首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 59 毫秒
1.
Temporal dynamics of soybean sudden death syndrome (SDS) root and foliar disease severity were studied in growth chamber experiments on susceptible plants exposed to different inoculum densities (0, 100, 101, 102, and 103 conidia g−1 soil) of Fusarium virguliforme. The monomolecular model provided the best fit to describe the progress of root and foliar disease severity over time. Disease severity and area under disease progress curve (AUDPC) both increased in response to increasing inoculum density (P < 0.01), particularly for foliar symptoms. Rate of disease progress increased as inoculum densities increased for both root and foliar disease severities. The incubation period for root and foliar disease severity ranged from 9 to 18 and 15 to 25 days, respectively. Significant differences in root rot severity were most easily detected during the early stages of infection, whereas root rot and foliar severities were only weakly correlated when both were assessed simultaneously at later stages of disease development. Root rot severity assessments performed 15 to 20 days after inoculation (DAI) were most highly correlated (r > 0.9, P < 0.01) with foliar disease severity assessments performed 30 to 50 DAI. Root biomass was reduced by up to 67% at the three highest inoculum densities, indicating the aggressiveness that F. virguliforme possesses as a root rot pathogen on soybeans.  相似文献   

2.
Tomato root rot caused by Rhizoctonia solani is a major soilborne disease resulting in significant yield loss. The culture filtrates of six isolates of Trichoderma/Hypocrea species were evaluated for in vitro production of hydrolytic enzymes. Results demonstrated that all the six isolates were able to produce chitinase, β-1, 3 glucanase and protease in the range of 76–235 μmol GlcNAc min-1 mg-1 protein, 31.90–37.72 nmol glucose min-1 mg-1 proteins and 63.05–86.22 μmol min-1 mg-1 proteins, respectively. Trichoderma/Hypocrea-based formulation(s) were prepared with chitin (1% v:v) and CMC (0.5% w:v) for root rot management in a greenhouse. Root dip application with bioformulation(s) resulted in a significant reduction of the root rot index. In addition, bioformulations increased plant growth attributing traits significantly relative to untreated control. Accumulation of total phenols, peroxidase, polyphenoloxidase and phenylalanine ammonia lyase increased in chitin-supplemented Trichoderma/Hypocrea formulation-treated plants challenged with R. solani. The results suggest that chitin-fortified bioformulation(s) could be an effective system to control root rot of tomato in an eco-compatible manner.  相似文献   

3.
Mixtures of wet vegetable wastes (Brassica, carrot or onion) and dry onion waste were composted at 50 °C for 7 days. The incorporation of the raw or composted vegetable waste mixtures into sandy loam, silt and peat soils reduced the viability of sclerotia of S. cepivorum in glasshouse pot bioassays. The reduction in viability was dependent on waste type, rate of incorporation, duration of exposure and soil type. Onion waste was the most effective waste type in reducing sclerotia viability in all three soils. The Brassica and carrot wastes were as effective as the onion waste in silt soil but less effective in sandy loam and peat soil. A 50% w/w incorporation rate of the wastes gave the largest reduction in viability, with an increase in reduction over time. Composted onion waste reduced sclerotia viability under glasshouse and field conditions although the effect was smaller in the field. Composted onion waste incorporated into soil at 50% w/w reduced the incidence of Allium white rot on onion seedlings in glasshouse pot tests. Incidence and control of the disease differed with soil type. The most consistent control was achieved in peat soil whereas no control was observed in silt soil. Incorporation of the waste 2 months prior to sowing or transplanting reduced seedling emergence in sandy loam soil and growth in all three soil types. The potential for field application of composted vegetable wastes as a sustainable method for control of Allium white rot and waste disposal is discussed.  相似文献   

4.
The microbial control of Allium white rot (Sclerotium cepivorum) has shown promise experimentally but has yet to be used in commerce. Allium crops are grown from dry or fluiddrilled seed at a range of seed rates, from bare root and module-grown transplants and from sets and cloves. The period of susceptibility to infection may be prolonged or short in cool and hot climates, respectively. Primary infection of the Allium host results from the growth of hyphae from germinating sclerotia to the roots; secondary infection results from hyphal growth between plants. Sclerotial populations in the soil are often low, hence sclerotia are widely dispersed and therefore inaccessible to microbial control. New sclerotia form on host stem tissue, rarely on roots, rendering them accessible to microbial control. Hyphal parasites may therefore be effective at reducing primary and secondary infection and the formation of new sclerotia. Parasites of sclerotia may restrict the survival of new sclerotia and hence reduce primary infection in future, but not the current season's crops. The opportunities and problems that the variety of growing techniques and conditions of Allium crops present for microbial control of white rot will be reviewed.  相似文献   

5.
Tomatoes grown in soilless systems can be seriously damaged byFusarium oxysporum Schlect f.sp.radicis lycopersici (Forl) causing Fusarium crown and root rot (FCRR). FCRR suppression can be achieved through the use of chemicals, selected substrates, composts and artificially introduced antagonistic microorganisms. This study evaluated the natural capacity of a used rockwool to suppress FCRR infections. New and used rockwool, sampled from closed soilless systems, was either autoclaved or not, either artificially inoculated withForl or not and, finally, sown with tomato seeds cv. ‘Cuore di Bue’. The effects of autoclaved/non-autoclaved and used/new rockwool on FCRR incidence were assessed by evaluating the symptoms of crown rot on the root — shoot transition zone of tomato seedlings. Non-autoclaved and inoculated used rockwool significantly reduced FCRR incidence when compared with non-autoclaved and inoculated new rockwool. Autoclaved and inoculated used rockwool did not suppress FCRR, similarly to new and inoculated rockwool. These findings are in accordance with other research that, on a cucumber/Pythium host/pathogen complex in a closed rockwool soilless system, demonstrated the key role of resident microflora in suppressing the root rot disease. http://www.phytoparasitica.org posting Dec. 8, 2006.  相似文献   

6.
The infection of above-ground tissues of Brassica napus by Leptosphaeria maculans is well understood. However, root infection (root rot) under field conditions, the development of root rot over time and its relationship to other disease symptoms caused by L. maculans has not been described. A survey of B. napus crops was conducted in Australia to investigate the incidence and severity of root rot. Additionally, the pathway of root infection was examined in field experiments. Root rot was present in 95% of the 127 crops surveyed. The severity and incidence of root rot was significantly correlated with that of crown canker; however, the strength of this relationship was dependent on the season. Root rot symptoms appeared before flowering and increased in severity during flowering and at maturity, a pattern similar to crown canker suggesting that the infection of the root is an extension of the crown canker phase of the L. maculans lifecycle. All isolates of L. maculans tested in glasshouse experiments caused root rot and crown canker in B. napus and Brassica juncea. In the field, the main pathway of root infection is via invasion of cotyledons or leaves by airborne ascospores, rather than from inoculum in the soil. Root rot was present in crops in fields that had never been sown to B. napus previously, in plants grown in fumigated fields, and in glasshouse-grown plants inoculated in the hypocotyl with L. maculans.  相似文献   

7.
A severe rot was found on the stems and roots of scarlet runner bean (Phaseolus coccineus) in Ibaraki Prefecture (Japan) in August 2004. The causal fungus was identified as Pythium myriotylum. We propose the name of stem and root rot of scarlet runner bean (“Kuki-negusare-byo” in Japanese) for this new disease.  相似文献   

8.
In early August 2010, lacquer trees (Toxicodendron vernicifluum) severely damaged by a root rot disease were found on plantations in Iwate, Japan. The causal agent was a fungus identified as Rosellinia necatrix, based on morphology and the sequence of the ribosomal DNA internal transcribed spacer region. The fungus was clearly pathogenic on T. vernicifluum root plantings. This report is the first of white root rot on T. vernicifluum.  相似文献   

9.
Pythium and Phytophthora species were isolated from kalanchoe plants with root and stem rots. Phytophthora isolates were identified as Phytophthora nicotianae on the basis of morphological characteristics and restriction fragment length polymorphism (RFLP) analysis of the rDNA-internal transcribed spacer regions. Similarly, the Pythium isolates were identified as Pythium myriotylum and Pythium helicoides. In pathogenicity tests, isolates of the three species caused root and stem rots. Disease severity caused by the Pythium spp. and Ph. nicotianae was the greatest at 35°–40°C and 30°–40°C, respectively. Ph. nicotianae induced stem rot at two different relative humidities (60% and >95%) at 30°C. P. myriotylum and P. helicoides caused root and stem rots at high humidity (>95%), but only root rot at low humidity (60%).  相似文献   

10.
Pleiochaeta root rot (PRR) caused by Pleiochaeta setosa is a serious, widespread fungal disease in lupin crops, especially in Lupinus albus (broad-leaf lupin, or white lupin). PRR resistance is common in the gene pool of L. albus with various landraces from the Mediterranean region being the most resistant, and suitable for use in breeding new cultivars. Heritability of resistance is sufficient to make good gains from selection but only when controlled-environment (CE) screening is used. Field disease nurseries on loamy soil gave much lower heritability of resistance. Field disease nurseries had spatially variable spore counts despite continuous lupin cropping, and this was partly responsible (along with climatic conditions) for their reduced precision compared to tests conducted in a CE. Giving infected L. albus roots a single, most-severe-lesion score on a 0–9 scale was adequate for CE screening but not as precise or discriminating as the more time-consuming method of six scores per root. Replication in CE experiments was reduced to two pots of 16 seedlings each without sacrificing genotype discrimination.  相似文献   

11.
The effects of root‐knot nematodes on black root rot of watermelon and bottle gourd were studied using field surveys and co‐inoculation tests with Meloidogyne incognita (southern root‐knot nematode) and Diaporthe sclerotioides. The results of the field survey suggested that root‐knot nematodes had little effect on either the severity of black root rot or infection with D. sclerotioides. None of the three fields showed a significant positive correlation between disease severity and nematode gall index, with low correlation coefficients. Co‐inoculation experiments under controlled conditions found no significant effect of root‐knot nematodes on black root rot of watermelon and bottle gourd based on area under disease progress curves (AUDPC). These results were supported by the quantities of DNA of the two agents in root tissues because no significant difference was found between dual‐ and single‐inoculation treatments with M. incognita and/or D. sclerotioides. These findings suggest that root‐knot nematodes probably do not affect the infection of watermelon or bottle gourd roots by D. sclerotioides or the incidence of black root rot in these crops caused by this fungus.  相似文献   

12.
Rotting of roots and stem bases and wilting of entire plants were found on a gentianaceous flowering plant, prairie gentian (Eustoma grandiflorum), grown in Kagawa Prefecture in the southwest region of Japan in April 2001. A mitosporic fungus, isolated repeatedly from the diseased plants, was identified as a species belonging to the clade 3 of Fusarium solani species complex based on the morphology and the sequence of the translation elongation factor gene. It was demonstrated to cause the disease by inoculating potted plants and reisolating the fungus from the diseased plants. We propose the name “Fusarium root rot of prairie gentian” for this disease.  相似文献   

13.
A wilt disease of the model legume Lotus japonicus was observed in a greenhouse in Tokyo, Japan in May 2004. Roots of diseased plants were rotted and dark brown with lesions spreading to lower stems and leaves, resulting in rapid plant death. The causal agent was identified as Fusarium solani based on the morphology. Sequence analysis of rDNA supported the identification. Inoculation of roots of healthy plants with conidia reproduced characteristic disease symptoms, and F. solani was reisolated from lesions, satisfying Koch’s postulates. The isolate also caused chlorotic to necrotic lesions on leaves of healthy plants after wound-inoculation. Infection by F. solani of leaves of L. japonicus was confirmed histologically. Mycelia were observed in the intercellular spaces of parenchymatous tissues in the lesion area and the surrounding tissues. This is the first report of fungal disease on L. japonicus satisfying Koch’s postulates. We named it “Fusarium root rot of L. japonicus” as a new disease. The compatibility of L. japonicus and F. solani is expected to form a novel pathosystem for studying interactions between legumes and fungal pathogens. The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under accession numbers AB258993 and AB258994.  相似文献   

14.
Sclerotinia soft rot, caused by Sclerotinia sclerotiorum, is a severe disease of cultivated carrots (Daucus carota ssp. sativus) in storage. It is not known whether Sclerotinia soft rot also affects wild carrots (D. carota ssp. carota), which hybridise and exchange genes, among them resistance genes, with the cultivated carrot. We investigated the susceptibility of wild carrots to S. sclerotiorum isolates from cultivated carrot under controlled and outdoor conditions. Inoculated roots from both wild and cultivated plants produced sclerotia and soft rot in a growth chamber test. Two isolates differed significantly in the ability to produce lesions and sclerotia on roots of both wild carrots and cv. Bolero. Flowering stems of wild carrots produced dry, pale lesions after inoculation with the pathogen, and above-ground plant weight was significantly reduced 4 weeks after inoculation in a greenhouse test. Wild and cultivar rosette plants died earlier and fewer plants survived when inoculated with the pathogen under outdoor test conditions. Cultivar plants died earlier than wild plants, but survived as frequently. Plants inoculated in the crown died earlier and at a lower frequency than plants inoculated on leaves. Wild carrots may thus serve as a host of S. sclerotiorum and thus eventually benefit from any uptake of resistance genes, among them transgenes, via introgression from cultivated carrots.  相似文献   

15.
Although the causal agent of black root rot of Cucurbitaceae in Japan has been proposed as Phomopsis sclerotioides, the species identification of the pathogen has remained inconclusive because of a lack of spore formation. We confirmed that a Japanese isolate of Phomopsis sp. obtained from a diseased pumpkin root produced pycnidia containing α spores in sterilized bean pods. In phylogenetic analyses of rDNA-ITS regions, nine Japanese Phomopsis sp. isolates from melon, watermelon grafted onto bottle gourd, and pumpkin diagnosed with black root rot, formed a single clade with P. sclerotioides standard isolates. We identified the causal agent of the black root rot of melon, pumpkin, bottle gourd, and watermelon in Japan as P. sclerotioides and propose the Japanese name “Phomopsis-negusare-byo” for the disease. Patterns of random amplified polymorphic DNA (RAPD) of these Japanese isolates were also similar to those of P. sclerotioides, thus supporting the species identification. However, mycelial incompatibilities were found for many combinations among these P. sclerotioides isolates, suggesting some genotypic variations of this fungus in Japan at a level that the RAPD analyses cannot discriminate. The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession numbers AB201430 to AB201444  相似文献   

16.
During the last decade, a new bacterial disease has impaired the yield of vegetable sweet potato (30–80%) in Taiwan. Infected plants developed stunting, root and stem rot, vascular discoloration and wilting. Ten bacterial isolates that caused the same symptoms in sweet potatoes after inoculation were reisolated and classified as Ralstonia solanacearum phylotype I biovar 4 based on physical and molecular analyses. Moreover, these isolates also caused wilting in convolvulaceous, solanaceaous and cruciferous plants. This report is the first of bacterial wilt of sweet potato caused by R. solanacearum in Taiwan.  相似文献   

17.
Black scurf on carrot roots was found in Hokkaido, Japan, in 2010. An isolate of a binucleate Rhizoctonia was obtained from sclerotia on the root surface. This isolate was identified as anastomosis group (AG)-U based on cultural characteristics, hyphal fusions and the sequence of ribosomal DNA-internal transcribed spacer region. The AG-U isolate caused black scurf symptoms on carrot roots in an inoculation test. The reference isolate of Rhizoctonia solani AG-2-2 IV, which causes carrot root rot, a disease with symptoms that differ from the black scurf symptom. This is the first report of carrot black scurf caused by binucleate Rhizoctonia AG-U.  相似文献   

18.
Severe rot of leaves, peduncles and flowers caused by Gibberella zeae (anamorph: Fusarium graminearum) was found on potted plants of hyacinth (Hyacinthus orientalis), a liliaceous ornamental, in greenhouses in Kagawa Prefecture, Japan, in January 2001. This disease was named “Fusarium rot of hyacinth” as a new disease because only the anamorph, F. graminearum, was identified on the diseased host plant. The authors contributed equally to this work. The fungal isolate and its nucleotide sequence data obtained in this study were deposited in the Genebank, National Institute of Agrobiological Sciences and the DDBJ/EMBL/GenBank databases under the accession numbers MAFF239499 and AB366161, respectively.  相似文献   

19.
A fungus,in vitro producing sclerotia and stromata in which small one-celled hyaline spores are formed, appears to be the cause of a root rot resulting in a wilting of the plants. The infected roots are discoulered brownish-black as the result of the development of mycelium in the cortical tissue and the formation of xylostromata and pseudosclerotial structures in the cortical cells.  相似文献   

20.
Sixteen isolates belonging to 11 species of Trichoderma (T. asperellum, T. ceramicum, T. andinensis, T. orientalis, T. atroviride, T. viridescens, T. brevicompactum, T. harzianum, T. virens, T. koningii and T. koningiopsis) were evaluated for biological control of potato (Solanum tuberosum) stem rot caused by Sclerotinia sclerotiorum. In dual culture tests, all antagonists significantly reduced sclerotia formation, and were able to inhibit radial growth of the pathogen. Growth inhibition by production of volatile and non-volatile inhibitors was also measured in in vitro tests. In screening the most efficient species of Trichoderma, establishment of mycelium on sclerotia and sclerotia lysis were also considered as important biocontrol qualities. Excluding T. asperellum, T. brevicompactum, T. andinensis and T. harzianum, all tested Trichoderma species were able to lyse sclerotia. The sclerotia-destroying species of Trichoderma and one isolate of Talaromyces flavus were tested in greenhouse tests and during 2 years of field experimentation during the 2007 and 2008 cropping seasons. After one aerial application of spore suspension in greenhouse trials, T. koningii, T. virens, T. ceramicum and T. viridescens were the most effective bio-agents and reduced significantly disease severity, and the least biocontrol efficacy was observed in T. flavus. Under field conditions and after five soil and foliar applications of spore suspension, all tested antagonists reduced significantly disease incidence. T. viridescens followed by T. ceramicum showed the best results. T. flavus and T. orientalis were less effective than other tested antagonists in both field trials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号