首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
王威 《安徽农学通报》2011,17(23):46-48
由于当今污染现象越来越严重,污水脱氮已成为社会焦点,该实验就污水生物脱氮进行试验研究。实验采用SBR生物脱氮工艺,在常温,pH7.0~8.5以及控制其它一些常见条件下,试验确定最佳硝化和反硝化时间分别为3.5和1.5h,整个试验的脱氮效率在70%以上,其中好氧硝化段去除率就达60%左右。并且在实验其它数据的分析中,有迹象表明该实验中明显有存在同步硝化反硝化的可能。  相似文献   

2.
pH和碱度对生物硝化影响的探讨   总被引:14,自引:0,他引:14       下载免费PDF全文
生物脱氮是废水氮素污染控制的有效技术.本文剖析了pH对生物硝化的影响以及与碱度的关系,认为pH不仅影响硝化细菌的生长和代谢,也影响硝化基质和产物的有效性和毒性,可制约生物硝化反应器的效能.生物硝化系统的碱度主要由碳酸盐类组成.因为碳酸盐系统在pH 6.5~8.5时缓冲强度较弱,硝化过程中极易发生pH大幅度波动,操作中应予以高度关注.  相似文献   

3.
以亚硝化细菌、反硝化细菌为研究对象,采用共固定化细胞技术,以海藻酸钠共固定化亚硝化-反硝化细菌,研究了共固定化工艺条件及其在模拟污水中的脱氮效果。结果表明,共固定化亚硝化-反硝化细菌最佳工艺条件为4.5%海藻酸钠和2.1%氯化钙共固定化细胞,接种量为3个/m L培养基,接种于装有140 m L模拟污水液体培养液的250 m L三角瓶中,最佳p H为8,最佳培养温度30℃,110~140 r/min培养。54 h时氨氮去除率为95.95%,78 h时亚硝态氮去除率为95.82%。共固定化小球可重复使用3次、低温对共固定化后菌种脱氮性能的影响较小。  相似文献   

4.
南氨化菌、亚硝化菌、硝化菌和反硝化菌构成的氮循环菌,在代谢过程中可将含氮物质最终转化为无害的氮气释放到空气中,有效地降低水体中氮的浓度.利用从活性污泥、猪粪发酵液、鱼塘水及上壤等多种环境样品中分离得到效果较好的氨化细菌5株、亚硝化细菌4株、硝化细菌4株及反硝化细菌5株,选取不存在拮抗作用的不同氮循环功能的菌株构建菌群,并对其脱氮能力进行测定研究.结果表明,AGIQ和AGMR两个组合的脱氮能力较强,在室内模拟富营养化水样中,4 d内脱氮率分别可以达到80.92%和82.36%,这两个组合不仅能够降低总氮和氨氮浓度,而且不积累亚硝酸盐氮和硝酸盐氮.对效果最好的AGMR组合的4个菌株进行了菌种鉴定,确定分离的菌株为枯草芽孢杆菌(Bacillus subtilis)、门多萨假单胞菌(Pseudomonas mendocina)、蜡状芽孢杆菌(Bacillus cereus)和类产碱假单胞菌(Pseudomonas pseudoalcaligenes).  相似文献   

5.
以生物碳组合填料为载体,考察了不同比例生物碳对关镇河底泥活化原位脱氮系统构建时间、脱氮效果的影响,同时研究了不同比例生物碳填料成熟生物膜上生物量、微生物活性、硝化菌和反硝化菌数量。结果显示,组合填料中添加生物碳含量为5%、10%、15%时,脱氮系统的总氮(TN)去除率在处理第7 d、6 d和5 d时均达到80%以上,且运行稳定后其TN平均去除率分别为88%、90%和83%。生物膜上生物量随生物碳含量增加而增加,当生物碳含量为10%时,生物膜上硝化细菌、反硝化细菌数量最大,分别为1 g 6.7×104MPN和8.6×105MPN,脱氢酶活性为54.2μg/nmol,而生物碳含量为15%时,硝化细菌、反硝化细菌数量、脱氢酶活性分别为1 g 1.9×104MPN、1 g 1.7×105MPN和19.8μg/nmol,表明过高的生物碳含量不利于提高生物膜原位脱氮系统的脱氮效能及微生物活性。  相似文献   

6.
通过对污水处理厂底泥中反硝化细菌的驯化和富集,得到富含反硝化细菌的富集液。利用富集液处理含不同碳源的实验废水,同时研究不同环境因子对亚硝酸型反硝化菌脱氮速率的影响。结果表明,以甲醇为碳源、温度30℃、pH8.0时为最适条件。在此条件下,处理太原市A湖实际废水脱氮率达到98%以上。  相似文献   

7.
亚硝化细菌培养条件的优化   总被引:2,自引:0,他引:2  
以活性污泥中分离出的亚硝化的细菌为研究对象,对亚硝化菌培养条件(培养温度、pH、碳源、氮源、刺激因子)进行优化。结果表明:亚硝化细菌最佳培养温度为30℃,最佳培养基pH值为8.0,外加碳源Na2CO3最佳浓度为0.2%,NH4HCO3最佳浓度为0.2%,刺激因子LaCl3最佳浓度为0.004%。在此最佳培养条件下,亚硝化细菌生长及亚硝酸盐氮富集能力达到最高,为185.36 mg/L,脱氮率最高为92.52%;采用三角瓶半连续式培养的亚硝化细菌脱氮性能优于量筒培养的,而连续式培养较半连续式培养能更有利于亚硝化细菌菌群数量的增长和繁殖。  相似文献   

8.
限制自养硝化反硝化(OLAND)工艺是短程硝化和厌氧氨氧化相耦合的生物脱氮工艺,与传统的生物脱氮相比,能耗低,反应时间短,污泥产量少,不需投加碳源,脱氮效率高,在较低温度下仍可正常运行,在技术研究和开发上具有良好的潜力和经济价值。基于OLAND工艺原理,从微观上分析了工艺中微生物的种类、分布及特性,从宏观上探讨了溶解氧质量浓度、底物质量浓度、p H值及温度等对OLAND脱氮过程的影响,并从提高厌氧氨氧化脱氮效率入手,讨论了添加物(竹炭、二氧化锰、铁离子等)、菌种流加技术等对工艺的强化作用。指出多因子协作及其作用机制、OLAND脱氮效率的强化措施及机制研究是今后OLAND工艺研究的重点。  相似文献   

9.
石明岩  冯兆继  余建恒  夏耿东 《安徽农业科学》2011,39(14):8537-8539,8645
[目的]探讨倒置A2/O工艺处理混合污水关键工艺参数的作用规律。[方法]以实际混合污水为进水,采用倒置A2/O工艺处理混合污水脱氮,研究水力停留时间、好氧区溶解氧浓度、外回流比、泥龄和水温对脱氮的影响。[结果]水力停留时间的延长有利于混合污水处理系统脱氮,为实现高效脱氮,水力停留时间至少应维持8 h;在1.01.5 mg/L浓度范围内增加溶解氧对混合污水脱氮有促进作用;在60%100%的范围内提高外回流比对硝化反硝化有利;为保证较高的硝化率,泥龄宜控制在20 d以上,泥龄在1530 d时,对总氮去除影响不明显;水温的升高对脱氮有明显促进作用,高温对反硝化更为有利。[结论]试验结果在妥善处理粪便污水,实现城市污水厂混合污水的稳定达标排放,减轻水环境氮污染方面具有一定参考价值。  相似文献   

10.
反硝化细菌的分离筛选及其反硝化特性的初步研究   总被引:3,自引:2,他引:1  
从不同的水样、土样中用反硝化选择性培养基分离出202株反硝化细菌.以硝酸盐的降解、亚硝酸盐的积累和脱氮率为筛选指标,从这些菌株中得到1株反硝化能力强的菌株A13,经牛理生化试验和16s rDNA序列分析,鉴定该菌株为地衣芽胞杆菌(Bacillus licheni formis).然后将该菌株与保存的反硝化菌DNF409联合应用,脱氮率比应用单株菌提高近30%.在此基础上采用响应面分析法(中心组合一致精度设计,SAS9.1.3),建立了初始硝态氮浓度为25 mg/L水样脱氮率的回归方程,同时得出最佳反硝化条件是CODMn为35.1mg/L,温度为32.5℃,投菌量为6.2×106cfu/mL,反硝化时间为114.2 h,此时脱氮率达99%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号