首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study investigated the influence of Bacillus subtilis GCB‐13‐001 on growth performance, nutrient digestibility, blood characteristics, faecal microbiota and faecal score in weanling pigs. A total of 120 weaning pigs [(Landrace × Yorkshire) × Duroc; 7.73 ± 0.75 kg (28 days of age)] were randomly allotted into three treatments according to their initial body weight (BW) and gender in a 6‐week experiment. There were 8 replication pens in each treatment, with five pigs/pen. Dietary treatment groups were as follows: (a) basal diet (CON), (b) CON + 0.1% Bacillus subtilis GCB‐13‐001 1 × 108 CFU/kg (T1) and (c) CON + 0.1% Bacillus subtilis GCB‐13‐001 1 × 109 CFU/kg (T2). Days 1 to 7, the BW and ADG with T2 treatment were higher (p < .05) than CON treatment, as well as F:G showed trends in linear reduction (p < .1). Days 8 to 21, the BW and ADG were improved (p < .05) in pigs offered T1 and T2 diets compared with CON diet. Days 22 to 42, BW and ADG were higher (p < .05) in pigs fed T2 diet than CON and T1 diets, and the pigs fed T1 diet had higher BW than CON treatment. Overall, the ADG with the T2 treatment was higher (p < .05) than that with the T1 and CON treatments, and pigs offered T1 treatment had higher (p < .05) ADG than CON treatment. Moreover, F:G ratio were significantly decreased (p < .05) by T2 treatment compared with CON treatment. The faecal Lactobacillus counts were improved, and E. coli counts were reduced (p < .05) in pigs fed T2 diet compared with CON at the end of the experiment. In conclusion, supplementation of 0.1% Bacillus subtilis GCB‐13‐001 1 × 109 CFU/kg has shown a beneficial effect in improving BW, increase ADG, decrease F:G ratio.  相似文献   

2.
Amino acid (AA) composition of body protein is considered constant although there are evidences that AA pattern in pigs may be altered by different factors. Pigs with different body composition and protein deposition rates—like fatty and lean pigs—may differ in AA composition, with possible consequences on their AA requirements. This work investigates effects of genotype and dietary lysine deficiency on AA composition of carcass and muscles of Iberian and Landrace × Large White pigs. Twenty‐eight barrows (10 kg body weight [BW]), 14 from each breed, were used. They were randomly assigned to two experimental diets according to a factorial arrangement (two breeds × two diets). Diets were isonitrogenous and isoenergetic (200 ± 1 g CP/kg dry matter (DM); 14.7 ± 0.1 MJ ME/kg DM) and with identical chemical composition except for lysine concentration (10.9 and 5.20 g lysine/kg DM, for lysine‐adequate (AL) diet and lysine‐deficient (DL) diet respectively). Pigs were individually housed, and daily feed allowance was adjusted on a weekly basis according to BW. Pigs were slaughtered at 25 kg BW. Isoleucine, valine and phenylalanine concentration were higher in carcass protein of Iberian pigs (p < .01). In longissimus muscle, higher concentration of arginine, isoleucine, phenylalanine, lysine and valine (p < .001–p < .05), and lower of methionine (p < .001) were detected in Iberian pigs, whereas phenylalanine, leucine, lysine, threonine and methionine concentration decreased and arginine increased (p < .001–p < .05) when pigs were fed DL diet. Genotype and lysine deficiency effects were moderate in the AA composition of protein of biceps femoris muscle. The results show that AA proportions in protein of carcass and longissimus muscle can be influenced by pig genotype and conditions of lysine shortage. The biceps femoris muscle, with different functional and metabolic properties, shows more constant AA composition than longissimus, which seem to prevail independent from genotype or nutritional challenges.  相似文献   

3.
Influenza viruses are frequently transmitted between pigs and their handlers, and among pig handlers. However, reports on socio‐environmental variables as potential risk factors associated with transmission of influenza in West African swine production facilities are very scarce. Syndromic survey for influenza was therefore conducted in Ibadan, Nigeria, and Kumasi, Ghana, in order to identify and elucidate selected socio‐environmental variables that may contribute to the occurrence and distribution of influenza‐like illness (ILI) among swine industry workers. In addition, molecular analyses were conducted to elucidate the nature of influenza viruses circulating at the human–swine interface in these cities and better understand the dynamics of their transmission. Influenza viruses were detected by type‐specific and subtype‐specific RT–PCR. Sequencing and phylogenetic analyses were carried out. Socio‐environmental variables were tested by both univariable and multivariable regression methods for significance at p < 0.05. Three risk factors for ILI were identified in each city. These included “frequency of visit of pig handler to pig pen or lairage” (Ibadan: risk ratio [RR] = 1.54, 95% confidence interval [CI] = 1.36–1.79, p = 0.02; Kumasi: RR = 1.28, 95% CI = 1.11–1.71, p = 0.01) and “pig handler's awareness about biosecurity measures” (Ibadan: RR = 7.09, 95% CI = 2.36–21.32, p < 0.001; Kumasi: RR = 4.84, 95% CI = 1.98–11.80, p < 0.001). Influenza A(H1N1)pdm09 viruses, with M genes closely related to those which circulated among pigs in the two cities during the same period, were detected among Nigerian and Ghanaian pig industry workers. These findings suggest the possibility of bidirectional transmission of influenza at the human–swine interface in these cities and underscore the need for more extensive molecular studies. Risk factors identified may assist in the control of human‐to‐human and human‐to‐swine transmission of influenza in the West African swine industry.  相似文献   

4.
Pig transportation is associated with intestinal oxidative stress and results in destruction of intestinal integrity. Autophagy has been contributed to maintain cell homeostasis under stresses. The purpose of this study was to evaluate the effects of transport stress on morphology, intestinal mucosal barrier and autophagy/mitophagy levels in pig jejunum. A total of 16 finishing pigs were randomly divided into two groups. The control group was directly transported to the slaughterhouse and rested for 24 hr. The experimental groups were transported for 5 hr and slaughtered immediately. The results showed that transportation induced obvious stress responses with morphological and histological damage in jejunum accompanying with an elevated level of malondialdehyde (MDA; p < .05), endotoxin (LPS; p < .05), lactic dehydrogenase (LDH; p < .05) and a decreased level of serum superoxide dismutase (SOD; p < .05). Also, hemeoxy genase 1 (HO‐1; p < .01) as well as tight junction protein (claudin‐1 [p < .001], occludin [p < .05] and zonula occludens 1 [ZO‐1; p < 0.05]) levels were attenuated in jejunum tissue, and NADPH oxidase 1 (NOX1; p < .01) mRNA expression was up‐regulated. Further research indicated that transport stress could induce autophagy through increasing microtubule‐associated protein light chain 3 (LC3; p < .05) and autophagy‐related gene 5 (ATG5; p < .01) levels and suppressing p62 expression. Additionally, transport stress increased the protein levels of PTEN‐induced putative kinase 1 (PINK1; p < .05) and Parkin (p < .05) which was associated with mitophagy. In conclusions, transport stress could induce the destruction of intestinal integrity and involve in the intestinal mucosal barrier oxidative damage, and also contribute to activation of autophagy/mitophagy.  相似文献   

5.
Heat stress (HS) disrupts redox balance and insulin‐related metabolism. Supplementation with supranutritional amounts of selenium (Se) may enhance glutathione peroxidase (GPX) activity and reduce oxidative stress, but may trigger insulin resistance. Therefore, the aim of this experiment was to investigate the effects of a short‐term high Se supplementation on physiology, oxidative stress and insulin‐related metabolism in heat‐stressed pigs. Twenty‐four gilts were fed either a control (0.20 ppm Se) or a high Se (1.0 ppm Se yeast, HiSe) diet for 2 weeks. Pigs were then housed in thermoneutral (20°C) or HS (35°C) conditions for 8 days. Blood samples were collected to study blood Se and oxidative stress markers. An oral glucose tolerance test (OGTT) was conducted on day 8 of thermal exposure. The HS conditions increased rectal temperature and respiration rate (both p < .001). The HiSe diet increased blood Se by 12% (p < .05) and ameliorated the increase in rectal temperature (p < .05). Heat stress increased oxidative stress as evidenced by a 48% increase in plasma advanced oxidized protein products (AOPPs; p < .05), which may be associated with the reductions in plasma biological antioxidant potential (BAP) and erythrocyte GPX activity (both p < .05). The HiSe diet did not alleviate the reduction in plasma BAP or increase in AOPPs observed during HS, although it tended to increase erythrocyte GPX activity by 13% (p = .068). Without affecting insulin, HS attenuated lipid mobilization, as evidenced by a lower fasting NEFA concentration (p < .05), which was not mitigated by the HiSe diet. The HiSe diet increased insulin AUC, suggesting it potentiated insulin resistance, although this only occurred under TN conditions (p = .066). In summary, HS induced oxidative stress and attenuated lipid mobilization in pigs. The short‐term supranutritional Se supplementation alleviated hyperthermia, but did not protect against oxidative stress in heat‐stressed pigs.  相似文献   

6.
We investigated hepatitis E virus (HEV) infections in Finnish veterinarians engaged in different practice specialties and evaluated the effect of different background factors on HEV exposure by examining total HEV antibodies in samples collected from the participants of the 2009 National Veterinary Congress in Helsinki, Finland. Finnish veterinarians commonly have total HEV antibodies with seroprevalence of 10.2%. Of the non‐veterinarians, 5.8% were seropositive. Increasing age was associated with HEV seropositivity, and, surprisingly, the highest HEV seroprevalence (17.8%) among veterinarians was detected among small animal practitioners. Although no positive correlation between swine contacts and HEV seropositivity was found, 22.7% of veterinarians who had had needle stick by a needle that had previously been injected into a pig versus 9.0% of those who had not were seropositive, even though the finding was statistically non‐significant (= 0.07). Our results suggest that, although contact with swine is a known risk factor for HEV infection, the sources of HEV infections are probably numerous, including travelling abroad and possibly also other reservoirs of HEV than pigs.  相似文献   

7.
We examined if 6 weeks of progressive resistance‐loaded voluntary wheel running in rats induced plantaris, soleus, and/or gastrocnemius hypertrophy and/or affected markers of translational efficiency, ribosome biogenesis, and markers of proteolysis. For 6 weeks, 8 male Sprague‐Dawley rats (~9–10 weeks of age, ~300–325 g) rats were assigned to the progressive resistance‐loaded voluntary wheel running model (EX), and ten rats were not trained (SED). For EX rats, the wheel‐loading paradigm was as follows – days 1–7: free‐wheel resistance, days 8–15: wheel resistance set to 20%–25% body mass, days 16–24: 40% body mass, days 25–32: 60% body mass, days 33–42: 40% body mass. Following the intervention, muscles were analysed for markers of translational efficiency, ribosome biogenesis, and muscle proteolysis. Raw gastrocnemius mass (+13%, p < .01), relative (body mass‐corrected) gastrocnemius mass (+16%, p < .001), raw plantaris mass (+13%, p < .05), and relative plantaris mass (+15%, p < .01) were greater in EX vs. SED rats. In spite of gastrocnemius hypertrophy, EX animals presented a 54% decrease in basal muscle protein synthesis levels (p < .01), a 125% increase in pan 4EBP1 levels (p < .001) and a 31% decrease in pan eIF4E levels (p < .05). However, in relation to SED animals, EX animals presented a 70% increase in gastrocnemius c‐Myc protein levels (p < .05). Most markers of translational efficiency and ribosome biogenesis were not altered in the plantaris or soleus muscles of EX vs. SED animals. Gastrocnemius F‐box protein 32 and poly‐ubiquinated protein levels were approximately 150% and 200% greater in SED vs. EX rats (p < .001). These data suggest that the employed resistance training model increases hind limb muscle hypertrophy, and this may be mainly facilitated through reductions in skeletal muscle proteolysis, rather than alterations in ribosome biogenesis or translational efficiency.  相似文献   

8.
This study was conducted to evaluate the effect of mulberry leaves as an alternative source of protein on growth performance, carcass traits and meat quality in finishing pigs. A total of 180 Xiangcun Black pigs were randomly assigned to five treatment groups with six pens of six pigs per pen. The pigs were provided with a basal diet or a diet contained 3%, 6%, 9% or 12% of mulberry leaf powder during a 50‐day experiment period. The results showed that dietary mulberry leaf powder had no negative effect on growth performance in Xiangcun Black pigs, except in the 12% mulberry group, where final body weight and average daily gain decreased (p < .05) and feed to gain ratio of the pigs increased (p < .05). Dietary mulberry inclusion decreased (quadratic, p < .05) the back fat thickness, fibre mean cross‐sectional area (CSA) in the longissimus dorsi (LD) muscle and mRNA expression levels of myosin heavy chain (MyHC) IIb in LD and biceps femoris (BF) muscles, while increased (linear or quadratic, p < .05) the plasma concentration of albumin, levels of crude protein (CP), inosine monophosphate (IMP) and several amino acids in muscle tissues. When compared with the other groups, the 9% mulberry diet increased (p < .05) loin‐eye area and contents of CP and IMP in muscles, while decreased (p < .05) plasma activity of cholinesterase and concentrations of uric acid and urea. The 6% mulberry diet had the lowest fibre mean CSA and shear force and increased total fibre number of the LD muscle, when compared with the other groups. These results suggest that including mulberry in the diet at <12% is an effective feed crop to improve meat quality and the chemical composition of muscle without negatively affecting growth performance.  相似文献   

9.
In the United Kingdom, there has been an increase in the number of hepatitis E virus (HEV) infections in people annually since 2010. Most of these are thought to be indigenously acquired Orthohepevirus A genotype 3 (HEV G3), which has been linked to pork production and consumption. However, the dominant subgroup circulating in British pigs differs from that which is found in people; therefore, an alternative, potentially zoonotic, source is suspected as a possible cause of these infections. Rodents, brown rats (Rattus norvegicus) in particular, have been shown to carry HEV, both the swine HEV G3 genotype and Orthohepevirus C, genotype C1 (rat HEV). To investigate the prevalence of HEV in British rodents, liver tissue was taken from 307 rodents collected from pig farms (n = 12) and other locations (n = 10). The RNA from these samples was extracted and tested using a pan‐HEV nested RT‐PCR. Limited histopathology was also performed. In this study, 8/61 (13%, 95% CI, 5–21) of brown rat livers were positive for HEV RNA. Sequencing of amplicons demonstrated all infections to be rat HEV with 87%–92% nucleotide identity to other rat HEV sequences circulating within Europe and China (224 nt ORF‐1). Lesions and necrosis were observed histologically in 2/3 samples examined. No rat HEV RNA was detected in any other species, and no HEV G3 RNA was detected in any rodent in this study. This is the first reported detection of rat HEV in Great Britain. A human case of rat HEV infection has recently been reported in Asia, suggesting that rat HEV could pose a risk to public health.  相似文献   

10.
Deoxynivalenol (DON) is a toxic secondary metabolite produced by Fusarium graminearum. It is one of the most common feed contaminants that poses a serious threat to the health and performance of dairy cows. This study investigated the in vitro cytotoxicity of DON on bovine mammary epithelial cells (MAC‐T). DON at different concentrations (0.25, 0.3, 0.5, 0.8, 1 or 2 μg/ml) inhibited the growth of MAC‐T cells after 24 hr of exposure (p < .001). DON at 0.25 μg/ml increased lactate dehydrogenase (LDH) leakage (p < .05); decreased glutathione (GSH) levels (p < .001), total superoxide dismutase (T‐SOD) activity and total antioxidant capacity (T‐AOC; p < .01); and increased malondialdehyde (MDA) concentration (p < .01) in MAC‐T cells after 24 hr of exposure. We also observed that DON increased reactive oxygen species (ROS) levels in cells incubated for 9, 15 and 24 hr (p < .001). DON at 0.25 μg/ml triggered oxidative damage in MAC‐T cells. Furthermore, it induced an inflammatory response in the cells incubated for 9, 15 and 24 hr (p < .05) by increasing the mRNA expression levels of nuclear factor kappa B, myeloid differentiation factor 88 (MyD88), tumour necrosis factor‐α (TNF‐α), interleukin‐1β (IL‐1β), IL‐6, cyclooxygenase‐2 and IL‐8. We further examined the effect of DON on apoptosis. DON prevented normal proliferation of MAC‐T cells by blocked cell cycle progression in 24 hr (p < .001). In addition, the apoptosis rate measured using annexin V‐FITC significantly increased (p < .05) with increase in the mRNA expression level of Bax (p < .01) and increase in the Bax/Bcl‐2 ratio (p < .01) in cells incubated for 24 hr. In summary, DON exerts toxic effects in MAC‐T cells by causing oxidative stress, inducing an inflammatory response, affecting cell cycle and leading to apoptosis.  相似文献   

11.
This study was conducted to evaluate the effects of dietary supplementation of protease derived from Pseudoalteromonas arctica (PPA) in finishing pigs. A total of 160 pigs were used in this 10‐week trial. Dietary treatment groups were as follows: CON (basal diet); TRT1 (basal diet + 0.1% PPA); TRT2 (basal diet + 0.2% PPA); and TRT3 (basal diet + 0.3% PPA). During weeks 1–5, pigs fed with different levels of PPA‐supplemented diet showed linear increase (p < .05) in the apparent total tract digestibility (ATTD) of nitrogen (N) and linear decrease (p < .05) in the concentrations of serum total protein. During weeks 6–10, pigs fed with different levels of PPA‐supplemented diet showed a linear decrease in feed conversion ratio (p < .05). During the overall period, there was a linear decrease in feed conversion ratio (p < .05) associated with the inclusion of PPA. Pigs fed diets with 0.2% PPA supplementation had lower (p < .05) feed conversion ratio than those fed CON diet during weeks 6–10 and the overall period, and had higher (p < .05) ATTD of N than those fed CON diet during weeks 1–5. Pigs fed diets with PPA supplementation had lower (p < .05) concentrations of serum total protein than those fed CON diet on week 5. In conclusion, dietary supplementation with PPA diet has beneficial effects on growth performance, nutrient digestibility, backfat thickness and the concentrations of serum total protein.  相似文献   

12.
Weaning process widely affects the small intestinal structure and function in piglets, while the responses of large intestine to weaning stress are still obscure. The purpose of this study was to determine the developmental changes (i.e., short chain fatty acids (SCFAs) concentrations, growth parameters, crypt‐related indices and antioxidant capacity) in colon of piglet during weaning. Forty piglets were weaned at day 21 and euthanized to collect colonic tissues and digesta samples on day 0, 1, 3, 7 and 14 post‐weaning (n = 8). Piglet growth performance was improved (p < .001) on day 7 and 14 post‐weaning. The concentrations of acetate, propionate, butyrate, valerate, isobutyrate, isovalerate and total SCFAs were higher (p < .001) during the late post‐weaning period. The mRNA abundances of SCFAs transporters were greater (p < .001) on day 7 and 14. The absolute and relative weights, absolute length and perimeter of colon were greater (p < .001) on day 7 and 14. Similarly, post‐weaning increases (p < .001) in colonic crypt depth and Ki67 positive cells numbers per crypt were observed during the same period. Colonic crypt fission indices decreased (p < .01), while total crypt numbers increased (p < .001) on day 14 after weaning. Moreover, total SCFAs concentration was significantly associated with colonic growth parameters and Ki67 cells/crypt (p < .001). In addition, catalase content was decreased on day 3, 7, and 14, whereas, the concentrations of total superoxide dismutase (T‐SOD) and manganese‐containing superoxide dismutase (MnSOD) were higher (p < .05) on day 1 and 3 post‐weaning. These results showed that weaning process has a significant effect on colonic growth and development, which might be associated with the change of SCFAs concentrations in colon.  相似文献   

13.
The aim of the study was to verify the influence of selenomethionine (SM) supplementation on performance, carcass yield, characteristics of meat quality and Se tissue deposition of finishing pigs. A total of 128 hybrid pigs with an average weight of 76 kg were distributed in randomized blocks according to body weight in eight treatments and eight replicates. The experimental treatments were two Se levels from sodium selenite‐SS (0.3 and 0.6 ppm), four Se levels from SM (0.3, 0.4, 0.5 and 0.6 ppm) and two combinations of SS with SM (SS 0.15 + SM 0.15 ppm and SS 0.3 + SM 0.3 ppm) providing 0.3 and 0.6 ppm Se in the diet respectively. The feeds were based on corn and soya bean meal. After 30 days on test, were analysed the performance indices and the pigs were slaughtered at commercial slaughterhouse. The cold carcass yield, the physicochemical characteristics of the loin meat and the Se content in muscle and liver were evaluated. There was no significant difference in performance indices (p > .05); however, there was a linear effect on the increase in pig carcass yield by increasing SM (p < .05). The use of SM solely or combined with SS provided higher Se deposition in muscle compared to SS (p < .05). The highest Se deposition in muscle occurred for SM at 0.4 ppm (p < .05). The SS provided higher Se deposition in liver (p < .05). The SM presented best results for meat quality compared to other sources (p < .05). The level of 0.4 ppm Se promoted the best results for the indices of yellow, luminosity, cooking loss and pH (p < .05). The use of SM at any level promotes higher oxidation stability of pig meat (p < .05). The supplementation of SM at a level of 0.4 ppm promotes better physicochemical characteristics and higher Se deposition on swine meat.  相似文献   

14.
Two experiments were conducted to investigate effects of different space allocations and different dietary metabolizable energy (ME) levels on growth performance and nutrient digestibility in growing and finishing pigs. In experiment 1, a total of 84 growing pigs [(Yorkshire × Landrace) × Duroc] with an initial body weight (BW) of 27.10 ± 1.60 kg were used in a 5‐week trial. Pigs were blocked based on initial BW into a 2 × 2 factorial design with the following factors: (i) 0.60 or 0.80 m2/pig space allocations; and (ii) 3,400 or 3,550 kcal/kg ME of diets. In experiment 2, a total of 84 finishing pigs with an initial BW of 67.43 ± 1.97 kg were used in a 10‐week trial. Pigs were allotted based on initial BW into a 2 × 2 factorial design with the following factors: (i) 0.81 or 1.08 m2/pig space allocations; and (ii) 3,300 or 3,450 kcal/kg ME of diet. In experiment 1, high ME diet improved gain‐to‐feed ratio (G:F) in pigs with low space allocation but not in pigs in high space allocation (p < .05). Additionally, high ME diet increased apparent total tract digestibility (ATTD) of nitrogen in low space allocation but decreased ATTD of nitrogen in high space allocation (p < .05). In experiment 2, high ME diet improved average daily gain (ADG) and G:F in early‐finishing pigs with low space allocation but not in pigs with high space allocation (p < .05). In conclusion, the provision of high ME diets was not enough to overcome the reduction in growth performance due to low space allocation but can improve feed efficiency in growing pigs and daily gain and feed efficiency early‐finishing pigs.  相似文献   

15.
A study was conducted to evaluate the effects of chestnut tannins (CT) on intestinal morphology, barrier function, pro‐inflammatory cytokine expression, microflora and antioxidant capacity in heat‐stressed broilers. Four hundred 28‐day‐old male Ross 308 broilers were randomly assigned into four groups, with 10 replicates per group and 10 broilers per replicate. The broilers in the normal (NOR) group were kept at 22 ± 1°C and fed the basal diet, and each of the other three groups were treated with cyclic heat (33 ± 1°C from 0800 to 1800 and 22 ± 1°C from 1800 to 0800) and fed the basal diet with 0 (HT), 1 (CT1) or 2 (CT2) g of CT/kg of diet. The experiment lasted for 14 days. Compared with the HT group, broilers in the NOR and CT2 groups had higher (p < .05) average daily gain and villus height in the jejunum and lower serum d ‐lactate (p < .001) and diamine oxidase (p < .01) levels. The addition of 2 g CT/kg of diet increased the total antioxidant capacity (p < .001) and superoxide dismutase activities (p < .05) and zonula occludens‐1 mRNA expression level (p < .05) and decreased the malondialdehyde concentration (p < .01) and mRNA expression levels of interleukin‐6 (p < .001) and nuclear factor kappa B (p < .001) in the jejunal mucosa of heat‐stressed broilers. The populations of Escherichia coli and Clostridium in the jejunum (p < .01) and caecum (p < .05) of broilers in the HT group were higher than those in the NOR and CT2 groups. In conclusion, the addition of 2 g CT/kg of diet seemed to be a feasible means of alleviating the negative effects of heat stress on the growth performance and intestinal function of broilers.  相似文献   

16.
The GMM sheep is a carrier of Booroola fecundity (FecB) gene, which produces the twins and triplets in one lambing. The homozygous carrier GMM (FecBBB), non‐carrier GMM and Malpura (FecB++) ewes were synchronized by progesterone sponges, and the plasma progesterone concentration was measured by RIA. The results showed that the progesterone concentration did not differ significantly (p > .05) in homozygous carrier GMM (5.74 ± 1.2 ng/ml), non‐carrier GMM (5.42 ± 1.4 ng/ml) and non‐carrier Malpura ewes (5.67 ± 1.5 ng/ml). Further, quantitative expression of BMP factors/receptors and SMAD signalling genes were analysed in the ovaries of sheep by qRT‐PCR. The study showed that the expression of BMP2 was slightly higher (p > .05) in carrier GMM than that of non‐carrier GMM, but it was almost similar to Malpura ewes. Expression of BMP4 and BMP7 was significantly higher (p < .001; p < .05) in carrier GMM than that of non‐carrier GMM and Malpura ewes. Although BMP6 expression was higher (p > .05) in carrier GMM than that of non‐carrier GMM, but lower (p > .05) than the Malpura ewes. Expression of BMP15 (p < .05), GDF5 (p < .01) and GDF9 (p < .05) was significantly higher in carrier GMM than non‐carrier GMM ewes. Surprisingly, BMPR1B expression was significantly higher (p < .001) in non‐carrier GMM and Malpura than the carrier GMM ewes, while TGFβRI did not differ significantly (p > .05) among both GMM genotypes. On the other hand, expression of BMPR1A (p > .05) and BMPRII (p < .05) was higher in carrier GMM than the non‐carrier GMM, but significantly lower (p < .001) than the Malpura ewes. It was interesting to note that the expression of SMAD1 (p > .05), SMAD2 (p < .001), SMAD3 (p < .05), SMAD4 (p < .001), SMAD5 (p < .001) and SMAD8 (p < .001) was lower in the carrier GMM than that of non‐carrier GMM ewes. It is concluded that the FecB mutation alters the expression of BMPR1B and SMAD signalling genes in the ovaries of homozygous carrier GMM ewes.  相似文献   

17.
18.
Carryover effect of prior fibre consumption on metabolic markers was investigated. Treatments were arranged in 2 × 2 factorial with 2 fibre sources, 4% inulin or cellulose (Solka‐Floc®) and fat levels (5 or 15%) for the low‐fat diet (LFD) and high‐fat diet (HFD) respectively. Pigs were fed the two fibre diets for the first 56d (nursery phase), and thereafter fed either the LFD or HFD containing no added fibre source from d56 to 140 (growing phase). Pigs on the HFD were heavier (p = .05) than those on LF (64.61 vs. 68.38 kg), regardless of prior fibre type consumed. Pigs that were fed cellulose during the nursery and later fed the HFD had the highest ADG (p < .05). Feeding the HFD resulted in higher back fat (BF) (13.41 and 18.18 ± 0.12 mm for LFD and HFD, respectively; p < .01). The HFD resulted in higher (p < .01) insulin (0.014 and 0.016 ± 0.001 mg/L for LF and HF respectively) and glucose (100.89 and 125.03 ± 4.39 mg/dl for LF and HF respectively) concentrations in the serum. Inulin increased ( .02) jejunal expression of SREBP‐1c and CL‐4, but reduced (p < .05) TNFɑ and IL‐6 expression in the ileum. Alpha‐diversity was significantly different (p < .05) between the inulin and cellulose fed pigs at the end of the nursery and finishing phases. Therefore, inulin feeding before a HFD may lead to reduction in ADG and inflammatory markers in the small intestine of pigs, and thus prevent future metabolic disorders.  相似文献   

19.
Milk fatty acid (FA) profiles were determined in Holstein cows (n = 27) fed total mixed rations (TMR) ad libitum (G0) or diet composed by TMR (50% dry matter [DM] offered) plus grazing of pasture with 6 hr of access time to paddock in one session (G1) or 9 hr in two sessions (G2) at 45 days in milk (DIM). Moreover, milk FA was determined at 65 DIM when G0 cows turned out to G1 diet without adaptation period (Post‐G0), G1 remained as controls. Milk FA was quantified using gas chromatography and mass spectrometry. Preformed FA at 45 DIM was greater (+27%) for G2 than G0 cows (p < .05). Stearic acid (C18:0) was 30% greater for G2 cows (p < .05). De novo FA was lowest for G2 cows (p < .05). Conjugated linoleic acid (CLA) did not differ (p < .12), while vaccenic acid (C18:1trans) was twofold greater for grazing treatments (p < .01). Linolenic acid [C18:3(n‐3)] was greatest for G2 and lowest for G0 cows (p < .01). Omega 6 FA was greater for G0 than grazing cows, mainly due to linoleic acid [18:2cis(n‐6); p < .05]. These results determined that n‐6/n‐3 ratio was almost threefold greater for G0 than grazing cows (p < .001). When diet of G0 cows changed to include pasture (Post‐G0), preformed FA increased (p < .05), explained mainly by the increase (p < .05) of stearic (C18:0) and C18:1trans, while de novo FA tended to decrease (p < .1). Moreover, the amount of CLA and C18:3(n‐3) tended to increase (p < .1) in Post‐G0 cows. Offering 50% of dietary DM from pasture modified milk FA profile in early lactation potentially beneficial for human health. When TMR‐fed cows were turned out to 50% pasture, milk FA profile reflected dietary change without need of an adaptation period.  相似文献   

20.
Hepatitis E virus (HEV) has emerged during the past decade as a causative agent of autochthonous hepatitis and is a clinical concern in Western developed countries. It has been increasingly recognized that pigs are a major reservoir of HEV of genotypes 3 and 4 worldwide and pig‐derived food items represent a potential source of infections by these viruses in humans. Hepatitis E virus RNA testing was performed here on faeces from rectal swabs sampled in 2012 from 50 3‐month‐old farm pigs from the same farm located in south‐eastern France than in a previous work conducted in 2007. Pig HEV sequences corresponding to genomic fragments of ORF2 and ORF1 genes were obtained after RT‐PCR amplification with in‐house protocols. Hepatitis E virus genotype was determined by phylogenetic analysis. Prevalence was similar to that determined 5 years earlier (68% versus 62%). Two robust phylogenetic clusters of HEV subtypes 3a and 3f were identified, and these sequences obtained in 2012 largely differ compared with those obtained in 2007. Notably, HEV sequences obtained in 2012 from a majority (62%) of the infected pigs belonged to subtype 3a, which was not previously described in France, including not being found in any of humans, pigs or wild boars. Further studies are needed to assess the circulation of HEV‐3a in pigs and humans in this country. In addition, along with previous findings, this study supports the need for increased information to the public on the risk of HEV infection through contacts with pigs or consumption of pig‐derived products in France.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号