首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
中棉光诱导基因Gacab 启动子的克隆及其功能分析   总被引:3,自引:0,他引:3  
利用加接头法,从金华中棉(Gossypium arboreum)中分离获得了捕光叶绿素a/b蛋白复合体基因Gacab编码区5′上游的调控序列1009bp,命名为Gacab P,与公布的其它植物cab启动子序列比较,没有明显的同源性。将GacabP和197、504、779bp的5′端缺失体分别与gus(uid A)基因融合,构建植物表达载体。用Gacab P::gus转化烟草(Nicotiana tabacum cv.NC89),GUS组织化学分析发现Gacab P驱动gus基因在转基因烟草的叶片表达。在暗培养的转基因烟草叶片中Gacab P不表现活性,而光能够诱导gus基因的表达,表明Gacab P是一种光诱导型启动子。用基因枪轰击水稻愈伤组织,结果显示,Gacab P及3种不同长度的缺失体均可驱动gus基因的瞬时表达,以504bp的活性最高,瞬时表达水平明显高于35S启动子,197、779和1009bp的表达减弱,由此推测-197~-1bp为Gacab基因的基本启动子,-504~-197bp间包含正调控元件,-1009~-504bp间包含负调控元件。  相似文献   

2.
抗草甘膦基因在转基因植物体内持续高效表达,不但增加植物代谢压力,有的甚至改变植物形态造成植物的生长发育畸形。为了减少转基因植株的代谢负担和能源浪费,从拟南芥菜(Arabidopsis thaliana)基因组中克隆了Leafy组织特异性启动子替代CaMV35S启动子,用其驱动改造后加二磷酸核酮糖羧化酶(rubisco)小亚基引导肽的5-烯醇丙酮酰-莽草酸-3-磷酸合酶(CP4EPSPS)基因,同时调控报告基因gus的编码区构建植物表达载体p3300-Leafy-gus和p3300-Leafy-CP4EPSPS,嵌合基因经农杆菌(Agrobacterium)介导转化烟草。稳定表达后经GUS组织染色分析表明,Leafy驱动的gus表达仅局限在植物茎尖和幼叶部分,转基因植株成熟的叶片、茎部和根系均未能检测到GUS活性。草甘膦试验分析表明,Leafy驱动的CP4EPSPS的转基因植株幼芽部位有草甘膦抗性。结果表明,Leafy启动子驱动CP4EPSPS表达增强植株芽端对草甘膦的抗性。  相似文献   

3.
植物脂酰-酰基载体蛋白硫酯酶A(fatty acyl-acyl carrier protein thioesterase,FATA)是脂肪酸积累过程中的关键酶,直接调控脂肪酸的含量与组成。目前有关麻疯树(Jatropha curcas)FATA基因(JcFATA)(Gen Bank登录号:EU267122.2)的功能研究还未见报道。本研究首先构建JcFATA基因RNA干涉(RNA interference,RNAi)表达载体,进行下调表达研究,以麻疯树叶片cDNA为模板,克隆出JcFATA基因正向片段FATA1(439 bp),然后将其连接到含内含子的干涉表达载体p YLRNAi.2-35S上,构建JcFATA基因RNAi表达载体pYLRNAi.2-35S-FATA1-FATA2;再通过电击法将其转入到根癌农杆菌(Agrobacterium tumefaciens)EHA105感受态细胞中,然后利用花序侵染法进行拟南芥(Arabidopsis thaliana)遗传转化,最后通过PCR检测和Southern blot验证。对转基因拟南芥植株进行了表型观察、表达量分析和脂肪酸的含量测定,结果显示,JcFATA基因干涉表达的转基因植物生长发育可能受到抑制。本研究结果可为进一步探讨JcFATA基因的功能及该基因在麻疯树遗传改良中的应用提供理论依据。  相似文献   

4.
以本实验室构建的重组南瓜(Cucurbita moschata)韧皮部特异启动子dENP构建了植物表达载体pBdENP。利用根癌农杆菌(Agrobacterium tumefaciens)LBA44O4介导转化马铃薯(Solanum tuberosum)品种Favorita,经过抗生素筛选,共获得转pBdENP和对照pBI121的抗卡那霉素马铃薯再生植株106株。通过PCR初步筛查,筛选出65株为转基因阳性植株。通过Southern blot对部分植株进一步分析,确证外源gus基因已经插入到转基因马铃薯植株的基因组中,插入拷贝数在1个或2个以上。对这些转基因马铃薯植株进行GUS染色结果表明, dENP和CaMV35S启动子一样均能驱动gus基因的表达,前者仅在马铃薯的韧皮部内特异表达,而CaMV35S启动子驱动的gus基因为组成型性表达。GUS酶活力测定结果进一步表明dENP和CaMV35S启动子驱动gus基因表达水平没有明显区别。以上结果证明dENP启动子驱动的外源基因在马铃薯中也具有韧皮部特异而高效表达的特征,从而可用于马铃薯抗病、抗蚜虫转基因研究。  相似文献   

5.
大白菜BrWRKY33基因上游调控序列的克隆及其功能研究   总被引:1,自引:0,他引:1  
根据大白菜EST和基因组序列,利用PCR技术从大白菜品种龙白二号(Brassica rapa subp.pekinensis cv.LongbaiⅡ)基因组中克隆转录因子基因BrWRKY33起始密码子上游大小1755bp的调控序列。然后,构建5'端缺失突变体,与gus基因融合,构建植物表达载体。将载体转化拟南芥(Arabidopsis thaliana)哥伦比亚生态型(Columbia ecotype),进行植物组织GUS化学染色分析。结果表明,BrWRKY33密码子上游-1755~-315区域存在的多个W-box元件可能与该基因表达的负调控相关,-315bp区域含有BrWRKY33基因转录必需的基本元件。对接种软腐欧文氏菌(Erwinia carotovora subsp.carotovora)后不同时期的植株进行染色,发现该病原菌侵染使转基因植株gus基因表达量增加,表明BrWRKY33基因在植物对软腐病抗性反应中具有一定的作用。  相似文献   

6.
水稻rbcs基因启动子的克隆及结构功能分析   总被引:9,自引:1,他引:9  
利用PCR法克隆了水稻日本晴来源的核酮糖-1、5-二磷酸羧化酶小亚基基因(rbcS)5’上游调控区,命名为Posrbcs。将Posrbcs与gus基因融合,并通过农杆菌介导转入水稻中。对转基因水稻植株中GUS活性进行定性与定量分析,结果表明,Posrbcs启动子可驱动gus基因在转基因水稻植株的叶片、叶鞘、茎杆及颖壳中特异性表达,在胚乳中不表达。然后构建不同长度片断的Posrbcs的5’端缺失体,分别与gus构建融合基因,转入水稻中。对转基因植株GUS活性定量分析结果显示, Posrbcs片段愈短,GUS活性愈低;进一步的光诱导试验结果显示,光能明显提高gus基因表达活性,并且随着Posrbcs片段缩短,Posrbcs中的I box、GT1结合位点、GATA box、T box 等光诱导相关元件的缺失会造成在不同时间段的光诱导活性降低以及光诱导表达时间后移。凝胶阻滞试验证实Posrbcs序列中的这些光诱导相关元件有相应的核蛋白的结合。  相似文献   

7.
抗真菌γ—硫堇蛋白Rs—afp1基因导入苹果获得转基因植株   总被引:3,自引:0,他引:3  
以“皇家嘎啦”(Royal Gala)苹果(Malus domestica Borkh)为试材,在绿色组织特异表达的菠菜核酮糖二磷酸羧化酶/加氧酶的激活酶(Rubisco-activase)启动子(RCAP)驱动下,将抗真菌γ-硫堇蛋白(γ-thionin)Rs-afp1基因和uidA(gus)基因导入白化茎段外植体,获得了nptⅡ抗性植株。转化体经PCR和Southern blotting杂交检测,证实了γ-硫堇蛋白Rs-afp1基因和gus基因已经整合到苹果的染色体组上。gus染色证实了RCAD启动子在苹果组织中的特异性表达。转基因植株已移栽于大田,进行农业性状鉴定。  相似文献   

8.
WRKY是植物中特有的锌指型转录因子,其广泛参与植物对生物及非生物胁迫的响应过程.本研究从小麦(Triticum aestivum L.)中分离出一个新的WRKY转录因子基因TaWRKY51,其全长cDNA序列长度为1295 bp,其中开放阅读框(ORF)为942 bp,编码一个由313个氨基酸组成的多肽.用半定量RT-PCR进行表达谱分析,结果显示,TaWRKY51基因在分蘖节、叶和根系中的表达水平较高,并且受干旱胁迫诱导上调表达.在拟南芥(Arabidopsis thaliana)中过量表达TaWRKY51基因导致转基因株系侧根数目明显增多,并且对ABA、干旱和盐等胁迫处理的敏感性增加,表明该基因可能在植物响应非生物逆境胁迫信号传导过程中起负调控作用.本研究有助于揭示TaWRKY51基因调控植物侧根发育及响应非生物逆境胁迫的分子机制.  相似文献   

9.
向日葵种子特异性启动子Ha ds10G1的克隆及其功能验证   总被引:3,自引:0,他引:3  
利用PCR技术从向日葵基因组DNA中克隆了Lea蛋白基因家族中Ha ds10 G1基因上游1414bp的调控序列,序列分析表明-1—1414bp与报道序列同源性为100%,将其与GUS基因融合构建植物表达载体后,通过农杆菌介导法转化烟草NC89,PCR扩增初步证明目的片段已整合到烟草基因组中,转基因植株的GUS活性检测表明,在茎、叶中无GUS活性,GUS活性只存在于种子中,因此,Ha ds10 G1启动子具有种子特异性的功能。  相似文献   

10.
以含有基因转化操作过程中常用的两种质粒载体pBI121和pCAMBIA2301的根癌农杆菌EHA105为材料,分别转化甜瓜子叶,应用组织化学方法检测了甜瓜子叶和子叶培养后的愈伤组织及根癌农杆菌菌液的瞬时转化效果,研究了两种不同的质粒载体上所含的gus基因在根癌农杆菌中和植物细胞中的表达特性。结果表明,不同质粒载体上所含的gus基因的表达特性不同,质粒载体pBI121上所含的gus基因既能在植物细胞中能表达,也能在根癌农杆菌细胞中表达,而质粒载体pCAMBIA2301上所含的gus基因能在植物细胞中表达,但是不能在根癌农杆菌细胞中表达。  相似文献   

11.
为了研究拟南芥扩张蛋白AtEXPA1基因启动子上与转录调控有关的元件,我们通过PCR技术克隆了AtEXPA1基因上游897bp具有启动子活性的序列,再将启动子作不同程度截短,所有片段与GUS基因融合,构建植物表达载体,采用基因枪轰击拟南芥叶片和PEG介导转化烟草原生质体,通过定性和定量检测GUS的活性,发现在靠近翻译起始密码子的上游144bp之间存在增强转录活性的元件。将PEG介导转化的烟草原生质体,分别进行光诱导,冷诱导, 脱落酸(ABA),盐处理,根据GUS定量检测的结果,推测(1)在AtEXPA1基因启动子上广泛存在与光调控有关的元件,(2) -897~-626 bp之间存在冷负调控元件, (3)-626~-444 bp之间存在与ABA负调控有关的元件,(4)-626~-282 bp之间存在与盐负调控有关的元件。  相似文献   

12.
水稻OsHsfA7基因RNA干扰载体的构建及遗传转化研究   总被引:1,自引:1,他引:0  
为研究水稻热激转录因子基因OsHsfA7的功能及其在水稻耐热育种方面的应用价值,本文通过构建水稻OsHsfA7基因RNA干扰载体获得功能抑制变异材料,从反向遗传学进行基因的功能分析。扩增OsHsfA7c DNA3'编码区470bp片段,分别以反向和正向插入到中间载体pBSK连接的GUS片段两侧,然后将得到的RNA干扰片段克隆到改造的植物表达载体p1301M,构建以CaMV35S启动子驱动表达的水稻OsHsfA7基因RNA干扰表达载体。将该载体转入根癌农杆菌EHA105后,采用农杆菌介导法进行了水稻日本晴品种的遗传转化,获得了23株具有潮霉素抗性的转基因植株,其中12株经GUS染色呈蓝色并且DNA检测10株已插入目的片段,RNA检测其中6株OsHsfA7基因的表达水平下降甚至未检出。结果说明本研究构建的OsHsfA7基因RNA干扰载体对该基因表达沉默是有效的。  相似文献   

13.
为了探明胚乳特异启动子的调控活性,对小麦醇溶蛋白盒结合因子基因(pbf)的启动子序列进行了5´、3´和中间缺失片段-GUS基因嵌合体载体(pbf.a-d)的构建,并在小麦离体胚乳中转化。GUS瞬间表达活性检测和功能缺失试验表明:pbf 的-2510- -1bp全长序列能够在小麦离体胚乳中表现活性,而5´ 端-2510bp- -670bp以及3´端-1288bp- -1bp序列的缺失则使启动子在胚乳中丧失了活性;中间序列-2160bp- -689bp的缺失使GUS的表达强度明显降低。文中对pbf启动子序列中存在的重要基序种类和数量以及基序对启动子表达调控活性的作用也给予了初步分析。本文对小麦胚乳发育状态及GUS瞬间表达体系等对pbf启动子活性检测的影响也作了探讨。  相似文献   

14.
通过分析β-葡萄糖醛酸苷酶(β-glucuronidase, GUS)基因产物,对水稻HIGH-TILLERING DWARF1(HTD1)基因启动子在转基因拟南芥中的表达特性进行初步研究。用已构建的含HTD1基因启动子和GUS报告基因的植物表达载体,通过农杆菌介导转化拟南芥,对转基因拟南芥进行GUS组织化学染色,观察该启动子的表达特性。结果表明,在HTD1基因启动子的驱动下,GUS报告基因主要在转基因拟南芥幼苗期的叶片、叶柄、下胚轴以及主根基部的维管组织中表达。  相似文献   

15.
为丰富花生种子特异启动子资源,本研究利用PCR技术在花生基因组中克隆了种子贮藏蛋白基因PSC32的启动子AHSSP1,利用半定量RT-PCR检测了PSC32基因表达模式,借助NewPLACE在线分析了AHSSP1序列中存在的顺式作用元件,并构建了AHSSP1驱动GUS报告基因的表达载体,经农杆菌转化获得转基因拟南芥,经GUS组织化学染色鉴定了该启动子的功能。结果表明,PSC32基因957 bp长的启动子AHSSP1序列具备种子特异表达启动子特有的3个RY REPEAT元件。半定量RT-PCR分析发现,PSC32基因在花生成熟种子中表达,而在饱果成熟期根、茎、叶片、花、入土前的果针、成熟种子的果壳中均不表达。GUS组织化学染色发现,转基因拟南芥成熟种子以及萌发种子的子叶、下胚轴和胚根均能够被染上蓝色;长出真叶后,子叶和下胚轴仍能被染色,而根和真叶不能被染上蓝色;成年期转基因拟南芥的叶片也不能被染上蓝色。而野生型拟南芥整个生长时期均不能被染上蓝色。以上现象说明AHSSP1是一个种子特异启动子。本研究丰富了花生种子特异启动子的资源,对花生籽仁品质改良或以花生籽仁作为“生物反应器”的研究具有重要的应用价值。  相似文献   

16.
转CBF1基因增强水稻的耐逆性   总被引:11,自引:1,他引:10  
为改良水稻(Oryza sativaL.)的耐逆性,以来源于成熟种子的胚性愈伤组织为受体材料,通过农杆菌介导法将拟南芥(Arabidopsis thaliana)耐逆相关CBF1基因导入粳稻品种秀水11基因组,经GUS组织化学染色、PCR检测和Southern杂交分析验证,获得一批转基因植株。T1代检测结果显示,所转基因已遗传给后代,且大多数株系的分离比符合3∶1。试验表明,在高盐与高渗胁迫下,转基因株系较非转化对照具有显著或极显著生长优势,表现苗高负增长率较小,长出的根数较多,根长较长;经低温胁迫处理后,转基因株系的叶片相对电导率显著或极显著低于对照。这些结果证明水稻转基因株系的耐逆性得到了增强。  相似文献   

17.
Barley ( Hordeum vulgare L.) nicotianamine synthase gene ( HvNAS1 ) expression in barley is strongly induced by Fe deficiency in the roots and rice ( Oryza sativa L.) nicotianamine synthase gene ( OsNAS1 ) expression in rice is induced by Fe deficiency both in the roots and in the shoots. In dicots, NAS genes are not strongly induced by Fe deficiency, and they function to maintain Fe homeostasis. Rice OsNAS1promoter::GUS or barley HvNAS1promoter::GUS was introduced into tobacco ( Nicotiana tabacum L.) and tissue specificities and systemic regulation of their expression were compared. A split-root experiment revealed that the HvNAS1 promoter exhibited functions similar to those of Fe-acquisition-related genes in tobacco roots, suggesting that this promoter responded to certain Fe-deficiency systemic signals and to the Fe concentration in the rhizosphere. The HvNAS1 promoter might harbor a type of universal system of gene expression for Fe acquisition. However, the OsNAS1 promoter did not respond to local application of Fe to the roots and induced GUS activities in mature leaves in response to Fe deficiency. This promoter might possess numerous types of cis -acting sequences that are involved in Fe metabolism.  相似文献   

18.
Iron deficiency-responsive element 1 (IDE1) and IDE2 are cis-acting elements that are responsible for Fe-deficiency-inducible and root-specific expression of the barley (Hordeum vulgare L.) gene IDS2 (Fe-deficiency-specific clone no. 2). Using these cis-acting elements, we aimed to construct super-promoters that would induce prominent gene expression in the roots of Fe-deficient rice plants (Oryza sativa L.). Modules containing IDE1 and IDE2 of the IDS2 promoter were used as repeats or were linked to the Fe-deficiency-responsive promoter of barley IDS3, and were connected to known enhancer-like sequences. Five artificial promoters, as well as the native promoters of barley IDS2 or IDS3, were connected individually upstream of β-glucuronidase (GUS) and were introduced into rice. Transgenic rice plants were grown under control or Fe-deficient conditions, and GUS expression was analyzed. The artificial promoter that contained one module of IDE1 and IDE2 conferred strong Fe-deficiency-inducible GUS expression to the roots of rice plants. Each of the five artificial promoters induced a similar level of GUS expression in Fe-deficient roots, which did not exceed the GUS expression driven by the native IDS2 or IDS3 promoter. Artificial and native promoters induced GUS expression in response to Fe-deficiency in leaves, although the level of expression was lower than that in roots. Histochemical observations revealed that GUS expression driven by artificial and native promoters was spatially similar, and expression was dominant within vascular bundles and root exodermis. These findings suggest that there is coordinated expression of the genes that are involved in Fe-deficiency-induced Fe uptake in rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号