首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Mark III very-long-baseline interferometry (VLBI) system allows recording and later processing of up to 112 megabits per second from each radio telescope of an interferometer array. For astrometric and geodetic measurements, signals from two radio-frequency bands (2.2 to 2.3 and 8.2 to 8.6 gigahertz) are sampled and recorded simultaneously at all antenna sites. From these dual-band recordings the relative group delays of signals arriving at each pair of sites can be corrected for the contributions due to the ionosphere. For many radio sources for which the signals are sufficiently intense, these group delays can be determined with uncertainties under 50 picoseconds. Relative positions of widely separated antennas and celestial coordinates of radio sources have been determined from such measurements with 1 standard deviation uncertainties of about 5 centimeters and 3 milliseconds of arc, respectively. Sample results are given for the lengths of baselines between three antennas in the United States and three in Europe as well as for the arc lengths between the positions of six extragalactic radio sources. There is no significant evidence of change in any of these quantities. For mapping the brightness distribution of such compact radio sources, signals of a given polarization, or of pairs of orthogonal polarizations, can be recorded in up to 28 contiguous bands each nearly 2 megahertz wide. The ability to record large bandwidths and to link together many large radio telescopes allows detection and study of compact sources with flux densities under 1 millijansky.  相似文献   

2.
Nine separate very-long-baseline interferometry (VLBI) experiments, carried out in 1972 and 1973 with radio telescopes 3900 kilometers apart, yielded values for the baseline length with a root-mean-square deviation about the mean of less than 20 centitneters. The corresponding fractional spread is about five parts in 10(8). Changes in universal time and in polar motion were also detertnined accurately from these data; the root-mean-square scatter of these results with respect to those based on optical methods were 2.9 milliseconds and 1.3 meters, respectively. Solid-earth tides were apparently detected, but no useful estimate of their amplituide was extracted.  相似文献   

3.
Before the launch of the Compton Gamma Ray Observatory (CGRO), the only source of >100-megaelectron volt (MeV) gamma radiation known outside our galaxy was the quasar 3C 273. After less than a year of observing, 13 other extragalactic sources have been discovered with the Energetic Gamma Ray Experiment Telescope (EGRET) on CGRO, and it is expected that many more will be found before the full sky survey is complete. All 14 sources show evidence of blazar properties at other wavelengths; these properties include high optical polarization, extreme optical variability, flat-spectrum radio emission associated with a compact core, and apparent superluminal motion. Such properties are thought to be produced by those few, rare extragalactic radio galaxies and quasars that are favorably aligned to permit us to look almost directly down a relativistically outflowing jet of matter expelled from a supermassive black hole. Although the origin of the gamma rays from radio jets is a subject of much controversy, the gamma-ray window probed by CGRO is providing a wealth of knowledge about the central engines of active galactic nuclei and the most energetic processes occurring in nature.  相似文献   

4.
An orbiting spacecraft and ground observatories have been used to obtain interferometric observations of cosmic radio sources. The Tracking and Data Relay Satellite System (TDRSS) was used as the orbiting observatory in conjunction with two 64- meter radio telescopes at ground observatories, one in Australia and one in Japan. The quasars 1730-130 (NRAO 530), 1510-089, and 1741-038 were observed at a frequency of 2.3 gigahertz, and a maximum projected baseline of 1.4 earth diameters was achieved. All quasar observations for which valid data were acquired resulted in detected fringes. Many of the techniques proposed for a dedicated very long baseline interferometry observatory in space were used successfully in this experiment.  相似文献   

5.
The detection of fast variations of the tera-electron volt (TeV) (10(12) eV) gamma-ray flux, on time scales of days, from the nearby radio galaxy M87 is reported. These variations are about 10 times as fast as those observed in any other wave band and imply a very compact emission region with a dimension similar to the Schwarzschild radius of the central black hole. We thus can exclude several other sites and processes of the gamma-ray production. The observations confirm that TeV gamma rays are emitted by extragalactic sources other than blazars, where jets are not relativistically beamed toward the observer.  相似文献   

6.
Observations now require that there be a continuous supply of energy to the giant extragalactic radio sources. These observations also suggest that this energy input may be in the form of streams or jets of gas emanating from the centers of galaxies and quasi-stellar objects. Current data indicate that the large-scale jet structures are not moving with relativistic speeds, as previously proposed. Slow-moving jets, which possess turbulent interiors and are dominated by relatively cool gas, can account for the observed jet properties at optical and radio wavelengths. Extremely small-scale jets observed adjacent to the central energy source may or may not be in relativistic motion.  相似文献   

7.
Numerical simulations with supercomputers allow analysis of the wide range of nonlinear physics inherent in the hydrodynamic and magnetohydrodynamic equations. When applied to extragalactic radio sources, these numerical models have begun to reproduce many of the complex structures observed on telescopic images. This combination of telescopic and numerical observations provides powerful probes of the physics of radio galaxies. In this review, some of the recent results from both two-dimensional and three-dimensional numerical simulations of the formation and evolution of extended radio morphologies are described. These numerical models have allowed the exploration of important physical phenomena including the role of magnetic fields in the dynamics and emissivity of extended radio galaxies, intermittent outflow from the cores of active galaxies, instabilities and disruption of fluid jets, and the bending of collimated outflows by motion through the intergalactic medium.  相似文献   

8.
High angular resolution images of extragalactic radio sources are being made with the Highly Advanced Laboratory for Communications and Astronomy (HALCA) satellite and ground-based radio telescopes as part of the Very Long Baseline Interferometry (VLBI) Space Observatory Programme (VSOP). VSOP observations at 1.6 and 5 gigahertz of the milli-arc-second-scale structure of radio quasars enable the quasar core size and the corresponding brightness temperature to be determined, and they enable the motions of jet components that are close to the core to be studied. Here, VSOP images of the gamma-ray source 1156+295, the quasar 1548+056, the ultraluminous quasar 0014+813, and the superluminal quasar 0212+735 are presented and discussed.  相似文献   

9.
In June 1985, two instrumented balloons were placed in the atmosphere of Venus as part of the VEGA mission. Each balloon traveled about 30 percent of the way around the planet at a float altitude near 54 kilometers. In situ sensors measured pressure, temperature, vertical wind velocity, cloud particle backscatter, ambient light level, and frequency of lightning. A ground-based network of 20 radio antennas tracked the balloons by very long baseline interferometry (VLBI) techniques to monitor the Venus winds. The history, organization, and principal characteristics of this international balloon experiment are described.  相似文献   

10.
Finding direct evidence for plasma instability in extragalactic jets is crucial for understanding the nature of relativistic outflows from active galactic nuclei. Our radio interferometric observations of the quasar 3C273 made with the orbiting radio telescope, HALCA, and an array of ground telescopes have yielded an image in which the emission across the jet is resolved, revealing two threadlike patterns that form a double helix inside the jet. This double helical structure is consistent with a Kelvin-Helmholtz instability, and at least five different instability modes can be identified and modeled by a light jet with a Lorentz factor of 2 and Mach number of 3.5. The model reproduces in detail the internal structure of the jet on scales of up to 30 milli-arc seconds ( approximately 300 parsecs) and is consistent with the general morphology of the jet on scales of up to 1 kiloparsec.  相似文献   

11.
Arp H 《Science (New York, N.Y.)》1966,151(3715):1214-1216
Pairs of radio sources which are separated by from 2 degrees to 6 degrees on the sky have been investigated. In a number of cases peculiar galaxies have been found approximately midway along a line joining the two radio sources. The central peculiar galaxies belong mainly to a certain class in the recently compiled Atlas of Peculiar Galaxies. Among the radio sources so far associated with the peculiar galaxies are at least five known quasars. These quasars are indicated to be not at cosmological distances (that is, red shifts not caused by expansion of the universe) because the central peculiar galaxies are only at distances of 10 to 100 megaparsecs. The absolute magnitudes of these quasars are indicated to be in the range of brightness of normal galaxies and downward. Some of the radio sources which have been found to be associated with peculiar galaxies are galaxies themselves. It is therefore implied that ejection of material took place within or near the parent peculiar galaxies with speeds between 10(2) and 10(4) kilometers per second. After traveling for times of the order of 10(7) to 10(9) years, the luminous matter (galaxies) and radio sources (plasma) have reached their observed separations from the central peculiar galaxy. The large red shifts measured for the quasars would seem to be either (i) gravitational, (ii) collapse velocities of clouds of material falling toward the center of these compact galaxies, or (iii) some as yet unknown cause.  相似文献   

12.
The Very Long Baseline Array is a high-resolution synthesis radio telescope consisting of ten antennas, each 25 meters in diameter, located throughout the United States from Puerto Rico to Hawaii. Each antenna will be equipped with low-noise receivers spaced throughout the frequency range from 330 megahertz to 43 gigahertz, a hydrogen-maser frequency standard for time and frequency reference, and broadband digital tape recorders. Tapes recorded at each antenna will be simultaneously replayed and correlated in a specially built digital correlator, and the correlator output will, by Fourier transformation, be used to construct images of celestial radio sources with an angular resolution better than one thousandth of an arc second.  相似文献   

13.
A variety of recent optical, radio, and x-ray observation have confirmed the hypothesis that the peculiar star SS 433 is ejecting two narrow, opposed, highly collimated jets of matter at one-quarter the speed of light. This unique behavior is probably driven by mass exchange between a relatively normal star and a compact companion, either a neutron star or a black hole. However, numerous details regarding the energetics, radiation, acceleration, and collimation of the jets remain to be understood. This phenomenon may well be a miniature example of similar collimated ejection of gas by active extragalactic objects such as quasars and radio galaxies.  相似文献   

14.
The Galactic plane is a strong emitter of hard x-rays (2 to 10 kiloelectron volts), and the emission forms a narrow continuous ridge. The currently known hard x-ray sources are far too few to explain the ridge x-ray emission, and the fundamental question of whether the ridge emission is ultimately resolved into numerous dimmer discrete sources or truly diffuse emission has not yet been settled. In order to obtain a decisive answer, using the Chandra X-ray Observatory, we carried out the deepest hard x-ray survey of a Galactic plane region that is devoid of known x-ray point sources. We detected at least 36 new hard x-ray point sources in addition to strong diffuse emission within a 17' by 17' field of view. The surface density of the point sources is comparable to that at high Galactic latitudes after the effects of Galactic absorption are considered. Therefore, most of these point sources are probably extragalactic, presumably active galaxies seen through the Galactic disk. The Galactic ridge hard x-ray emission is diffuse, which indicates omnipresence within the Galactic plane of a hot plasma, the energy density of which is more than one order of magnitude higher than any other substance in the interstellar space.  相似文献   

15.
The Very Large Array has been used to survey a small region of sky at a wavelength of 6 centimeters down to a completeness level of 60 microjanskys-about 100 times weaker than the faintest radio sources that have been detected with other instruments. The observed source count at flux densities below 100 millijanskys converges in a manner similar to the lower frequency counts, although there is some evidence for an excess of sources weaker than 100 microjanskys. The sources in the survey are preferentially identified with faint galaxies.  相似文献   

16.
Using data collected at the Pierre Auger Observatory during the past 3.7 years, we demonstrated a correlation between the arrival directions of cosmic rays with energy above 6 x 10(19) electron volts and the positions of active galactic nuclei (AGN) lying within approximately 75 megaparsecs. We rejected the hypothesis of an isotropic distribution of these cosmic rays with at least a 99% confidence level from a prescribed a priori test. The correlation we observed is compatible with the hypothesis that the highest-energy particles originate from nearby extragalactic sources whose flux has not been substantially reduced by interaction with the cosmic background radiation. AGN or objects having a similar spatial distribution are possible sources.  相似文献   

17.
Images of Neptune obtained by the narrow-angle camera of the Voyager 2 spacecraft reveal large-scale cloud features that persist for several months or longer. The features' periods of rotation about the planetary axis range from 15.8 to 18.4 hours. The atmosphere equatorward of -53 degrees rotates with periods longer than the 16.05-hour period deduced from Voyager's planetary radio astronomy experiment (presumably the planet's internal rotation period). The wind speeds computed with respect to this radio period range from 20 meters per second eastward to 325 meters per second westward. Thus, the cloud-top wind speeds are roughly the same for all the planets ranging from Venus to Neptune, even though the solar energy inputs to the atmospheres vary by a factor of 1000.  相似文献   

18.
The sharply defined optical and radio pulses from pulsars make possible a test of the variation of the speed of light with frequency, and of the possible existence of a photon mass. The data indicate that the mass of a real photon is less than 10(-44) gram. Detection of extragalactic pulsars could allow a substantial improvement of this limit.  相似文献   

19.
We measured the Newtonian constant of gravity, G, using a gravity gradiometer based on atom interferometry. The gradiometer measures the differential acceleration of two samples of laser-cooled Cs atoms. The change in gravitational field along one dimension is measured when a well-characterized Pb mass is displaced. Here, we report a value of G = 6.693 x 10(-11) cubic meters per kilogram second squared, with a standard error of the mean of +/-0.027 x 10(-11) and a systematic error of +/-0.021 x 10(-11) cubic meters per kilogram second squared. The possibility that unknown systematic errors still exist in traditional measurements makes it important to measure G with independent methods.  相似文献   

20.
Very high energy gamma-rays probe the long-standing mystery of the origin of cosmic rays. Produced in the interactions of accelerated particles in astrophysical objects, they can be used to image cosmic particle accelerators. A first sensitive survey of the inner part of the Milky Way with the High Energy Stereoscopic System (HESS) reveals a population of eight previously unknown firmly detected sources of very high energy gamma-rays. At least two have no known radio or x-ray counterpart and may be representative of a new class of "dark" nucleonic cosmic ray sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号