首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
AIM:To investigate the inhibitory effect of Ophiopogon japonicus on rat cardiac fibroblast (CFs) and the underlying mechanism. METHODS:Cultured CFs from Sprague-Dawley (SD) rats were randomized into 4 groups: control group (normal rat cardiac fibroblasts), Ophiopogon japonicus of 10 μg/L group, Ophiopogon japonicus of 20 μg/L group and Ophiopogon japonicus of 30 μg/L group. Cell vitality, [3H]-proline incorporation, and the protein expression of TGF-β1, p-Smad2/3 and total Smad2/3 in CFs were determined. RESULTS:Compared with control, the cell vitality, [3H]-proline incorporation, and the protein expression of TGF-β1, p-Smad2/3 and total Smad2/3 were significantly decreased in Ophiopogon japonicus of 10 μg/L group. Compared with Ophiopogon japonicus of 10 μg/L group, the cell vitality, [3H]-proline incorporation, and the protein expression of TGF-β1, p-Smad2/3 and total Smad2/3 were significantly decreased in Ophiopogon japonicus of 20 μg/L group. Compared with Ophiopogon japonicus of 20 μg/L group, the cell vitality,[3H]-proline incorporation, and the protein expression of TGF-β1, p-Smad2/3 and total Smad2/3 were significantly decreased in Ophiopogon japonicus of 30 μg/L group. CONCLUSION:Ophiopogon japonicus may inhibit CFs. These actions are related to the changes of [3H]-proline incorporation, and the protein expression of TGF-β1, p-Smad2/3 and total Smad2/3.  相似文献   

2.
AIM: To investigate the effect of cellular Sloan-Kettering Institute (c-SKI) on the proliferation and endothelial-mesenchymal transition of human coronary artery endothelial cells (HCAECs). METHODS: HCAECs were treated with transforming growth factor-β1 (TGF-β1) at varying concentrations for different time points. Western blot was used to test the expression of c-SKI and mesenchymal markers such as α-smooth muscle actin (α-SMA) and vimentin. Meanwhile, the endothelial marker E-cadherin was also detected. HCAECs were transfected with c-ski gene mediated by lentivirus (LV), the efficiency of LV-SKI transfection was detected by RT-qPCR. The HCAECs were divided into 4 groups:control group, TGF-β1 (5 μg/L) group, LV-SKI+ TGF-β1 group, LV-NC+ TGF-β1 group. The cell viability and colony formation were measured by MTT assay and colony formation assay. The protein levels of vimentin, α-SMA, E-cadherin, Smad2, Smad3, p-Smad2 and p-Smad3 were determined by Western blot. RESULTS: The expression of c-SKI was down-regulated in the HCAECs treated with TGF-β1 (P<0.01). Over-expression of c-SKI inhibited the proliferation of HCAECs (P<0.01). Compared with LV-NC group, over-expression of c-SKI down-regulated the expression of α-SMA and vimentin (P<0.01), up-regulated the expression of E-cadherin (P<0.01), and inhibited the protein phosphorylation of Smad2 and Smad3 (P<0.01), reversed the endothelial-mesenchymal transition induced by TGF-β1. CONCLUSION: The expression of c-SKI in the HCAECs is down-regulated in the process of endothelial-mesenchymal transition. Over-expression of c-SKI inhibits proliferation and endothelial-mesenchymal transition of HCAECs, the mechanism may be related to regulation of the TGF-β1/Smad signaling pathway.  相似文献   

3.
AIM:To construct a lentiviral vector carrying mitofusin 2 (Mfn2), and to investigate the inhibitory effect of Mfn2 on the activation of rat hepatic stellate cells and its mechanism of reducing the formation of hepatic fibrosis-related factors. METHODS:The lentiviral over-expression vector CV072-pCMV-Mfn2-EGFP containing Mfn2 was constructed and transfected into the hepatic stellate cells. The expression of green fluorescent protein was observed under fluorescence microscope, and the transfection efficiency was evaluated. The protein levels of Bax, Bcl-2, cleaved caspase-3, α-SMA, TGF-β1, Smad2 and Smad3 were detected by Western blot. The levels of type I collagen, type Ⅲ collagen and type IV collagen in the cell culture supernatants were determined by ELISA. RESULTS:Compared with control group, the apoptosis of the hepatic stellate cells transfected with lentivirus over-expression vector CV072-pCMV-Mfn2-EGFP was increased, and the protein levels of proapoptotic molecules Bax and cleaved caspase-3 were increased (P<0.01). TGF-β1/Smad pathway-related proteins TGF-β1, p-Smad2 and p-Smad3 were decreased, and the levels of fibrosis-related proteins α-SMA, type I collagen, type Ⅲ collagen and type IV collagen were decreased (P<0.01). CONCLUSION:Transfection of lentiviral over-expression vector CV072-pCMV-Mfn2-EGFP effectively inhibits hepatic stellate cell activation in vitro and may reduce the production of hepatic fibrosis-related factors by inhibiting TGF-β1/Smad pathway.  相似文献   

4.
[ABSTRACT] AIM: To study the roles of transforming growth factor β1 (TGF-β1)/Smad signaling pathway in strontium ranelate (Sr)-induced osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs). METHODS: In the process of osteogenic differentiation of rat BMSCs, the expression of phosphorylated Smad2 (p-Smad2) and Runx2 was detected by Western blotting after the cells were treated with Sr. BMSCs were pretreated with SB431542, a selective inhibitor of TGF-β1, or Smad2 small interfering RNA (Smad2-siRNA), followed by Sr treatment, and then the expression of p-Smad2 and Runx2 was observed. At the same time, the activity of alkaline phosphatase (ALP) and the level of calcium nodules were detected to determine the osteogenic differentiation of BMSCs. RESULTS: The expression levels of p-Smad2 and Runx2 were enhanced under the action of Sr in the process of osteogenic differentiation of rat BMSCs. The expression of p-Smad2 reached to maximum when BMSCs were treated with Sr at concentration of 1 mmol/L for 1 h. The expression of Runx2 reached to maximum when BMSCs were treated with Sr at concentration of 1 mmol/L for 5 d. The pretreatment with SB431542 or Smad2-siRNA inhibited not only the expression of p-Smad2 and Runx2, but also the activity of ALP and the level of calcium nodules. CONCLUSION: Sr promotes the osteogenic differentiation of rat BMSCs through the TGF-β1/Smad signaling pathway.  相似文献   

5.
AIM: To explore the effect of retinoid X receptor (RXR) agonists on high-glucose-induced proliferation of rat aortic smooth muscle cells (RASMCs). METHODS: RASMCs were cultured in DMEM containing glucose at normal concentration (5.5 mmol/L). For high glucose treatment, glucose solution was added up to a final concentration of 25 mmol/L. The proliferation of RASMCs was detected by WST-1 assay. DNA synthesis was measured by the method of BrdU incorporation. Cell cycle progression was determined by flow cytometry. Phosphorylated protein kinase C (PKC) and the expression levels of cyclin-dependent kinase 2(CDK2) and p27Kip1 were detected by immunoblotting. RESULTS: High glucose increased DNA synthesis, cell cycle progression, the expression of CDK2 and the proliferation of RASMCs. Meanwhile, the expression of p27Kip1 was decreased by high glucose. Treatment of RASMCs with RXR natural ligand 9-cis-retinoic acid (9-cis-RA) resulted in significant inhibition of high-glucose-induced proliferation, DNA synthesis, cell cycle progression and the expression of CDK2 in a concentration-dependent manner. 9-cis-RA also reversed the effect of high glucose on the expression of p27Kip1. RXR specific ligand SR11237 demonstrated the same effect as the effect of 9-cis-RA at the same concentration. PKC inhibitor showed the similar effect on high-glucose-induced proliferation and the expression of CDK2 and p27Kip1 as the RXR agonists did. Furthermore, 9-cis-RA and SR11237 rapidly inhibited high-glucose-induced activation of PKC. CONCLUSION: PKC is involved in high-glucose-induced proliferation of RASMCs. RXR agonists inhibit high-glucose-induced proliferation by depressing PKC activation in vascular smooth muscle cells.  相似文献   

6.
AIM:To investigate the regulatory effect of RhoA/Rho-associated coiled-coil-forming protein kinase (ROCK) pathway mediated by transforming growth factor β1 (TGF-β1) on the differentiation of pulmonary fibroblasts into myofibroblasts. METHODS:Primarily cultured fibroblasts were obtained by trypsin digestion from the lung of neonatal rats. The fibroblasts were stimulated with TGF-β1 for different durations and were divided into control group, TGF-β1 induction group and Y-27632 treatment group. The distribution and expression of p-RhoA, ROCK, phosphorylated myosin binding subunit of myosin light chain phosphatase (p-MBS), serum response factor (SRF), α-smooth muscle actin (α-SMA),type I collagen and type Ⅲ collagen in the cells were detected by the methods of immunocytochemistry and Western blotting. RESULTS:A lot of parallel and cross arranged filaments labeled by α-SMA antibody appeared in the cells after TGF-β1 stimulation. The cultured cells stimulated with TGF-β1 were all myofibroblasts at 24 h determined by immunocytochemistry. The expression levels of p-RhoA, ROCK, p-MBS, SRF, α-SMA and type I and type III collagens were increased gradually with the extension of TGF-β1 stimulation time. The expression of RhoA/ROCK signaling protein in the cells stimulated with TGF-β1 (peaking at 6 h of exposure) was 2.96 folds higher as compared with the non-stimulated cells. The expression of SRF protein (peaking at 12 h of TGF-β1 exposure) was 4.55 folds higher as compared with the non-sti-mulated cells. The expression levels of α-SMA and type I and type III collagens (peaking at 24 h of TGF-β1 exposure) were 4.06 folds, 2.19 folds and 3.04 folds higher as compared with the non-stimulated cells, respectively. Compared with TGF-β1 induction group, the protein expression levels of ROCK, p-MBS, SRF, α-SMA and type I and type III collagens were significantly decreased at the corresponding time points in Y-27632 treatment group. CONCLUSION:TGF-β1 induces the differentiation of pulmonary fibroblasts into myofibroblasts, and then promotes the synthesis of collagen through the activation of ROCK pathway, which possibly plays an important role in the formation of pulmonary fibrosis.  相似文献   

7.
AIM: To investigate the role of Rho-associated kinase (ROCK) inhibitor fasudil in the formation of rabbit urethral stricture after injury and to observe the cell activity, migration and extracellular matrix synthesis in the rabbit urethra fibroblasts. METHODS: The rabbit model of urethral stricture was established by microsurgical techniques. The rabbits were divided into sham operation group, operation group and fasudil (3 mg/kg, 10 mg/kg, 30 mg/kg) groups. The diameter of the stenosis was measured by retrograde urethrography 3 months after surgery. The fibroblasts were isolated from urethral scar, and then incubated with fasudil (12.5 μmol/L, 25 μmol/L, 50 μmol/L) in the presence of transforming growth factor-β1 (TGF-β1, 10 μg/L). The untreated cells were used for control. The cell activity was measured by MTT assay. The cell migration ability was tested by the method of Transwell chambers. The protein expression of ROCK, α-smooth muscle actin (α-SMA), collagen I and collagen III was determined by Western blot analysis. RESULTS: Fasudil significantly reduced formation of urethral stricture after injury (P<0.05). Cultured rabbit fibroblasts with different concentrations of fasudil inhibited the cell activity and cell migration ability (P<0.05). The protein expression of ROCK, α-SMA, collagen I and collagen III was also inhibited by treatment with fasudil in a dose-dependent manner (P<0.05). CONCLUSION: Fasudil inhibits the formation of extracellular matrix and reduces the incidence of urethral stricture after injury by down-regulating TGF-β1-induced Rho/ROCK pathway activation in the rabbit urethra fibroblasts.  相似文献   

8.
AIM:To investigate the effect of Sedum sarmentosum Bunge (SSB) extract on epithelial-mesenchymal transition (EMT) and collagen accumulation induced by aristolochic acid (AA) in renal tubular epithelial cells. METHODS:Rat renal tubular epithelial NRK-52E cells were randomly divided into 3 groups, including control group (only treated with solvent), AA group (treated with AA at concentrations ranging from 1 to 100 mg/L) and SSB group (treated with AA at a concentration of 10 mg/L plus SSB extract at concentrations ranging from 10 to 2 000 mg/L). After cultured for 24 h, the morphology of the NRK-52E cells was observed under inverted phase-contrast microscope. The level of transforming growth factor β1 (TGF-β1) in the culture supernatant was measured by ELISA. Immunofluorescent analysis was performed to detect the expression of epithelial marker α-smooth muscle actin (α-SMA), mesenchymal marker E-cadherin, and extracellular cell matrix component type III collagen. The mRNA expression of E-cadherin, α-SMA, bone morphogenetic protein 7 (BMP-7) and type I collagen was also quantified by real-time PCR. RESULTS: Fibrosis-like reaction observed under microscope was obviously increased in AA-treated NRK-52E cells, and aggravated as the increase in the concentration of AA. AA at concentrations of 1 and 10 mg/L increased the expression of α-SMA, type I and type III collagens, and decreased the expression of E-cadherin. With SSB extract treatment, fibrosis in NRK-52E cells was alleviated, accompanied with the decreasing expression of α-SMA, type I and type III collagen, and the enhancing expression of E-cadherin and BMP-7.Moreover, SSB extract down-regulated TGF-β1 level in a concentration-dependent manner. CONCLUSION: AA-induced fibrosis-like reaction in renal tubular epithelial cells is reduced by the treatment with SSB extract. The possible mechanism is that SSB extract decreases TGF-β1 level, and inhibits renal EMT and collagen accumulation induced by AA.[KEY WORDS]Sedum sarmentosum Bunge|Aristolochic acid|Transforming growth factor β1|Epithelial-mesenchymal transition|Collagen  相似文献   

9.
AIM: To explore the effects of chloroquine (CQ) on collagen Ⅰand collagen Ⅲ expression in activated rat hepatic stellate cell line HSC-T6 and the possible mechanism.METHODS: Transforming growth factor-β1 (TGF-β1) was used to activate HSC-T6 cells and 3 doses of CQ was administered for 24 h. The cells were divided into 5 groups as follows:control group, TGF-β1 group, TGF-β1+CQ (15 μmol/L) group, TGF-β1+CQ (30 μmol/L) group and TGF-β1 + CQ (60 μmol/L) group. Western blot was used to determine the expression of LC3-Ⅱ/LC3-I, P62 and α-SMA in activated HSC-T6 cells. The expression of collagen I and collagen Ⅲ was detected by immunocytochemical staining, Western blot and RT-qPCR. Western blot and RT-qPCR were also used to detect the expression of matrix metalloproteinase-13 (MMP-13), tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 at mRNA and protein levels.RESULTS: The ratio of LC3-Ⅱ/LC3-Ⅰ and P62 expression were increased after CQ intervention. Moreover, they were significantly higher in the TGF-β1+CQ groups than those in TGF-β1 group (P<0.01). The expression of collagen I and collagen Ⅲ at mRNA and protein levels was significantly increased in all TGF-β1+CQ groups as compared with TGF-β1 group (P<0.01), and it was markedly increased among TGF-β1+CQ groups in a dose-dependent manner. The expression of MMP-13 at mRNA and protein levels was significantly lowered and that of TIMP-1 and TIMP-2 was significantly increased in TGF-β1+CQ groups as compared with TGF-β1 group (P<0.05).CONCLUSION: Inhibition of autophagy by CQ in activated HSC-T6 cells up-regulates the expression of collagen I and collagen Ⅲ in a dose-dependent way, probably due to reduction of MMP-13 and enhancement of TIMP-1 and TIMP-2 expression.  相似文献   

10.
AIM: To evaluate the effects of antisense TGF-β1 oligodeoxynucleotide (AS TGF-β1) on the expression of TGF-β1, deposition of extracellular matrix (ECM) and the neointima formation in the arteries after balloon injury. METHODS: The unmodified and phosphorothioate-modified AS TGF-β1 which containing 15 bases and surrounding the initiation codon region (ATG) of rat TGF-β1 complementary DNA (cDNA) were designed. At the same time, sense TGF-β1 oligodeoxynucleotide (S TGF-β1) with the base sequence complement to AS TGF-β1 was synthesized as a control. The oligodeoxynucleotides were introduced into in vivo and in vitro experiments, respectively. RESULTS: The AS TGF-β1 significantly inhibited the protein expression of TGF-β1 in a concentration-dependent manner, and S TGF-β1 did not have the same effect. Furthermore, no effect of the AS TGF-β1 on the mRNA expression of TGF-β1 in injured VSMCs was observed. Moreover, for the injured VSMCs, AS TGF-β1 significantly and concentration-dependently inhibited the basal DNA synthesis. Both AS TGF-β1 and S TGF-β1 did not exhibit dose-dependent effects on DNA synthesis in uninjured VSMCs. Fibronectin (FN) mRNA expression in injured VSMCs was significantly decreased by AS TGF-β1 in a concentration (001~1 μmol/L)-dependent manner. AS TGF-β1 significantly increased the mRNA expression of contractile marker SM22α, and decreased the mRNA expression of synthetic markers osteopontin and matrix Gla, especially at the concentration of 001 μmol/L and 01 μmol/L. After treatment with AS TGF-β1 (90 μg·kg-1·d-1) for 28 d, the neointima formation was significantly inhibited, and the area ratio of intima/media was markedly decreased by 68% compared with untreated group, but S TGF-β1 had no effect on neointimal formation. CONCLUSION:The AS TGF-β1 specifically inhibits the protein expression of TGF-β1 in the VSMCs derived from injured arteries. Moreover, it significantly inhibits DNA synthesis and cell proliferation, and decreases the expression of FN. Therefore, AS TGF-β1 dramatically attenuates neointima formation after balloon njury. The effects of AS TGF-β1 on the injured VSMCs may be associated with its reverse effects on the alteration of VSMC phenotype after balloon injury.  相似文献   

11.
AIM: To investigate the relationship between transforming growth factor-β (TGF-β)/Smads signaling pathway and pulmonary arterial endothelial-mesenchymal transition (EndoMT) in hypoxia-hypercapnia pulmonary hypertension (HHPH) process and the regulatory effect of Yiqi-Wenyang-Huoxue-Huatan formula (YWHHF). METHODS: Healthy male SD rats were randomly divided into 5 groups:normal control (N) group, hypoxia-hypercapnia (HH) group, high-dose YWHHF (YH) group, middle-dose YWHHF (YM) group and low-dose YWHHF (YL) group. The rats in N group was housed in normoxic environment, and the rats in the other 4 groups were housed in hypoxia-hypercapnia environment (9%~11% O2 and 5%~6% CO2) for 4 weeks, 8 h/d, 6 d/week. The excess water vapor was absorbed by anhydrous CaCl2, and CO2 was absorbed by sodium hydroxide. The rats in YWHHF groups were put into the oxygen chamber before the same volume of YWHHF at different concentrations were given (200 g/L for YH group, 100 g/L for YM group and 50 g/L for YL group). The average pulmonary artery pressure and the average carotid artery pressure were measured during the operation. After operation, the right ventricular free wall and left ventricle plus interventricular septum were collected for determining the right ventricular hypertrophy index. Moreover, the morphological changes of the lung tissues were observed under light microscope. The mRNA and protein levels of α-smooth muscle actin (α-SMA), CD31, TGF-β1 and Smad2/3, and the protein level of p-Smad2/3 were detected by RT-PCR and Western blot. RESULTS: Compared with N group, the pulmonary artery mean pressure, the mRNA and protein expression of α-SMA, TGF-β1 and Smad2/3, and the protein level of p-Smad2/3 were increased, the levels of CD31 were decreased (P<0.05), and the lung tissue damage was observed in the other 4 groups. Compared with HH group, the pulmonary artery mean pressure, the mRNA and protein expression of α-SMA, TGF-β1 and Smad2/3, and the protein level of p-Smad2/3 were decreased, while the mRNA and protein levels of CD31 were increased. Moreover, the lung tissue damage was reduced in YH, YM and YL groups. CONCLUSION: TGF-β/Smads pathway may be involved in the process of EndoMT under hypoxia and hypercapnia condition, and YWHHF may reduce EndoMT by inhibiting the expression of TGF-β/Smads pathway-related molecules.  相似文献   

12.
13.
AIM: To investigate the effect of microRNA-124 (miR-124) over-expression mediated by adeno-associated virus (AAV) on right ventricular remodeling in rats with pulmonary arterial hypertension (PAH) induced by monocrotaline (MCT). METHODS: Male SD rats (n=32) were randomly divided into 4 groups:normal control (control) group, MCT+normal saline (NS) group, MCT+AAV-GFP (MCT+GFP) group and MCT+AAV-miR-124 (MCT+miR-124) group. The rats in the latter 3 groups were instilled slowly with 100 μL NS, AAV-GFP and AAV-miR-124 by orotracheal instillation after anesthesia, respectively. Three weeks later, MCT (60 mg/kg) was intraperitoneally injected to establish the PAH model. Right ventricular systolic blood pressure (RVSP) and mean arterial pressure of the rats were measured, and right ventricular hypertrophy index (RVHI) and right ventricular weight index (RVWI) were calculated. The pathological sections of the right heart were stained with Sirius red, and the pathological changes of myocardium were observed under a microscope. The expression of miR-124 in the lung tissues was detected by RT-qPCR. The protein levels of transforming growth factor-β1(TGF-β1) and p-Smad2 in right heart tissues were determined by Western blot. RESULTS: Compared with control group, RVSP, RVHI, RVWI and the protein levels of TGF-β1 and p-Smad2 in MCT+NS group and MCT+GFP group were significantly increased (P<0.05), the right ventricular myocytes were significantly enlarged, and collagen deposition was significantly increased. However, compared with MCT+GFP group, RVSP, RVHI, RVWI and the protein levels of TGF-β1 and p-Smad2 in MCT+miR-124 group were significantly decreased (P<0.05), the degree of right ventricular myocyte hypertrophy was significantly reduced, and collagen deposition was significantly reduced. CONCLUSION: Over-expression of miR-124 obviously reduces RVSP of rats induced by MCT and relieves myocardial remodeling, which may be related to the down-regulation of TGF-β1 and p-Smad2.  相似文献   

14.
AIM: To investigate the effect of cyclopamine on Hedgehog (HH) signaling, phenotypic transformation and matrix accumulation induced by aristolochic acid (AA) in renal tubular epithelial cell NRK-52E. METHODS: NRK-52E cells were randomly divided into control group (treated with solvent only), AA group (treated with AA at concentrations of 1, 5, 10 mg/L) and cyclopamine group (treated with AA at concentration of 10 mg/L plus cyclopamine at concentrations of 1, 5, 10 μmol/L). After cultured for 24 h, the mRNA expression of Ptch1, Smo, α-SMA, E-cadherin, ZO-1, BMP-7, type I collagen and type III collagen was quantified by real-time PCR. The protein levels of Shh and TGF-β1 were detected by ELISA. Immunofluorescence staining was used to evaluate the expression of Ptch1, Smo, α-SMA, E-cadherin and type III collagen in the NRK-52E cells. RESULTS: AA increased the expression of TGF-β1, α-SMA and type III collagen, decreased the expression of E-cadherin and ZO-1 protein, and down-regulated the expression of Ptch1, Shh and Smo mRNA in the NRK-52E cells, indicating that AA activated HH signaling, and phenotypic transformation and matrix accumulation occurred in AA-treated NRK-52E cells. Treatment with cyclopamine inhibited HH signaling by decreasing Smo expression and increasing Ptch1 expression. Moreover, cyclopamine also down-regulated the expression of TGF-β1, α-SMA, type I collagen and III collagen, and up-regulated the expression of BMP-7, ZO-1 and E-cadherin. CONCLUSION: AA induces phenotypic transformation and matrix accumulation in renal tubular epithelial cells, which can be inhibited by cyclopamine treatment. The possible mechanism is that cyclopamine suppresses the activation of HH signaling, resulting in the reduction of epithelial-to-mesenchymal transition and matrix deposition.  相似文献   

15.
AIM: To investigate the effect of differentiated embryonic chondrocyte gene 1 (DEC1) expression silencing on viability, invasion and migration of human breast cancer MDA-MB-231 cells and its possible mechanism under hypoxia. METHODS: The expression of DEC1 was detected by RT-qPCR and Western blot in breast cancer MDA-MB-231 cells under normoxia and hypoxia. MDA-MB-231 cells were transfected with the siRNA targeting DEC1 and the protein levels of DEC1, Smad3 and phosphorylated Smad3 (p-Smad3) were examined under hypoxia. Subsequently, the changes in the viability, invasion and migration abilities of MDA-MB-231 cells were analyzed by CCK-8 assay, Transwell experiment and Scratch test, respectively. RESULTS: The expression of DEC1 in MDA-MB-231 cells under hypoxia was higher than that in the MDA-MB-231 cells under normoxia condition at both mRNA and protein levels (P<0.05). The viability, invasion and migration abilities of MDA-MB-231 cells in siRNA-DEC1 group were decreased significantly as compared with control group (P<0.01). Besides, the protein level of p-Smad3 in the MDA-MB-231 cells in siRNA-DEC1 group was lower than that in negative control group under hypoxia condition (P<0.05). CONCLUSION: Down-regulated DEC1 expression significantly decreases the viability, invasion and migration abilities of breast cancer MDA-MB-231 cells by blocking the TGF-β/Smad3 signaling pathway under hypoxia condition.  相似文献   

16.
AIM: To investigate the effect of CKLF1-C19 polypeptide (C19) on differentiation of human lung fibroblast (LFB) into myofibroblast (MFB) induced by TGF-β. METHODS: LFBs were cultured and identified. LFBs were treated with TGF-β (5 μg/L) to establish the cell model of LFB differentiate into MFB. The LFBs were divided into 6 experimental groups including control group, TGF-β group, and TGF-β plus different doses (1, 0.1, 0.01, 0.001 mg/L) C19 groups. The cell morphology, cell proliferation rate, and the expression of α smooth muscle actin (α-SMA) and collagen I were observed. RESULTS: Human primary LFB was successfully cultured and was confirmed by the method of immunofluorescence. TGF-β at 5 μg/L induced proliferation and differentiation of LFB. The mRNA levels of α-SMA and collagen I in TGF-β group were higher than that in control group (P<0.05).The cell proliferation rates, mRNA levels of α-SMA and collagen I, and the protein expression of α-SMA in 0.01 mg/L+TGF-β group and 0.001 mg/L+TGF-β group were markedly lower than those in TGF-β group (P<0.05). CONCLUSION: C19 at 0.01 mg/L and 0.001 mg/L effectively inhibits differentiation of LFB into MFB induced by TGF-β, thus inhibiting the process of airway remodeling and fibrosis to some extent.  相似文献   

17.
AIM:To investigate the effect of transforming growth factor-β (TGF-β) activated kinase 1(TAK1) on renal tubular epithelial fibrosis. METHODS:The renal tubular epithelial cell line HK-2 was used as the research object. After induced by TGF-β1, real-time PCR and Western blot were used to detect the expression of TAK1 in the HK-2 cells. TAK1 shRNA lentivirus was used to infect HK-2 cells, real-time PCR and Western blot were used to determine the interference effect on TAK1 expression in the HK-2 cells with TGF-β1 stimulation. Under the condition of treating with p38 MAPK activator anisomycin, the levels of type I collagen and type Ⅲ collagen in the supernatant, and the protein levels of α-smooth muscle actin (α-SMA), connective tissue growth factor (CTGF) and p-p38MAPKThr 180/Tyr 182 in the HK-2 cells with TAK1 knock-down were determined by ELISA and Western blot, respectively. RESULTS:TGF-β1 significantly increased the expression of TAK1 in the HK-2 cells(P<0.05). TAK1 shRNA significantly decreased the expression of TAK1 in the HK-2 cells with TGF-β1 stimulation. Type I collagen and type Ⅲ collagen secreted by the HK-2 cells after treatment with TGF-β1 were increased, the protein levels of α-SMA, CTGF and p-p38MAPKThr 180/Tyr 182 were also increased(P<0.05). Knock-down of TAK1 expression significantly inhibited the secretion of type I and type Ⅲ collagen, reduced the protein levels of α-SMA, CTGF and p-p38MAPKThr 180/Tyr 182 in the TGF-β1-induced HK-2 cells(P<0.05). Treatment with p38 MAPK activator reversed the inhibitory effect of TAK1 knock-down on the secretion of type I and type Ⅲ collagens, and the protein levels of α-SMA, CTGF and p-p38 MAPKThr 180/Tyr 182 in the HK-2 cells(P<0.05). CONCLUSION:Knock-down of TAK1 expression attenuates the TGF-β1 induced fibrosis of renal tubular epithelial cells by inhibiting p38 MAPK signaling pathway.  相似文献   

18.
AIM:To observe the growth pattern and surface markers of human umbilical cord mesenchymal stem cells(hUCMSCs) and to explore the influence of basic fibroblast growth factor (bFGF) on the proliferation and collagen production in hUCMSCs cultured in vitro. METHODS:hUCMSCs were isolated by enzyme digestion method and adherent culture. The surface markers CD45, CD34, CD105, CD29 and HLA-DR of the cells were analyzed by flow cytometry. The osteogenic ability and adipogenic differentiation were confirmed with oil red O and alizarin red staining. The optimal concentration of bFGF to promote the proliferation of hUCMSCs was 20 μg/L. The cells in control group were cultured in the growth medium consisting of DMEM/F12 and 10% volume fraction of fetal bovine serum. The cells in experiment group were cultured under the same condition of control group but plus 20 μg/L bFGF. The proliferation of hUCMSCs was analyzed by MTT assay. The expression of type I and III collagens at mRNA and protein levels was determined by RT-PCR and Western blotting. RESULTS:The growth curves indicated that bFGF promoted the proliferation of hUCMSCs. The hUCMSCs expressed CD29, but did not express CD34, CD45 or HLA-DR in the presence or absence of bFGF unanimously. The cells were alizarin red staining-positive and oil red O staining-positive. Compared with control group, the expression of type I and III collagens significantly decreased at mRNA and protein levels in experiment group. CONCLUSION:bFGF promotes the proliferation of hUCMSCs and does not change the expression of the surface markers. bFGF inhibits the expression of type I and III collagens at mRNA and protein levels, indicating that bFGF enhances the healing of wound without inducing scar hyperplasia.  相似文献   

19.
AIM:To explore the role of placental growth factor (PLGF) in the process of angiotensin II (Ang II)-induced activation of cardiac fibroblasts (CFs). METHODS:Primary culture and identification of CFs from neonatal Sprague-Dawley rats were performed. The method of fluorescence immunocytochemistry was employed to observe the expression of alpha-smooth muscle actin (α-SMA). Real-time PCR and Western blotting were used to determine mRNA and protein levels. The cell proliferation was observed by WST-1 assay. RESULTS:Compared with control group, the PLGF expression at mRNA and protein levels in Ang II-treated CFs was significantly increased, whereas the mRNA expression of PLGF was decreased in the CFs treated with telmisartan and Ang II. Treatment with PLGF induced the proliferation of CFs and increased the protein expression of α-SMA. Treatment with PLGF for 60 min significantly increased the protein levels of p-ERK1/2 in the CFs. Compared with Ang II group, the proliferation of CFs was depressed and the protein expression of α-SMA was attenuated in Ang II+anti-PLGF group.The mRNA expression levels of type I and type III collagens were also down-regulated. CONCLUSION:PLGF might be involved in the process of Ang II-induced proliferation of CFs and fibrosis.  相似文献   

20.
AIM:To study the effects of Ginkgo biloba extract (EGB) on myocardial TGF-β1 and collagen expression and interstitial fibrosis in type I diabetic cardiomyopathy rats. METHODS:Thirty male SD rats were randomly divided into normal control group (CON), diabetes mellitus group (DM) and EGB treatment group (EGB). Streptozocin was intraperitoneally injected into the animals in the latter 2 groups to induce type I diabetic rat model. The rats in EGB group were intraperitoneally injected with EGB. At the end of the 12th week, the body weight of each rat and its left ventri-cular weight, blood glucose, glycosylated hemoglobin and serum insulin concentration were measured. The left ventricular end-diastolic volume (LVEDV), the left ventricular end-systolic volume (LVESV), the left ventricular ejection fraction (LVEF) and the stroke volume (SV) were determined by echocardiography. The content of collagen in left ventricular myocardium, and the expression of transforming growth factor β1 (TGF-β1), procollagen type I and collagen type III were assayed by Sirius red staining, immunohistochemical staining and RT-PCR, respectively. Left ventricular myocardial cells of the neonatal SD rats were isolated and cultured in vitro with low-glucose culture medium (LG group), high-glucose culture medium (HG group) or high-glucose culture medium plus EGB (HG+EGB group). The mRNA levels of TGF-β1, procollagen type I and collagen type III were detected by RT-PCR. RESULTS:Compared with CON group, blood glucose, glycosylated hemoglobin, left ventricular weight index, the content of collagen, and the expression of TGF-β1, procollagen type I and collagen type III in left ventricular myocardial tissues of DM group were significantly increased, while the levels of blood insulin, LVEDV and SV were significantly decreased. However, compared with DM group, blood glucose, glycosylated hemoglobin, left ventricule weight index, the content of collagen, and the expression levels of TGF-β1, procollagen type I and collagen type III in the left ventricular myocardial tissues of EGB-treated rats were significantly decreased, while the levels of blood insulin, LVEDV and SV were significantly increased. Compared with LG group, the mRNA expression levels of TGF-β1, procollagen type I and collagen type III were significantly increased. However, compared with HG group, the mRNA expression levels of TGF-β1, procollagen type I and collagen type III were significantly decreased after treated with EGB. CONCLUSION: EGB retards the process of myocardial fibrosis and improves the cardiac functions in type I diabetic cardiomyopathy rats by down-regulating the expression of TGF-β1, reducing the synthesis and deposition of collagen type I and collagen type III.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号