首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Cross-linking of xylans and lignin by ferulates was investigated with primary maize walls acylated with 2% ferulate and with ferulate ethyl esters. Peroxidase-mediated coupling of wall ferulate and ethyl ferulate yielded mostly 8-coupled products, including three new dehydrodimers. Significant quantities of 5-5-coupled diferulate formed only within walls, suggesting that matrix effects influence dimer formation. Over 60% of wall ferulate dimerized upon H2O2 addition, suggesting that xylan feruloylation is highly regulated during wall biosynthesis to permit extensive dimer formation at the onset of lignification. During lignification, ferulate and 5-5-coupled diferulate copolymerized more rapidly and formed fewer ether-linked structures with coniferyl alcohol than 8-5-, 8-O-4-, and 8-8-coupled diferulates. The potential incorporation of most ferulates and diferulates into lignin exceeded 90%. As a result, xylans become extensively cross-linked by ferulate dimerization and incorporation to lignin, but only a small and variable proportion of these cross-links is measurable by solvolysis of lignified walls.  相似文献   

2.
Ferulate and diferulates mediate cell wall cross-linking in grasses, but little is known about their cross-coupling reactions with monolignols and their role in lignin formation in primary cell walls. Feruloylated primary walls of maize were artificially lignified and then saponified to release ferulate and diferulates and their cross-products with coniferyl alcohol for analysis by GC-FID, GC-MS, and NMR spectroscopy. Ferulate and 5-5-coupled diferulate had a greater propensity than 8-coupled diferulates to copolymerize with coniferyl alcohol, forming mostly 4-O-beta' and 8-beta' and some 8-O-4' and 8-5' cross-coupled structures. Some 8-beta' structures de-esterified from xylans, but these cross-links were subsequently replaced as 8-coupled diferulates formed stable cross-coupled structures with lignin. Based on the incorporation kinetics of ferulate and diferulates and the predicted growth of lignin, cross-products formed at the onset of lignification acted as nucleation sites for lignin polymerization.  相似文献   

3.
The steryl ferulate contents of rye and wheat grains and their milling fractions were analyzed using a reversed-phase high-performance liquid chromatographic (HPLC) method. HPLC-mass spectrometry was used for identification. In addition, steryl ferulates of some selected milling byproducts were determined. The total steryl ferulate contents of rye and wheat grains were 6.0 and 6.3 mg/100 g, respectively. Uneven distribution of steryl ferulates in the grains led to considerable differences in the milling products; their steryl ferulate contents ranged from trace amounts in flours with low ash content to 20 and 34 mg/100 g in rye and wheat brans, respectively. Campestanyl ferulate and sitostanyl ferulate were the main components, followed by campesteryl ferulate and sitosteryl ferulate, whereas sitosterol was the main component in total sterols. Among the other samples, a byproduct of rice milling (pearling dust) was the best source of steryl ferulates, its total steryl ferulate content being 119 mg/100 g, whereas no measurable amounts of steryl ferulates were measured in oat bran or pearling dust of barley. The results indicated that rye and wheat and especially their bran fractions are comparable to corn as steryl ferulate sources.  相似文献   

4.
The content of gamma-oryzanol and the composition of steryl ferulates were determined in brown rice of European origin using on-line coupled liquid chromatography-gas chromatography (LC-GC). Analysis of 30 brown rice samples of various cultivars, grown at different sites and in different seasons, revealed the gamma-oryzanol content to range from 26 to 63 mg/100 g. Cycloartenyl ferulate and 24-methylenecycloartanyl ferulate were the major components of gamma-oryzanol followed by campesteryl ferulate, campestanyl ferulate, and beta-sitosteryl ferulate. The proportions of individual steryl ferulates exhibited enormous variability. However, irrespectively of the great variations observed for single steryl ferulates, the proportions of the sum of 4,4'-dimethylsteryl ferulates (cycloartenyl ferulate, 24-methylenecycloartanyl ferulate) and the sum of 4-desmethylsteryl ferulates (campesteryl ferulate, campestanyl ferulate, and beta-sitosteryl ferulate) were rather constant. The significant natural variability observed for gamma-oryzanol content and composition of steryl ferulates were shown to be influenced by environmental conditions but not by the degree of maturity of rice grains.  相似文献   

5.
Analysis of wheat bran and spent grain shows that concentrations of ferulate and diferulates offer considerable scope to modify the cross-linking of feruloylated polysaccharides and hence the mechanical properties of these residues. In solution ferulic acid (FA) can be readily polymerized by horseradish peroxidase, but when esterified to a polysaccharide, the profile of diferulates becomes restricted. This situation also exists in muro and suggests structural constraints may limit the availability of FA for cross-linking. At relatively low polysaccharide concentration, (approximately 3%), steric restrictions were apparent in gels prepared using isolated polysaccharides. Mechanical properties such as swelling also appear to be fixed at these relatively low polysaccharide concentrations. This limits the potential to modify mechanical properties in muro through oxidoreductase activity. To modify mechanical properties such treatments will need to focus on increasing the "flexibility" of the cell wall matrix and the accessibility of enzymes to the cell wall matrix.  相似文献   

6.
Polished and cargo rice, wild rice, rice bran, corn bran, and wheat bran were subjected to a static in vitro digestion model, to monitor changes in their steryl ferulate content and composition. Free sterols, possible hydrolysis products of steryl ferulates, were also measured. Additionally, steryl ferulate bioaccessibility was calculated as the percentage of steryl ferulates liberated from the grain matrix into the digestive juice. Steryl ferulate content ranged between 6.1 and 3900 μg/g and decreased by 1-63% due to digestion. A parallel increase in free sterols of more than 70% was observed in all samples. Additionally, bioaccessibility of steryl ferulates was found to be almost negligible. These findings suggest that intestinal enzymes immediately hydrolyze steryl ferulates, which are liberated from the grain matrix, and thus they are practically unavailable for absorption in the small intestine. This further indicates that the hydrolysis products of steryl ferulates could be bioactive in the gut.  相似文献   

7.
Nonlignified cell walls from Zea mays (L.) cell suspensions were incubated with and without pectin methylesterase (PME) and a portion were artificially lignified to assess how methyl esters influence the release of pectic uronosyls and total sugars from cell walls by fungal enzymes. Treatment with PME reduced uronosyl concentrations from 97 to 92 mg/g, reduced uronosyl methylation from 57% to 21%, and increased Klason lignin concentrations in artificially lignified cell walls from 99 to 116 mg/g. Although PME treatment slightly enhanced uronosyl release from nonlignified cell walls, it reduced uronosyl release from artificially lignified cell walls by 55% after 4 h and by 7% after 72 h of enzymatic hydrolysis. Pectin hydrolysis in PME treated cell walls was probably impaired by enhanced benzyl ester cross-linking of uronosyls to lignin via quinone methide intermediates. Variations in uronosyl methylation had little effect on the overall release of total sugars from cell walls.  相似文献   

8.
During plant maturation, degradability of alfalfa (Medicago sativa L.) stems declines due to accumulation of highly lignified xylary tissue. Xylem and nonxylem tissues dissected from lower alfalfa internodes were analyzed for cell wall constituents and degradability. Cell walls comprised 740 mg g(-1) of xylem and 533 mg g(-1) of nonxylem tissues. Xylem tissues contributed about 60% of the cell wall mass in internodes. Xylem walls contained 28% lignin, 4% pectin, 29% hemicellulose, and 39% cellulose as compared to 15% lignin, 25% pectin, 30% hemicellulose, and 30% cellulose in nonxylem walls. Fungal enzymes hydrolyzed 22 and 73% of the structural carbohydrates in xylem and nonxylem walls, respectively. In both cell wall fractions, the release of xylose was 56-90% lower than that of other sugars, indicating that lignin preferentially restricted xylan degradation in secondary walls and xyloglucan degradation in primary walls. Elucidation of lignin-xylose interactions may reveal strategies for improving fiber degradability of alfalfa.  相似文献   

9.
Two 8-8-coupled sinapic acid dehydrodimers and at least three sinapate-ferulate heterodimers have been identified as saponification products from different insoluble and soluble cereal grain dietary fibers. The two 8-8-disinapates were authenticated by comparison of their GC retention times and mass spectra with authentic dehydrodimers synthesized from methyl or ethyl sinapate using two different single-electron metal oxidant systems. The highest amounts (481 microg/g) were found in wild rice insoluble dietary fiber. Model reactions showed that it is unlikely that the dehydrodisinapates detected are artifacts formed from free sinapic acid during the saponification procedure. The dehydrodisinapates presumably derive from radical coupling of sinapate-polymer esters in the cell wall; the radical coupling origin is further confirmed by finding 8-8 and 8-5 (and possibly 8-O-4) sinapate-ferulate cross-products. Sinapates therefore appear to have an analogous role to ferulates in cross-linking polysaccharides in cereal grains and presumably grass cell walls in general.  相似文献   

10.
Many leaf characteristics vary with position along the culm in maize (Zea mays L.) due to the existence of vegetative phase change and heteroblasty. The objective of this work was to determine if differences in cell wall composition exist among developmental phases and between Cg1, a developmental mutant, and wild-type maize. In one experiment, the middle third of fully elongated leaf blades from lower and upper regions of the shoot was harvested (midribs removed) and analyzed for several cell wall components. Averaged over five inbreds (De811, Ia5125, Mo17, P39, and Wh8584), lower leaf blades had higher levels of xylose and lower levels of total uronosyls, glucose, arabinose, and galactose (P < 0.05) than did upper leaf blades. With the exception of glucose, upper and lower leaves of Cg1 plants varied in the same manner as their near-isogenic siblings, except cell walls of Cg1 plants were more "juvenile" than cell walls of wild-type siblings at the same leaf stage. These data support the hypothesis that Cg1 delays but does not eliminate the transition from juvenile-vegetative to adult-vegetative phase. In a second experiment, juvenile (leaves 3 and 5), transition (leaf 7), and adult (leaves 9 and 11) leaves from inbreds B73 and De811 were harvested and analyzed as in the first experiment. As leaf number rose, total cell wall content of sample dry matter, total neutral sugars, glucose, xylose, and ester-linked monomers of p-coumaric acid and total ferulates including ferulate dimers increased linearly while total uronosyls acids, arabinose, and galactose declined linearly (P < 0.05). Glucose and xylose are major cell wall components released from cellulose and xylans after acid hydrolysis. Pectin, a minor component of grass cell walls, is composed of galacturonosyls, arabinose, and galactose. Secondary cell wall deposition increased between leaves 3 and 11 in a heteroblastic series, due to either increased cell wall content concomitant with decreased cell lumen size, changes in proportion of cell types (i.e., sclerenchyma), or a combination of these factors.  相似文献   

11.
Bile acid adsorption by lignified dietary fiber in the human intestine is proposed as a mechanism for lowering blood cholesterol level and reducing colon cancer risk. In this study, we investigated how the concentration and composition of lignin in fiber influences the in vitro adsorption of primary bile acids (glycocholate, taurocholate, and glycochenodeoxycholate) and a secondary bile acid (deoxycholate). Adsorption studies were performed by incubating nonlignified and artificially lignified maize cell walls (dehydrogenation polymer‐cell walls) with bile acids under conditions imitating the small intestine and distal colon. Artificially lignified cell walls had varying but defined lignin concentrations (4.8–19.0%) and compositions (varying from pure guaiacyl to pure syringyl lignins) but a uniform polysaccharide‐protein matrix. Adsorption of bile acids by cell walls was in a range of 6–31% (4–26 nmol of bile acids/mg of cell walls), with glycochenodeoxycholate showing the highest adsorption rates. Neither lignin concentration nor lignin composition influenced bile acid adsorption, thus disproving a major role of lignin in bile acid adsorption.  相似文献   

12.
Both epidemiological and experimental data indicate that a diet rich in fiber may reduce cancer risk. One possible mechanism is by adsorbing carcinogens and transporting them out of the body without metabolic activation. We investigated the role of fiber lignification and feruloylation on the adsorption of four of the most relevant heterocyclic aromatic amines in food: 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), and 2-amino-9H-pyrido[2,3-b]indole (AalphaC). Adsorption experiments, under conditions mimicking the small intestine, were carried out using nonlignified and artificially lignified primary maize walls with defined lignin and ferulate/diferulate concentrations and defined lignin compositions. Lignin concentration and composition both influenced the adsorption of heterocyclic aromatic amines, especially the more hydrophobic types. Heterocyclic aromatic amine adsorption increased with lignin concentration. 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and 2-amino-9H-pyrido[2,3-b]indole were better adsorbed by guaiacyl-rich lignins, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline by syringyl-rich lignins, whereas the adsorption of 2-amino-3-methylimidazo[4,5-f]quinoline was not clearly influenced by lignin composition. Nonlignified cell walls adsorbed lesser amounts of heterocyclic aromatic amines. Variations in cell wall feruloylation had no effect on heterocyclic aromatic amine adsorption.  相似文献   

13.
Plant cell walls are the major structural component of fruits and vegetables, which break down to cell wall particles during ingestion (oral mastication) or food processing. The major health-promoting effect of cell walls occurs when they reach the colon and are fermented by the gut microbiota. In this study, the fermentation kinetics of carrot cell wall particle dispersions with different particle size and microstructure were investigated in vitro using porcine feces. The cumulative gas production and short-chain fatty acids (SCFAs) produced were measured at time intervals up to 48 h. The results show that larger cell clusters with an average particle size (d(0.5)) of 298 and 137 μm were more rapidly fermented and produced more SCFAs and gas than smaller single cells (75 μm) or cell fragments (50 μm), particularly between 8 and 20 h. Confocal microscopy suggests that the junctions between cells provides an environment that promotes bacterial growth, outweighing the greater specific surface area of smaller particles as a driver for more rapid fermentation. The study demonstrates that it may be possible, by controlling the size of cell wall particles, to design plant-based foods for fiber delivery and promotion of colon fermentation to maximize the potential for human health.  相似文献   

14.
Apical internodes of tall fescue (Festuca arundinacea Schreb. var. Clarine) harvested at flowering were sectioned into 5 or 10 equal parts to study in situ degradability and cell wall composition, respectively. The basal (youngest) section had the greatest primary wall content. Cell walls in the upper (older) sections had the highest xylose/arabinose ratio and lignin content and a lignin rich in syringyl units, all typical of extensive secondary wall development. Almost all of the p-coumaric (p-CA) and about half of the ferulic acid (FA) were released by 1 M NaOH and presumed to be ester-linked. The total FA content was approximately double that of p-CA in all sections other than the youngest with a distribution similar to that of total p-CA. However, the ratio of esterified to ether and ether plus ester linked (Et & Et+Es) FA differed with age. Whereas the esterified form remained essentially constant ( approximately 4.5 g/kg of cell wall), Et & Et+Es ferulate increased with increasing age of the tissue and was significantly related to lignin deposition (r = 0.79, P < 0.01). The extent of cell wall degradation after 48 h of incubation in the rumen was inversely related to maturity, falling from 835 g/kg of dry matter in the youngest section to 396 g/kg in the oldest. Both the rate and extent of cell wall degradation were significantly negatively related to the ratio of xylose to arabinose, lignin content, proportion of syringyl units present in lignin, and concentration of Et & Et+Es FA present. A positive relationship between Et & Et+Es FA was also found, with the rate (P < 0.01) being better correlated than the extent (P < 0.05) of cell wall degradation. Application of the newly extended internode model to fescue produced results consistent with the view that both the lignin content and the extent to which lignin was covalently bound to the other wall polymers crucially influenced the rate and extent of degradation.  相似文献   

15.
Antioxidant activity of steryl ferulates from other sources than rice have not yet been studied much, despite the fact that rice steryl ferulates (gamma-oryzanol) have been shown to possess good antioxidant activity. In this study, steryl ferulate extracts from wheat or rye bran were studied for their capability to inhibit hydroperoxide formation in bulk methyl linoleate and methyl linoleate emulsion. Further, their activity to scavenge DPPH radicals was analyzed. The activities were compared to synthetic steryl ferulates, rice steryl ferulates, ferulic acid, and alpha-tocopherol. Nonrice cereal extracts of steryl ferulates exhibited good antioxidant activity, especially in the bulk lipid system. The radical scavenging activity was similar to that of nonesterified ferulic acid, indicating that the ferulic acid moiety is responsible for the antioxidant properties. This study illustrates a new aspect to the health-promoting properties of rye and wheat.  相似文献   

16.
The feasibility of a two-step chemoenzymatic synthesis of phytosteryl ferulates was successfully established in this work. An intermediate vinyl ferulate was first chemically produced and subsequently esterified with phytosterols through alcoholysis with Candida rugosa as a catalyst. The structures of phytosteryl ferulates were confirmed by Fourier transform infrared (FTIR) and high-performance chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS) using atmospheric pressure chemical ionization (APCI) under both positive and negative ion modes. The antioxidant activity of phytosteryl ferulates was higher than that of the starting material and the intermediate in the assays employed. The results indicated that phytosteryl ferulates had a good potential to be used as food antioxidants and may also serve as cholesterol-lowering agents.  相似文献   

17.
Original lignin and hemicelluloses were sequentially extracted with high yield/purity, using acidic dioxane/water solution and dimethyl sulfoxide, from ball-milled wheat straw. The acidic dioxane lignin fraction is distinguished by high beta-O-4' structures and by low amounts of condensed units (beta-5', 5-5', and beta-1'). Hemicelluloses contain arabinoxylans as the major polysaccharides, which are substituted by alpha-l-arabinofuranose, 4-O-methylglucuronic acid, acetyl group (DS = 0.1), and xylose at O-3 and/or O-2 of xylans. It was found that arabinoxylans form cross-links with lignins through ferulates via ether bonds, glucuronic acid via ester bonds, and arbinose/xylose via both ether and glycosidic bonds, respectively, in the cell walls of wheat straw. Diferulates are also incorporated into cross-links between lignin and hemicelluloses as well as lignification of wheat straw cell walls. The guaiacyl unit is considered to be a significant condensed structural constructor in extracted lignin and a connector between lignin and carbohydrates.  相似文献   

18.
Degradation of beech leaves by the white rot fungus Sporotrichum pulverulentum was investigated for 4 weeks under laboratory conditions. Observations by transmission electron microscopy revealed that the degradation patterns depended on the nature of the foliar tissues and on the stage of decay. Fibres, parenchyma cells and specific zones of the sclerenchyma tissue, corresponding to the cells located between vessels, were strongly degraded, while vessels and epidermal cells were more resistant to degradation. During the early stages of degradation, a selective removal of components from the lignin and hemicellulose-rich layers was observed in the cell walls of sclerenchyma fibres and parenchyma cells. At a more advanced stage of decay, a simultaneous disappearance of all cell wall layers (primary wall, secondary wall, middle lamella and cell corners) occurred, irrespective of cell type. In parenchyma cells, removal of the intracellular brown pigments occurred prior to degradation of the cell walls, while in epidermis, the cell walls were altered first. In sclerenchyma cells surrounding the vessels, hyphae were found to be closely associated with decayed areas, while in all the other tissues, there was no contact of the fungus with lignocellulosic compounds and polyphenols, suggesting a diffusion of the fungal degradative enzymes. A fibrillar mucilagenous matrix, often detected between hyphae and cell walls, might make this diffusion easier. Cellulase activity was detected in the decayed tissues by the release of reducing sugars localized in the vicinity of the leaf cell walls and often somewhat distant from the hyphae. The role of the fungal enzymes involved in degradation of cell wall components and brown pigments in beech leaves is discussed.  相似文献   

19.
Cell wall material from Vitis vinifera L. cv. Cabernet Sauvignon grape skin and flesh was isolated at different stages of grape maturity to determine whether developmental changes in cell wall composition in different tissue types influence the binding of proanthocyanidins (PAs). Trends in cell wall adsorption of, and selectivity for, PAs were determined using two skin PAs that differed in their average molecular masses. Flesh cell walls consistently bound a higher amount of PA than those from skin. Key structural differences that reduced PA adsorption in skin cell walls by comparison with flesh cell walls were endogenously higher concentrations of insoluble PA, Klason lignin, and lower cell wall-bound protein. These differences may confer reduced flexibility and porosity of skin cell walls relative to flesh cell walls. Analysis of skin and flesh cell wall properties revealed that the onset of ripening was associated with a loss of type I arabinogalactan and galacturonic acid, which indicated a degradation of pectin within the cell wall. Flesh cell walls consistently bound PAs of larger molecular mass, and changes in PA adsorption properties after the onset of ripening were minor. For skin cell walls, adsorption of PA was lowest immediately following solubilization of galacturonic acid, and high molecular mass PAs were poorly bound. As ripening progressed, PAs of higher molecular mass were selectively adsorbed by skin cell walls, which indicates that ongoing cell wall remodeling during ripening may confer an increased porosity within the skin cell wall matrix, resulting in a greater adsorption of PA within a permeable structure.  相似文献   

20.
The diet of earthworms includes soil organic matter, soil microbes and other microfauna, but the relative contribution of these dietary components to earthworm nutrition is not well known. Analysis of fatty acid (FA) profiles can reveal trophic relationships in soil food webs, leading to a better understanding of the energy and nutrient flows from microbiota to earthworms. The objective of this study was to determine the origin of FAs assimilated by the earthworm Lumbricus terrestris L. We analysed the pattern of FAs in: (i) the bulk soil, (ii) soil in the earthworm gut, (iii) the absorptive tissue of the earthworm gut wall, and (iv) the muscular layers of the earthworm body wall. Multivariate analyses performed on the FA profiles suggest that the microbial community in the earthworm gut differs from that in bulk soil. Diverse bacterial and fungal derived FAs, which earthworms cannot synthesize, were found in the earthworm gut wall and body wall, and in the neutral lipids (storage lipids) of the gut wall. The major compounds isolated were 20:4ω6, 20:5ω3 and 18:2ω6, followed by the monoenoic 18:1ω7 and 18:1ω9c, and the saturated 18:0. The microbial FA assemblage in the gut wall resembled the gut soil more than the bulk soil, and the body wall of L. terrestris showed the same microbial derived FA pattern as the gut wall, although at reduced concentrations. We propose the existence of a specific microbial community in the earthworm gut that provides FAs to the earthworm. It appears that L. terrestris may derive more of its energy and nutrients from gut specific microbiota than from microbiota already present in the ingested soil, based on the trophic relationships revealed through FA analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号