首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mori A  Takeda H 《Tree physiology》2004,24(6):661-670
Light-related plasticity of crown morphology and within-crown characteristics were investigated in understory sun and shade saplings of three codominant subalpine conifers, Abies mariesii M.T. Mast., Abies veitchii Lindl. and Picea jezoensis var. hondoensis (Mayr) Rehd. Compared with those of sun saplings, current-year shoots of shade saplings allocated less biomass to needles, resulting in less dense needle packing and hence less mutual needle shading. The proportion of lateral branch biomass in foliage was either similar in sun and shade saplings or greater in shade saplings, depending on the species, suggesting that, over the lifetime of a branch, greater needle longevity in shade compensates for reduced biomass investment in needles of current-year shoots of shade saplings. Saplings with slower-growing branches tended to have greater needle life spans, suggesting that plasticity of branch growth rate and plasticity of needle life span are interdependent. Both Abies species showed greater light-related plasticity of needle life span and branch growth than P. jezoensis. The greater shade tolerance of the Abies species derives from their broad flattened crowns with slow-growing branches. This type of crown development incurs substantial support costs, but the long needle life span of shade saplings of the Abies species compensates, at least in part, for their low annual investment in foliage, especially in the case of A. mariesii, which has a longer needle life span and slower-growing and stouter branches than A. veitchii. Compared with the Abies species, P. jezoensis had a less plastic crown morphology, and less variability of needle life span and branch growth in response to light, resulting in lower shade tolerance. However, compared with the flattened crown of Abies shade saplings, the conical crown of P. jezoensis saplings imposes a smaller support cost, making this species better adapted to rapid height growth than to survival in shade.  相似文献   

2.
Structural characteristics of Abies mariesii M.T. Mast. saplings growing in sun and shade in a snowy subalpine parkland in central Japan were assessed to infer how saplings acclimate to suppression by larger individuals in a conifer clump and to extremely snowy conditions. Sun and shade saplings produced structurally different current-year shoots, and allocated biomass to needles and stem differently. Compared with sun saplings, shoots of shade saplings had lower needle mass per unit shoot size, which indicates less dense needle packing and more effective use of the limited available light by avoiding mutual shading among needles. Biomass allocation within lateral branches also differed between sun and shade saplings. Compared with sun saplings, needle mass was a smaller proportion of total branch mass in shade saplings although shade saplings retained needles for longer, thereby compensating, in part, for their lower annual production of needles. Thus shade saplings incur a high mechanical cost to support their low-light acclimated, conspicuously flattened crowns in this snowy habitat. Suppressed saplings are an important component of the persistent conifer clumps in snowy subalpine parklands. The observed structural characteristics of A. mariesii saplings, which ensure high shade- and snow-tolerance, contribute to the dominance of the species in snowy subalpine regions in Honshu, Japan.  相似文献   

3.
King DA 《Tree physiology》1997,17(4):251-258
Aboveground biomass allocation, and height and branch growth were studied in saplings of the shade-tolerant conifer, Abies amabilis Dougl. ex Forbes growing in large openings and in the understory of an old-growth forest in western Oregon. The presence of annual overwintering budscale scars was used to infer extension growth histories; annual growth rings in branches and stems were used in combination with extension histories to compute partitioning of new biomass among leaves, branches and stems. Saplings growing in large gaps had conical crowns, whereas understory saplings had umbrella shaped crowns as a result of much greater rates of branch extension than stem extension. Understory saplings grew slowly in height because of low rates of biomass production and low allocation of biomass to stem extension. About 40% of new biomass was allocated to foliage in both groups, but understory saplings allocated more of the remaining growth increment to branches and less to stem than did saplings growing in large gaps. These results differ from the patterns observed in shade-tolerant saplings of tropical forests, where allocation to foliage increases with shading and branch allocation is much lower than observed here. This difference in allocation may reflect mechanical constraints imposed by snow loads on the evergreen A. amabilis crowns, particularly on flat-crowned understory saplings.  相似文献   

4.
We studied the effects of variation in shoot structure and needle morphology on the distributions of light and nitrogen within a Pacific silver fir (Abies amabilis (Dougl.) Forbes) canopy. Specifically, we investigated the role of morphological shade acclimation in the determination of resource use efficiency, which is claimed to be optimal when the distribution of nitrogen within the canopy is directly proportional to the distribution of intercepted photosynthetically active radiation (PAR). Shoots were collected from different heights in the crowns of trees representing four different size classes. A new method was developed to estimate seasonal light interceptance (SLI, intercepted PAR per unit needle area) of the shoots using a model for the directional distribution of above-canopy PAR, measurements of shoot silhouette area and canopy gap fraction in different directions. The ratio SLI/SLI(o), where the reference value SLI(o) represents the seasonal light interceptance of a spherical surface at the shoot location, was used to quantify the efficiency of light capture by a shoot. The ratio SLI/SLI(o) doubled from the top to the bottom of the canopy, mainly as a result of smaller internal shading in shade shoots than in sun shoots. Increased light-capturing efficiency of shade shoots implies that the difference in intercepted light by sun shoots versus shade shoots is much less than the decrease in available light from the upper to the lower canopy. For example, SLI of the five most sunlit shoots was only about 20 times greater than the SLI of the five most shaded shoots, whereas SLI(o) was 40 times greater for sun shoots than for shade shoots. Nitrogen content per unit needle area was about three times higher in sun needles than in shade needles. This variation, however, was not enough to produce proportionality between the amounts of nitrogen and intercepted PAR throughout the canopy.  相似文献   

5.
The production and allocation of aboveground biomass and the characteristics of tree architecture were examined in eight-year-old Scots pine (Pinus sylvestris L.). Considerable among-tree variation existed in tree architecture, total aboveground dry mass production, and dry mass partitioning among tree parts. A linear relationship existed between needle and branch mass. Stem mass was directly proportional to tree height, which in turn was directly proportional to the allocation ratio between stem mass and total needle + branch mass production. The architectural characteristics that were related to a high proportional allocation to stem and high stemwood production were a large mean shoot volume, large mean number of branches per whorl, long needle retention and a high crown length/crown width ratio. Individual trees were found that combined high stemwood production with both high harvest index and high stemwood specific gravity.  相似文献   

6.
Examining ecological limits to shade acclimation at whole-plant level is determinant for evaluating the success of sapling establishment in low-light environments. We studied nutritional effects on whole-plant development in response to shade in two Mediterranean forest tree species with different successional status: the early-successional Pinus halepensis Mill. and the late-successional Quercus pubescens Wild. Through a nursery-based factorial experimental design approach, we measured height increment along 2 years and final leaf, stem and root biomass in both species saplings subjected to two lights and two soil nutrient availability treatments. The shade avoidance response was exclusive to P. halepensis, appeared as timely dependent, and persisted longer in saplings exposed to higher nutrient availability. Q. pubescens benefited from the higher nutrient availability by lowering the light-driven plastic response in aerial support investment and belowground carbon allocation, whereas P. halepensis heightened its light-driven plastic response. These contrasted responses are thus clearly related to the shade acclimation strategy of each species: the shade-intolerant P. halepensis enhances shade avoidance when non-nutrient-limited, whereas the shade-tolerant Q. pubescens assumes a conservative strategy by limiting phenotypic plasticity-induced costs. Maintaining greater shade avoidance in non-nutrient-limited soil conditions might be an adaptive advantage for P. halepensis seedlings growing in the understory, in response to gap formation in the overstory. In contrast, the more conservative and less costly shade responsiveness of Q. pubescens may confer it a better adaptive advantage in long-term light-limited environments.  相似文献   

7.
King DA 《Tree physiology》1991,9(3):369-381
Relationships between tree height and crown dimensions and trunk diameter were determined for shade-tolerant species of old-growth forests of western Oregon. The study included both understory and overstory species, deciduous and evergreen angiosperms and evergreen conifers. A comparison of adult understory species with sapling overstory species of similar height showed greater crown width and trunk diameter in the former, whether the comparison is made among conifers or deciduous trees. Conifer saplings had wider crowns than deciduous saplings, but the crown widths of the two groups converged with increase in tree height. Conifer saplings had thicker trunks than deciduous saplings of similar crown width, possibly because of selection for resistance to stem bending under snow loads. The results suggest that understory species have morphologies that increase light interception and persistence in the understory, whereas overstory species allocate their biomass for efficient height growth, thereby attaining the high-light environment of the canopy. The greater crown widths and the additional strength requirements imposed by snow loads on conifer saplings result in less height growth per biomass increment in conifer saplings than in deciduous saplings. However, the convergence in crown width of the two groups at heights greater than 20 m, and the proportionately smaller effect of snow loads on large trees, may result in older conifers equalling or surpassing deciduous trees in biomass allocation to height growth.  相似文献   

8.
Hydraulic and light environments have variation within the crown in well-grown trees. Shoot morphology and shoot hydraulics were compared between the upper and lower crown or among branching patterns in well-grown Quercus crispula Blume. Shoots in the upper crown had longer and thicker axes and lower water potential than did shoots in the lower crown. Hydraulic conductance from the soil to the shoot did not differ between the upper crown and the lower crown. Shoots in the upper crown are exposed to hydraulic stress, and shoots in the lower crown are under shade stress. Shoot morphology and shoot hydraulic traits (i.e., higher Huber value and higher hydraulic conductivity) in the upper crown affected the hydraulic conductance of shoots. Shoots in the lower crown showed larger light-receiving leaf area per leaf biomass investment, which is an adaptive morphology under shaded environments. Shoot morphology and shoot hydraulics were not correlated to branching pattern significantly, but shoots with higher branching intensity in the upper crown represented trends for higher hydraulic conductivity. These results reveal that shoot morphological and physiological characteristics in the upper crown reduce hydraulic stress, and those in the lower crown reduce shade stress. I conclude that vertical position within a crown affects both morphological and physiological acclimation for light acquisition and hydraulic conductance, and that hydraulic architecture is associated with crown architecture.  相似文献   

9.
Successful regeneration of coastal montane sites harvested using alternative silvicultural systems may depend on the degree to which tree species can acclimate morphologically and physiologically to a variety of light environments. In a study to determine shade acclimation in montane conifers, one-year-old amabilis fir (Abies amabilis (Dougl.) Forbes) and western hemlock (Tsuga heterophylla (Raf.) Sarg.) seedlings were grown in a nursery under four shade treatments: full sunlight (0% shade), 60% and 30% shade using shade cloth, and 30% shade using lath slats. Shading influenced shoot development, foliar physiology and morphological characteristics of both amabilis fir and western hemlock but in general, the effects were small. Shade levels of 60% were required to induce significant acclimation, and western hemlock appeared to respond more positively than amabilis fir and therefore was considered more shade tolerant than amabilis fir. Light quality had little influence on growth and development, as indicated by a lack of significant differences in physiology or morphology between seedlings grown under shade cloth or lath slats. There were indications that adequate nutrition levels may mitigate the effects of shade on seedling morphology and physiology.  相似文献   

10.
We investigated changes in sapling growth and morphology of Thujopsis dolabrata var. hondai (hiba) for 7 years after release from suppressed lighting by selection cutting. We examined changes in aboveground biomass, elongation of stems and lateral branches, and annual diameter increment at the stem base. Vertical distributions of leaves per branch and per individual were also measured for morphological analysis. Under the suppressed condition before cutting, the crown consisted of orthotropic lateral branches, elongating up to the top of the stem or farther, and no branch was aborted. This crown type with large crown depth and concavity of the upper part had a bowl-like appearance. After the selection cutting, relative light intensity on the saplings increased from 4% to 26%. The increment enhanced aboveground biomass and stem elongation 7 years after the cutting. Diameter growth at the stem base was particularly accelerated 2 years after the cutting. While crown shape transformation of the saplings was not conspicuous at 7 years after the cutting, some released saplings showed a superior stem elongation ratio to that of the lateral branches. Thus, the upper part of the crown of these saplings changed from a bowl-like shape to a convex shape like that of a dome. Our study suggested that suppressed hiba saplings with the unique bowl-shaped crown enhanced their growth rates rapidly in response to improved light conditions, but required much more than 7 years for the full process of crown transformation for us to identify future trees in this stand. An erratum to this article is available at.  相似文献   

11.
Crown architecture of Abies balsamea from four canopy positions   总被引:1,自引:0,他引:1  
Data collected from four distinct canopy positions from each of 39 Abies balsamea (L.) Miller trees were used to construct models to describe the cumulative leaf area distribution within the crown and to predict the needle mass of individual branches, the average branch angle, branch diameter, branch length, and crown radius per whorl, and the average number of living branches per whorl. We tested the hypotheses that regression models are equal among canopy positions and that a model to predict branch needle mass is valid at the northern and southern extremes of the central climatic zone of Maine. Canopy position had an effect on the models constructed to predict needle mass, branch angle, branch diameter, branch length, crown radius, and the number of living branches per whorl. However, compared with an expanded model that incorporated parameters calculated for each crown class, there was only a small loss in model precision when a general model constructed from data pooled from all crown classes was used to predict needle mass, branch angle, and branch diameter. Regression equations unique to each crown class were needed to predict crown shape and leaf area distribution in the crown satisfactorily. Our branch needle mass model, which was constructed from data collected at the southern extreme of the central climatic zone of Maine, consistently underestimated needle branch mass when applied to the northern extreme of the central climatic zone.  相似文献   

12.
We examined the effects of structural and physiological acclimation on the photosynthetic efficiency of Scots pine (Pinus sylvestris L.) shoots. We estimated daily light interception (DLI) and photosynthesis (DPHOT) of a number of sample shoots situated at different positions in the canopy. Photosynthetic efficiency (epsilon) was defined as the ratio of DPHOT to the potential daily light interception (DLI(ref)) defined as the photosynthetically active radiation (PAR) intercepted per unit area of a sphere at the shoot location. To calculate DLI(ref), DLI and DPHOT, the radiation field surrounding a shoot in the canopy was first modeled using simulated directional distributions of incoming PAR on a clear and an overcast day, and estimates of canopy gap fraction in different directions provided by hemispherical photographs. A model of shoot geometry and measured data on shoot structure and photosynthetic parameters were used to simulate the distribution of PAR irradiance on the needle surface area of the shoot. Photosynthetic efficiency (epsilon) was separated into light-interception efficiency (epsilon(I) = DLI/DLI(ref)) and conversion efficiency (epsilon(PHOT) = DPHOT/DLI). This allowed us to quantify separately the effect of structural acclimation on the efficiency of photosynthetic light capture (epsilon(l)), and the effect of physiological acclimation on conversion efficiency (epsilon(PHOT)). The value of epsilon increased from the top to the bottom of the canopy. The increase was largely explained by structural acclimation (higher epsilon(I)) of the shade shoots. The value of epsilon(PHOT) of shade foliage was similar to that of sun foliage. Given these efficiencies, the clear-day value of DPHOT for a sun shoot transferred to shade was only half that of a shade shoot at its original position. The method presented here provides a tool for quantitatively estimating the role of acclimation in total canopy photosynthesis.  相似文献   

13.
Abstract

Growth characteristics of ash (Fraxinus mandshuricavar. japonicd)and kalopanax (Kalopanax pictus), two mid-succcs-sional species, were monitored in relation to seasonal light in a deciduous broadleaf forest. During the growing, relative light intensity of the gap was 4 to 6 times higher than that under the closed canopy. Seedlings could be found on the mixed hardwood forest floor where relative light intensity was around greater than 7% of full sunlight. When saplings gap openings which had relative light intensities above 20%, they quickly developed lateral branches and increased their foliage volume. The light-photosynthesis curve of seedlings of both species showed a curve typical of the “shade leaf” type even though they grew under sunlight. In contrast, saplings of both species showed the “sun leaf” type of light-photosynthesis curve. This seedling to sapling shift from shade to sun adaptation was also found in other foliage characteristics. This study shows that species can efficiently adjust their leaf and branch characteristics to changing light environments from shade to openings in a forest.  相似文献   

14.
Suzuki A 《Tree physiology》2002,22(12):885-890
The influence of shoot architectural position on shoot growth and branching patterns was examined in saplings of Cleyera japonica Thunb. (Theaceae), an understory, broad-leaf evergreen woody species. Shoot length varied with branching order and the vertical position of the branch in the crown. In the upper crown, shoot length decreased with increasing branching order, whereas in the lower crown, differences in shoot length among branching orders were not significant. These results demonstrate that it is important to consider not only individual shoots, but also the relationships between shoots in terms of their architectural positions when studying the development of crown architecture in trees. Shoot branching patterns also varied with branching order and the vertical position of the branch in the crown. In the upper crown, branching was mainly sylleptic. In the middle of the crown, mainly proleptic branches were produced. In the lower crown, there was little branching. The importance of these trends in shoot growth and shoot branching patterns in terms of carbon production efficiency is discussed.  相似文献   

15.
In a 4-year study, we investigated changes in leaf physiology, crown morphology and whole-tree biomass allocation in seedlings and saplings of shade-tolerant sugar maple (Acer saccharum Marsh.) and intermediate shade-tolerant yellow birch (Betula alleghaniensis Britt.) growing in natural understory light (0.5 to 35% of full sunlight) or in understory light reduced by 50% with shade nets to simulate the effect of gap closure. Leaf physiological parameters were mainly influenced by the light gradient, whereas crown morphological and whole-tree allocational parameters were mainly influenced by tree size. No single physiological, morphological or allocational trait was identified that could explain the difference in shade tolerance between the species. Yellow birch had higher growth rates, biomass allocation to branches and leaf physiological plasticity and lower crown morphological plasticity in unmodified understory light than sugar maple. Sugar maple did not display significant physiological plasticity, but showed variation with tree size in both crown morphology and whole-tree biomass allocation. When sugar maple was small, a greater proportion of whole-tree biomass was allocated to roots. However, physiological differences between the species decreased with decreasing light and most morphological and allocational differences tended to disappear with increasing tree size, suggesting that many species differences in shade-tolerance are expressed mainly during the seedling stage. Understory trees of both species survived for 4 years under shade nets, possibly because of higher plasticity when small and the use of stored reserves when taller.  相似文献   

16.
Total foliage dry mass and leaf area at the canopy hierarchical level of needle, shoot, branch and crown were measured in 48 trees harvested from a 14-year-old loblolly pine (Pinus taeda L.) plantation, six growing seasons after thinning and fertilization treatments.

In the unthinned treatment, upper crown needles were heavier and had more leaf area than lower crown needles. Branch- and crown-level leaf area of the thinned trees increased 91 and 109%, respectively, and whole-crown foliage biomass doubled. The increased crown leaf area was a result of more live branches and foliated shoots and larger branch sizes in the thinned treatment. Branch leaf area increased with increasing crown depth from the top to the mid-crown and decreased towards the base of the crown. Thinning stimulated foliage growth chiefly in the lower crown. At the same crown depth in the lower crown, branch leaf area was greater in the thinned treatment than in the unthinned treatment. Maximum leaf area per branch was located nearly 3–4 m below the top of the crown in the unthinned treatment and 4–5 m in the thinned treatment. Leaf area of the thinned-treatment trees increased 70% in the upper crown and 130% in the lower crown. Fertilization enhanced needle size and leaf area in the upper crown, but had no effect on leaf area and other variables at the shoot, branch and crown level. We conclude that the thinning-induced increase in light penetration within the canopy leads to increased branch size and crown leaf area. However, the branch and crown attributes have little response to fertilization and its interaction with thinning.  相似文献   


17.
Crown architecture and growth allocation were studied in saplings of eastern white pine (Pinus strobus L.), a species classified as intermediate in shade tolerance. A comparison was made of 15 understory saplings and 15 open-grown saplings that were selected to have comparable heights (mean of 211 cm, range of 180-250 cm). Mean ages of understory and open-grown trees were 25 and 8 years, respectively. Understory trees had a lower degree of apical control, shorter crown length, and more horizontal branch angle, resulting in a broader crown shape than that of open-grown trees. Total leaf area was greater in open-grown saplings than in understory saplings, but the ratio of whole-crown silhouette (projected) leaf area to total leaf area was significantly greater in understory pine (0.154) than in open-grown pine (0.128), indicating that the crown and shoot structure of understory trees exposed a greater percentage of leaf area to direct overhead light. Current-year production of understory white pine was significantly less than that of open-grown white pine, but a higher percentage of current-year production was allocated to foliage in shoots of understory saplings. These modifications in crown structure and allocation between open-grown and understory white pine saplings are similar to those reported for more shade-tolerant fir (Abies) and spruce (Picea) species, but the modifications were generally smaller in white pine. As a result, white pine did not develop the flat-topped "umbrella" crown structure observed in understory fir and spruce, which approaches the idealized monolayer form that maximizes light interception. The overall change to a broader crown shape in understory white pine was qualitatively similar, but much more limited than the changes that occurred in fir and spruce. This may prevent white pine from persisting in understory shade as long as fir and spruce saplings.  相似文献   

18.
Grassi G  Minotta G 《Tree physiology》2000,20(10):645-652
Norway spruce seedlings (Picea abies Karst.) were grown in low light for one year, under conditions of adequate and limiting nutrition, then transferred to high light. Three months after transfer we measured photosynthesis, leaf nitrogen concentration, leaf chlorophyll concentration and leaf mass per area (LMA) of current-year and 1-year-old shoots; silhouette area ratio (SAR, the ratio of shoot silhouette area to projected needle area) was also measured in current-year shoots. At the foliage level, the effects of light and nutrient treatments differed markedly. Light availability during foliage expansion primarily affected LMA and SAR (morphological acclimation at the needle and shoot level, respectively). By contrast, nutrient supply in high light affected photosynthetic capacity per unit of leaf tissue (physiological acclimation at the cellular level) but did not affect LMA and SAR. The capacity for shade-sun acclimation in foliage formed before transfer to high light differed greatly from that of foliage formed following the transfer. The morphological inflexibility of mature needles (measured by LMA) limited their shade-sun acclimation potential. In contrast, at high nutrient supply, shoots that developed just after the change in photosynthetic photon flux density largely acclimated, both morphologically and physiologically, to the new light environment. The acclimation response of both current- and 1-year-old shoots was prevented by nutrient limitation. Analysis of growth at the whole-plant level largely confirmed the conclusions drawn at the shoot level. We conclude that nutrient shortage subsequent to the opening of a canopy gap may strongly limit the acclimation response of Norway spruce seedlings. Successful acclimation was largely related to the plant's ability to produce sun foliage and adjust whole-plant biomass allocation rapidly.  相似文献   

19.
Sample tree material was reanalyzed in order to study the relationships between horizontal crown projected area and components of above-ground biomass in Norway spruce (Picea abies (L.) Karst.) trees growing in even-aged stands. The needle mass of dominant trees increased linearly with the increase in crown projected area, but in co-dominant and dominanted trees the increase in needle mass levelled off toward larger crown projected areas. The branch mass of dominant and co-dominant trees accumulated faster than linearly with increasing crown projected area, whereas in dominated trees an approximately linear relationship existed between these two variables. The increase in needle and branch mass per unit increase in crown projected area was highest in dominant trees and decreased to co-dominant and dominated trees, i.e. with tree position in the canopy. The stem mass accumulated obviously faster than linearly and similarly in all tree classes with the increase in crown projected area. The narrow crown shape indicated a high density of all components of above-ground biomass per unit of crown projected area.  相似文献   

20.
Many biomechanical and theoretical studies have been based on the pipe-model theory, according to which a tree is regarded as an assemblage of pipes, each having the same amount of leaf area or leaf mass. However, the physiological mechanisms underlying the theory have not been extensively examined, particularly at the branch level. We analyzed how branches and trunks thickened in nine young Acer mono Maxim. var. marmoratum (Nichols) Hara f. dissectum (Wesmael) Rehder. and A. rufinerve (Siebold & Zucc.) trees. In particular, we examined the roles of light, allocation of photosynthates and shoot heterogeneity. The cross-sectional area (A) of a branch was proportional to cumulative leaf mass or leaf area of the branch, and cumulative cross-sectional area of the daughter branches (SigmaA) above a branching point was equal to the A of the mother branch. These results indicate the validity of the pipe-model theory. However, the theory was invalid for current-year growth of branch cross-sectional area (DeltaA). The DeltaA/SigmaDeltaA for a branching point was greatest (nearly equal to 1) at the crown surface, decreased with crown depth, and tended to increase again at the trunk base, and DeltaA strongly depended on light interception and the yearly increment of leaves on the branch. We examined factors that influenced DeltaA with multiple regression analysis. The ratio of DeltaA of a branch to branch leaf area depended on both relative irradiance and mean current-year shoot length of the branch, suggesting that diameter growth of a branch is determined by the balance between supply of photosynthates, which depends on light interception by the branch, and demand for photosynthates, which is created by the high cambial activity associated with vigorous shoot elongation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号