78个单位。因此,添加葡萄糖等碳源可促进农田土壤中NH4+-N和NO3--N的微生物同化,缓解氮肥引起的土壤酸化作用。研究结果对提高农田土壤的保氮能力和氮肥利用率、抑制土壤酸化等具有重要意义。  相似文献   

12.
通过模拟垂直流人工湿地污水系统,研究了湿地植被鸢尾(Iris pseudacorus)、香蒲(Typha orientalis)、茭白(Zizania aquatica)和芦苇(Phragmites australis)对生活污水总氮(TN)、总磷(TP)、氨氮(NH4+-N)、生物耗氧量(BOD5)和化学耗氧量(CODCr)的去除效果及其植被对氮磷累积效应。结果发现:(1)人工湿地4种植被对生活污水的净化效果存在一定的差异,对污水各个指标的去除率随人工湿地的运营期均呈“V”型变化,基本表现为反弹期 > 稳定期 > 恢复期 > 启动期;(2)综合比较可知,通过人工湿地整个运营期来看,人工湿地植被能有效促进湿地对污水的去除效果,其中以茭白和鸢尾的去除效果较好,而4种湿地植被对TP的去除率最高,对TP,NH4+-N和CODCr的去除率差异不显著(p > 0.05);(3)4种湿地植被地上和地下生物量表现出一致的变化规律,基本表现为鸢尾和茭白高于芦苇和香蒲,除了鸢尾以外,其他植被地上、地下生物量比(A/U)均大于1,4种植被地下生物量占总生物量的40%以上,并且地上部分N,P浓度高于地下部分N,P浓度,地上平均N,P积累量高于地下部分N,P积累量;鸢尾和茭白地上部分和地下部分N,P浓度和N,P积累高于芦苇和香蒲;(4)相关性分析表明人工湿地不同植被N,P积累量分别与生物量、N含量、P含量均呈显著的线性关系(p < 0.01),生物量与N,P积累量的相关系数高于N含量和P含量的相关系数,表明人工湿地植被生物量对N,P积累量的影响大于植被体内N,P含量的影响,因此可以通过生物量来评价人工湿地植被对N,P的去除效果。  相似文献   

13.
利用室内培养实验,分析燥红壤和砖红壤中分别施加N0(不添加氮素)、N1(氮添加量为100mg·kg−1)、N2(氮添加量为200mg·kg−1)和N3(氮添加量为300mg.kg−1)4个水平氮后对土壤性质及N2O、CO2排放的影响。结果表明:氮肥添加显著降低了土壤pH和有机碳含量。相较于N0,燥红壤N1、N2和N3处理pH和有机碳降幅分别为8%~18%和4%~12%,砖红壤降幅分别为5%~23%和3%~15%;添加氮肥后各处理土壤全氮含量显著增加,燥红壤和砖红壤分别增加15%~54%和13%~52%。氮施入增加了土壤NH4+−N和NO3−N含量,各处理土壤铵态氮和硝态氮含量均表现为N3>N2>N1>N0。氮添加促进土壤N2O和CO2排放,相较于N0,燥红壤N2O和CO2累积排放量分别增加1176%~2425%和124%~281%,砖红壤分别增加1054%~1887%和138%~256%。施氮量和土壤类型是影响农田土壤N2O和CO2排放的重要因素。土壤N2O和CO2排放与施氮量呈线性显著相关,减少施肥是降低土壤N2O排放最直接和最有效的措施。与砖红壤相比,燥红壤N2O和CO2排放对氮素添加的响应更敏感。  相似文献   

14.
为探讨周年不同施氮组合对冬小麦-夏大豆轮作体系土壤氮素及产量影响规律,于2017—2018年,在伊宁县农业科技示范园内开展大田试验,以冬小麦-夏大豆轮作为研究对象,在前茬麦季设置4个施氮水平:0(N0)、104(N1)、173(N2)、242 kg·hm-2(N3);后茬大豆设置3个施氮水平:0(S0)、69(S1)、138 kg·hm-2(S2),研究周年不同施氮组合对两季作物收获后农田0~100 cm土层土壤硝态氮(NO3--N)、铵态氮(NH4+-N)含量、无机氮残留量及产量的影响。结果表明,冬小麦不同施氮水平土壤NO3--N及NH4+-N含量均在20~40 cm土层达到最大值,且N3的土壤NO3--N和NH4+-N含量最高,分别达到14.65 mg·kg-1和4.26 mg·kg-1,土壤NO3--N含量平均分别较N0、N1、N2增加了92.86%、44.69%和17.03%,土壤NH4+-N平均依次增加了69.95%、26.10%和8.46%;而冬小麦施氮量越高,其土壤无机氮残留量越大,以麦季N3平均最高,为200.62 kg·hm-2。此外,前茬麦季施氮还能影响后茬大豆土壤中NO3--N、NH4+-N含量及无机氮残留量;夏大豆的土壤NO3--N和NH4+-N含量也在20~40 cm土层达到最大值,且N3S2的土壤NO3--N、NH4+-N含量及无机氮残留量最大,平均分别为18.61 mg·kg-1、 5.10 mg·kg-1、258.36 kg·hm-2。在麦季施氮173 kg·hm-2时(N2),冬小麦产量最高,平均为7 828.64 kg·hm-2,平均分别较N0、N1、N3增加35.45%、16.77%、6.26%;且在此基础上夏大豆当季再施氮69 kg·hm-2时(S1),夏大豆获得产量最高,平均为2 988.93 kg·hm-2,其周年总产量也达到最高平均,为10 817.5 kg·hm-2。综上所述,麦季施氮173 kg·hm-2,豆季施氮69 kg·hm-2既有利于提高麦豆周年产量,又能减少土壤氮素的残留量,可为当地一年两熟制高效施氮制度提供一定的参考标准。  相似文献   

15.
  【目的】  研究水稻钾通道OsAKT2的基本功能和调控特征,揭示其在地上部K+回流中的潜在作用。  【方法】  通过构建系统进化树和关键氨基酸区域序列比对,对不同物种来源的Shaker类钾离子通道基因进行了同源性分析;利用蛙卵电生理技术,研究水稻OsAKT2的膜电位敏感性及其对钾离子的吸收特征、离子选择性和对钾通道抑制剂的响应变化;并利用实时荧光定量PCR技术,探究了水稻OsAKT2的表达与钾浓度、铵转运及胁迫处理间的相互关系。  【结果】  OsAKT2与AtAKT2等典型通道高度同源(56%),属于AKT2类弱电压依赖—双向整流型钾离子通道。OsAKT2所介导的K+转运过程,与典型该类通道表现出不同的性质,主要体现在以介导K+的吸收为主,缺失了AKT2通道标志性的K+外排活性,且其K+吸收过程转变为明显的电压依赖性。OsAKT2对K+吸收Km值为43 mmol/L,是一典型的低亲和钾离子通道(>1 mmol/L);与典型Shaker通道相比,钾通道抑制剂Ba2+对OsAKT2的K+吸收活性的抑制效率(<78%)较低,而且表现出一定程度的NH4+通透性(约占K+的22%)。进一步模拟田间种植水稻可能遇到的胁迫环境,发现水稻地上部OsAKT2基因的表达丰度在缺铵、缺钾及山梨醇处理下显著提高,且表现出一定的避光性(黑暗中基因表达水平较高)。  【结论】  水稻OsAKT2能够提高植物K+吸收能力,或将有助于增强其在地上部K+回流和再利用中的功能,且对水稻体内氮素营养吸收转运具有潜在的贡献。  相似文献   

16.
为促进氮肥高效利用,实现氮素污染减排,选用膨润土和生物炭作为包膜材料,结合硝化抑制剂制备包膜尿素。设置包膜尿素淋溶模拟试验收集淋溶液,结合静态箱法收集N2O,通过分析NH4+-N,NO3--N淋失量和N2O排放通量对包膜尿素氮素污染减排潜力进行了评估。结果表明:(1)膨润混合土生物炭包膜尿素(F4)NH4+-N淋溶损失率最低,较纯化肥尿素(F1)NH4+-N淋溶损失率降低19.76%。(2)硝化抑制剂型膨润土生物炭包膜尿素(F5)NO3--N淋失率最低,较F1降低16.74%。(3)F5同时具有最优的N2O减排效果,N2O排放量较F1降低77.8%。F5氮素减排效果最优,其减排机制在于一方面硝化抑制剂可以从化学过程控制硝化和反硝化进程,延缓尿素酰胺态氮的水解和铵态氮的硝化,在降低NO3--N淋失的同时可以实现N2O减排。另一方面F5的包膜材料膨润土和生物炭可以通过吸附作用将更多的NH4+-N富集在土壤表层,从而显著降低NH4+-N淋失。综上所述,硝化抑制剂型膨润土生物炭包膜尿素氮素污染减排潜力最优,可使NH4+-N,NO3--N和N2O分别减排15.24%,16.74%和77.8%。  相似文献   

17.
A combination of mathematical analysis and computer simulation, using parameters readily measured in a nitrogen-15 field experiment, is employed to determine rates of mineralization, immobilization and nitrification under a growing crop. The procedure also yields the proportion of crop nitrogen uptake occurring as ammonium and nitrate.
When applied to -results from grass lysimeters receiving 250 or 900 kg N ha–1 a–1 as ammonium nitrate, the analysis suggested that at 250 kgN ha–1 a–1 64–66% of crop nitrogen uptake was as ammonium; at 900 kg N ha–1 a–1 the figure was 43–49%. Nitrification at 250kgNha–1 was only 13–19kgN ha–1 over 160d while at 900 kg N ha–1 between 191 and 232 kg N ha–1 were nitrified.
The results suggested that the apparent inhibition of nitrification in grassland soils may simply reflect poor substrate competition by nitrifying bacteria. Finally, there was a suggestion that mineralization/immobilization was lower at the high fertilizer rate.  相似文献   

18.
杨陵区地表水及地下水环境质量评价   总被引:3,自引:1,他引:2  
水在人类的生存过程中起着至关重要的作用,面对目前日愈衰竭的水资源,如何才能提高水质及其利用率已成为人们关注的焦点。现就杨陵地区的地表水及地下水选取不同的断面,实际采样并监测分析。其监测项目涉及到NH4+、NO3-、NO2-、PO43-、F-、S2-、Cr6+、Cu、P  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号