首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The fertility of farmed soils in parts of the Papua New Guinea (PNG) highlands reputedly has been declining for some time owing to population pressure. To assess the extent of the problem, a survey of sweet potato gardens was conducted across four of the highlands provinces and information on soil variables was obtained for gardens on soils of volcanic and non-volcanic origins. In the absence of fertilizer application, soil fertility in the humid tropics is largely a function of soil cation exchange capacity (CEC), and soils of low CEC had previously been reported in this region. In the present study, relationships between effective CEC (ECEC) and other soil properties in moderately acidic soils (pH 5.5–6.3) were investigated to see if there was scope for improving soil cation retention characteristics through management of key soil variables. For volcanic soils of varying allophane content, ECEC was, unexpectedly, negatively correlated with soil C and soil C/N, most probably because of the formation of humus–allophane complexes which had facilitated organic matter accumulation whilst dramatically reducing the free negative charges on the material. Given the latter outcome, the indigenous practice of heaping compost in the centre of soil mounds appeared to be one of the best strategies for circumventing the problem of low CEC, as nutrients in the compost are held in an environment virtually independent of the surrounding soil mineralogy. Although the positive correlation between soil pH and soil ECEC was weak for volcanic soils, it was concluded that liming might nevertheless be an effective means of enhancing the nutrient retention characteristics of these soils provided the practicalities and costs were not prohibitive.  相似文献   

2.
Previous studies indicated that potassium (K) deficiency is an important soil‐related factor for yield decline of the sweet potato gardens in the Central Highlands of Papua New Guinea, where sweet potato is an important staple food crop. An effort was made to characterize various fractions of K in the diverse soils of this region under sweet potato, to ascertain the probable reasons behind the observed K deficiency and its relationship to decreasing yield trends. Soils from two depths (0–10 cm) and (10–20 cm) in two types of gardens (old and new gardens) were assessed for different fractions of soil potassium in volcanic and non‐volcanic soil groups. Volcanic soils (Hydrandepts and Andaquepts) were significantly lower (P < 0.05) in exchangeable K than the non‐volcanic soils (Dystropepts, Tropoqualfs and Eutropepts). Mean exchangeable K content of the non‐volcanic soils was 95.5 mg/kg, whereas that of volcanic soils was 72.4 mg/kg. Similarly, new gardens had an average exchangeable K content of 94.1 mg/kg, which was significantly greater than 71.6 mg/kg soil of older gardens. Non‐exchangeable K content differed significantly (P < 0.001) between the soil types; mean K content was 85.9 mg/kg for the volcanic soils, whereas in non‐volcanic soils, it was 184.9 mg/kg. Garden types also differed significantly (P < 0.05) with respect to non‐exchangeable K content; new gardens registering higher average values (by almost 20%) than the older gardens. Multiple regression analysis showed that variability in the tuber yield was as a result of variability of water soluble and exchangeable K (up to 22%), non‐exchangeable K (2%), mineral K (4%) and leaf K concentrations (10%). Older gardens, which are in volcanic soil groupings, are more susceptible to the K depletion problem because of continuous sweet potato cultivation, possibly owing to their lower K reserves. Such gardens should be managed either with sufficient fallow periods for regeneration of soil fertility or with suitable application of mineral K fertilizers to enhance productivity.  相似文献   

3.
Yield responses of irrigated, field‐grown cotton to phosphorus fertilizer application in Australia have been variable. In an attempt to understand better this variability, the distribution of fertilizer P within soil P fractions was identified using 32P and 33P radioisotopes. The soil chosen, an alkaline, grey, cracking clay (Vertosol), was representative of those used for growing cotton in Australia. Chang and Jackson fractionation of soil P from samples collected within 1 h of application indicated that 49, 7 and 13% of the P fertilizer was present as 0.5 m NH4F, 0.1 m NaOH and 1 m H2SO4 extractable P, respectively. Over 89% of the P fertilizer was recovered as Colwell extractable P in these samples, suggesting that the majority of these reaction products was in a highly plant‐available form. Fertilizer‐P remained in an available form within the band 51 days after application, and 68% of the applied fertilizer‐P was recovered as Colwell‐P (1071 mg kg?1). The Colwell‐P concentration in the band was 35 times that in the unfertilized soil. Thus, the variability in crop response to P fertilizer application in these soils is not a consequence of fertilizer‐P becoming unavailable to plants. These results confirm the suitability of the Colwell (1963) sodium bicarbonate extraction method for measuring available P in these soils.  相似文献   

4.
A large variety of extraction methods are used worldwide for the estimation of “plant‐available P” in soils. In Germany, the standard extractants are Calcium‐Acetate‐Lactate (CAL) and Double‐Lactate (DL). Until now there is no validated transformation procedure available and studies on the comparability of both methods have reported conflicting evidence. The uncertainty about the equivalence of CAL‐P and DL‐P hinders a direct comparison of the P fertility status and P fertilizer recommendations across Germany. Based on 136 datasets for soil samples from an interlaboratory comparison program and three P fertilization field trial sites, for which plant‐available P had been determined by both the CAL and DL method, we assessed the comparability of both extraction methods and derived simple and multiple regression equations to transform DL‐P into CAL‐P values. On average, DL extracted 30% more P than CAL. However, this strongly depended on soil pH and carbonate content. A simple linear regression model explained 70% of the variance. However, if simple linear regression models were fitted to pH‐specific samples (pH range 4.5 to 7.0) the R2 increased to 0.96. Based on an independent validation dataset (n = 48) we demonstrated that such pH‐specific models were more accurate than models that did not consider pH when transforming DL‐P to CAL‐P values. Multiple regression results showed that out of soil pH, Corg, Nt, and C : N ratio, only soil pH improved the model. The transformation equations in this study provide a step towards an improved comparability of P fertility status assessments of soils across Germany.  相似文献   

5.
Irrigated rice is less prone generally to phosphorus (P) deficiency than rainfed rice because redox reactions release P upon soil flooding. It is not known whether that is also true in highly weathered soils of Madagascar where the combination of high soil Fe and low P input may impede significant release of P. Soils and flag leaf samples were collected in 2010 in 38 irrigated rice and 46 rainfed rice fields belonging to private farmers. A critical flag leaf P content was derived from a P‐dosed pot trial study with three soils, and the results suggested 2.4 g P/kg as the critical value. Average flag leaf P was significantly larger in irrigated than in rainfed rice (2.2 compared with 1.7 g P/kg), and flag leaf P was below the critical value in 76% of irrigated rice fields while this fraction was 100% in rainfed rice. Nitrogen and K deficiencies were less prevalent. Flag leaf P increased with increasing soil pH and soil pH explained partially differences in leaf P between irrigated and rainfed rice. Flag leaf P was unrelated to soil organic matter, but increased with oxalate‐extractable soil P (Po). Multiple regression analysis revealed greater leaf P at equal soil Po and equal pH in irrigated compared with rainfed rice. Grain yield estimates (1‐m2 squares) increased with flag leaf P but not with leaf N and K. In a regression model, about 42 % of the yield variance was explained with soil Po and a rice‐growing system. The survey suggests that P is the main limiting nutrient for rice, and that soil P bioavailability is larger for irrigated than for rainfed rice in weathered soils of Madagascar.  相似文献   

6.
《CATENA》2002,49(3):183-202
In the montane grasslands of Mexico, perennial grass and black Andisols are linked in a complex mechanism of soil formation in which both biogenic and mineral products interact. In this ecosystem, typical of the volcanic highlands, a sequence of profiles has been studied by macro- and micro-morphology, scanning and transmission electron microscopy (TEM), infra-red spectroscopy of soil samples and humic acid (HA) extracts, radiocarbon dating and pollen record, soil moisture and available water determinations and soil water analyses. The grass Muhlennberrgia macroura is important in the soil-forming process as it is the host of micro- and meso-fauna which produce abundant organic micro-aggregates. Soil formation began 7550 years ago and continued through several climatic and vegetation changes. The soil thickens as its age increases. Mineral neoformation is oriented towards allophane and halloysite, rather than Al-rich minerals such as imogolite and gibbsite, and high Si contents are observed in the soil water. The black Andisols have high water and carbon storage capacities and play a prominent role in regulating drainage. Presentday destruction of the grassland for potato cultivation will decrease the waterer reserve of these volcanic highlands.  相似文献   

7.
Phosphorus (P) is a major plant nutrient, however, its availability in volcanic ash soils is presumed to be small, due to its specific sorption on short‐range order minerals. We analyzed distinct P fractions in volcanic ash soils of different age (60 to > 100,000 y BP) under pine forests in Central Mexico to investigate their changes along a chronosequence of Regosols, Andosols, and Lixisols, and to evaluate if P availability limits tree growth at any particular stage. Top soil and subsoil samples were first analyzed by the Tiessen and Moir method, which failed to extract exhaustively “organic” and “occluded P”, and “P associated with apatite”. Therefore, we modified the fractionation scheme by including a “recalcitrant organic P” fraction obtained from the difference between P determined in air‐dried subsamples and subsamples burned at 300°C; P adsorbed to short‐range order minerals was assessed in an extraction with NH4‐oxalate, and P in primary minerals by subtracting the sum of all other fractions from total P contents determined by XRF. This we did after discovering that primary P occurred in the form of fluorapatite included in plagioclase, volcanic glass or olivine. We also measured P contents in pine needles and related these with the “mobile soil P” fractions. The results show that “organic P” reaches maximum contents in 10,000‐y old soil, as does P associated with short‐range order minerals, while P occluded into crystalline oxides increases constantly over time. After 100,000 y, 31% of total P still remains in the form of primary P in A horizons. “Mobile P” was constant > 40 mg kg?1 in Regosols and Andosols and related positively with foliar P contents, which were within adequate nutritional ranges. Only in Lixisols small “mobile P” concentrations in soil correspond with inadequate P contents in pine needles.  相似文献   

8.
The rate of phosporus (P) release from soils can significantly influence P fertility of soils. The objectives of this study were to investigate the effects of land‐use types on the kinetics of P release under different management practices and the relationship between kinetic parameters and soil physical and chemical properties from calcareous soils. The kinetics of P release in 0.01 M CaCl2 was studied in surface samples of 30 calcareous soils planted to garlic, garden, pasture, potato, vegetables, and wheat. Trend in P‐release kinetics was similar between land‐use types. Significantly different quantities of P were released under different land use. The maximum amount (average of five soils) (46.4 mg kg–1) of P was released in soil under potato and the minimum amount (10.4 mg kg–1) under pasture. The kinetics of P release from soils can be described as an initial rapid rate followed by a slower rate. Different models were used to describe P release. In general, parabolic diffusion and power equation were found to be appropriate for modeling P release. The P‐release rate for the soils was estimated by parabolic equation for the studied land‐use types. The constant b was lower for pasture and wheat than for garlic and potato. The relationship between the rate of P release with Olsen‐P was linear, while it was curved with respect to the CaCl2‐P, indicating that release of P was diffusion‐controlled. When the kinetic parameters of models were regressed on soil properties, CaCl2‐P and CaCO3 appeared to be the most important soil properties influencing P‐release rates in these soils.  相似文献   

9.
Abstract. People in the Southern Highlands of Papua New Guinea cultivate some land semi-continuously within a regime of shifting cultivation; the staple crop is sweet potato ( Ipomoea batatas ). The fertility of Tropepts, variably affected by falls of volcanic ash, was investigated to give further understanding of how subsistence farmers avoid the soil constraints that commonly prompt abandonment. While organic matter, N and K all decrease significantly with time under cultivation, they do not reach critical levels. Phosphorus also decreases significantly over time, although contents are small throughout. Other nutrients show no significant variation with period of use or abandonment. These findings comply with the diversity of crops cultivated early in the life of 'gardens', followed by sweet potato, cultivated as a virtual monocrop in long established 'gardens'. It continues yielding adequately regardless of decrease in nutrient availabilities, notably because nutrient ratios remain favourable for tuberisation and because of sweet potato's tolerance of small phosphorus concentrations. It appears that burning of vegetation significantly increases available minerals and helps maintain a supply which is adequate for longterm sweet potato monoculture. Similar situations are postulated for other areas of less-weathered soils within the tropics.  相似文献   

10.
Abstract

The fourth, fully‐expanded leaves at sweet potato vine tips were sampled at harvest from two separate but similar experiments on njala upland soils after 7 years bush fallow to study the effects of timing and rates of K fertilizers on leaf nutrients and their relationships to sweet potato tuber yields. Potash showed significant effects on leaf P, leaf Zn, leaf Ca, leaf Mn, leaf K/P and leaf Ca/Mg. K x timing interaction affected leaf K/Mg and leaf K/P but timing of Z application did affect significantly neither leaf nutrients nor leaf nutrient ratios. Significant quadratic effect of K on tuber yields as well as significant cubic K x timing interaction effect on tuber yields were observed. There were significant negative correlations between tuber yields and leaf N and between tuber yields and leaf P, indicating that increases in either leaf N or leaf P depressed yields. On the basis of coefficient of determination, increases in leaf N contributed significantly more to yield variation than increases in leaf P. Analysis of covariance and multiple regression studies showed lack of significance of 10 nutrients on tuber yields. Sweet potato tissue which reflects differential nutrient levels with significant effect on tuber yields must be sought. Apart from the added fertilizer, the total effect of ether factors which affect nutrient status and crop performance must be considered.  相似文献   

11.
Approximately 40% of New Zealand's land mass is fertilized grassland with entirely non‐native plants, but currently there is substantially increased interest in restoration of native plants into contemporary agricultural matrices. Native vegetation is adapted to more acid and less fertile soils and their establishment and growth may be constrained by nutrient spillover from agricultural land. We investigated plant–soil interactions of native N‐fixing and early successional non N‐fixing plants in soils with variable fertility. The effects of soil amendments of urea (100 and 300 kg N ha?1), lime (6000 kg CaCO3 ha?1), and superphosphate (470 kg ha?1) and combinations of these treatments were evaluated in a glasshouse pot trial. Plant growth, soil pH, soil mineral N, Olsen P and nodule nitrogenase activity in N‐fixing plants were measured. Urea amendments to soil were not inhibitory to the growth of native N‐fixing plants at lower N application rates; two species responded positively to combinations of N, P and lime. Phosphate enrichment enhanced nodulation in N‐fixers, but nitrogen inhibited nodulation, reduced soil pH and provided higher nitrate concentrations in soil. The contribution of mineral N to soil from the 1‐year old N‐fixing plants was small, in amounts extrapolated to be 10–14 kg ha?1 y?1. Urea, applied both alone and in conjunction with other amendments, enhanced the growth of the non N‐fixing species, which exploited mineral N more efficiently; without N, application of lime and P had little effect or was detrimental. The results showed native N‐fixing plants can be embedded in agroecology systems without significant risk of further increasing soil fertility or enhancing nitrate leaching.  相似文献   

12.
Vertical distribution and plant availability of soil P under subsurface irrigation were investigated in a 5‐year tomato‐grown‐greenhouse experiment. Irrigation was applied when soil water condition reached the predefined maximum allowable depletion (MAD) for different treatments, e.g., –10 kPa, –16 kPa, –25 kPa, –40 kPa, and –63 kPa. Results show that P distribution with soil depth was significantly affected by irrigation schedules. The general trend is that concentrations of soil total P and inorganic P were greater in topsoil than in subsoil, whereas the concentrations of soil organic P were larger at the depths of 0–10 cm, 30–40 cm, and 40–60 cm than at other soil depths. Comparison of different irrigation schedules indicates that more soil organic P was retained in the soils under the MAD of –25 kPa, –40 kPa, and –63 kPa, implying that irrigation of relatively low frequency and large water quantity of each irrigation event favored the accumulation of organic P in soils. In addition, we found that the concentrations of plant‐available P decreased with soil depth and were largest under the MAD of –16 kPa and –25 kPa. This result suggests that irrigation of relatively high frequency and low water quantity of each irrigation event led to greater P availability for plant uptake. Overall, this study suggests that the transformation and plant availability of soil P can be manipulated, to some degree, by soil‐water management. Maximum allowable depletion controlled between –16 kPa and –25 kPa could result in high availability of soil P in clay‐textured soils.  相似文献   

13.
An improved understanding of potential soluble phosphorus (P) loss in run‐off and leachate from agriculturally managed soils presents practical and theoretical challenges. Our study aimed to discover whether modified Morgan extractable P (MMP) can be used to predict water‐soluble P (WSP). We first addressed the relationship between MMP and WSP, and whether MMP is useful for predicting the WSP concentrations demanded by water quality regulations. Secondly, we applied novel soil chemical models to explain why the relationship between MMP and WSP depends upon soil properties. Thirdly, we explain how soil properties relate to potential soluble P loss in situations in which soil is subjected to a wide liquid‐to‐soil ratio (e.g. run‐off and rivers) compared with those with a narrow ratio (e.g. soil porewater). To address these P loss scenarios, 60 agricultural topsoils (0–10 cm) were collected from a mixed‐farming catchment (Lunan catchment, northeast Scotland) and chemically characterized. Theoretical understanding of P solubility was obtained with a P sorption model. The data showed variability in the relationship between MMP and WSP. Modelling shows the MMP versus WSP relationship is nonlinear, depending on several confounding factors (P sorption capacity (PSC), Ca, pH) and the liquid‐to‐soil ratio (L:S) employed for WSP determination. Consequently, the slope of the relationship is not unique but depends subjectively on the set of soils surveyed. MMP versus WSP at large L:S (e.g. in run‐off or rivers) is positively correlated to PSC, whereas at narrow L:S (e.g. porewater) there is a negative correlation with PSC. The study provides new ideas for the interpretation and extrapolation of agronomic soil test data for soils of varied properties and highlights the need to utilize insights from soil chemistry.  相似文献   

14.
Abstract

The nutritional profile of sweet sorghum [Sorghum bicolor (L.) Moench] cultivars grown under acid soil field stress conditions is a critical consideration when developing plants which are adapted to these infertile soils. Uptake and accumulation of macro‐ and micronutrients vary among genotypes and ultimately Influence plant growth and development. This study compared fourteen sweet sorghum germplasm lines and varieties for their Individual patterns of leaf nutrient concentrations and productivity when grown under acid soil field conditions (pH 4.45 to pH 4.85) at three locations over a two‐year period. Significant year x location interactions were found for Fe, K, and Ca concentrations at both Blairsville and Calhoun and for Mn and P levels at Blairsville and Calhoun, respectively. Data from Calhoun on plant height, dry weight, visual stress ratings, and rainfall indicate a possible association between drought tolerance and acid soil tolerance in sorghum. No significant differences in A1 concentrations were found among these sweet sorghum lines and varieties, which indicate that their acid soil tolerance mechanisms are probably not related to A1. MN 1054 accumulated the highest levels of Mn in the three acid soils. The highest concentrations of Mg and P were found in Brandes. MN 960 had the highest visual stress ratings (highest susceptibility) while Brandes, Ramada, Roma, and Wray were the most tolerant. All fourteen cultivars apparently have some tolerance to acid soil stress conditions.  相似文献   

15.
Understanding soil test phosphorus (STP) and surface run‐off phosphorus (P) relationships for soils is necessary for P management. The objective of the study was to evaluate the efficacy of various soil test indices to predict P losses in surface run‐off. Selected sites were subjected to in situ rainfall simulations according to the protocol of the National Phosphorus Research Project ( NPRP, 2001 ). P from a composite of twenty‐four 2.0‐cm‐diameter core soil samples (0–5 cm) was extracted using the Olsen, Bray–Kurtz, Mehlich III, distilled water and 0.01 m calcium chloride procedures. All of these P extraction methods explained a significant amount of variability in surface run‐off total dissolved P [TP (<0.45)] (r2 0.67; P 0.01), where 0.45 is the filter pore diameter in microns. Multiple regression models showed extractable P to be the best soil predictor of surface run‐off TP (<0.45) among the studied soils. Despite extraction method or soil type, extractable P was the best soil predictor of surface run‐off TP (<0.45). Either agronomic (0.92 ≤ r2 0.96) or environmental (0.94 ≤ r2 0.96) soil tests were effective in estimating surface run‐off TP (<0.45) in select Mollisols.  相似文献   

16.
Soils located at the Mexican Trans‐Volcanic Belt (MTB) have a worrying degree of degradation due to inappropriate management practices. Early indicators of soil changes are very useful to alert about negative impacts of wrong managements on these volcanic soils. The aim of this work was to evaluate the short‐term effects (4 years) of different agricultural practices on soil organic matter (SOM) quality and to validate the potential of the selected biochemical properties as optimal early indicators of soil quality in Mexican cultivated Acrisols. During 2002–2005 four agronomic management systems: conventional (Tc); improved conventional (Ti); organic (To) and fallow (Tf) were assayed in plots located at the MTB. An uncultivated soil under grass cover (Sg) was used as reference. Soil samples were collected at 0–10 cm depth and were analysed chemically (soil organic C, total N, water‐soluble C and humic C), and biochemically (total and extra‐cellular enzyme activity). After 4 years, soil organic C, total N, water‐soluble C, and dehydrogenase activity had higher values in To, followed by Ti treatment. A similar response pattern was observed in the extra‐cellular enzyme activity. The highest total enzyme activity was found in Sg, followed by Ti and To treatments, and the lowest values appeared in Tc and Tf. To and Ti increased SOM contents of the degraded Acrisols studied, while Tc and Tf managements decreased the quality of these soils. The results showed that the assayed soil enzymes can be used as indicators of quality changes of these Mexican volcanic soils. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
D. Nash    B. Webb    M. Hannah    S. Adeloju    M. Toifl    K. Barlow    F. Robertson    F. Roddick  & N. Porter 《Soil Use and Management》2007,23(4):374-383
Soil tests are often used to identify areas at risk of excessive phosphorus (P) exports. We investigated the changes in soil P (0–20 mm) in four recently laser‐graded (<1 year) and four established (>10 years) irrigated pastures in south‐eastern Australia before and after 3 years of irrigated dairy production. At the second sampling, soil water P and nitrogen (N), and P and N in surface run‐off (overland flow) were also measured enabling comparison of P in surface run‐off with measures of soil P. In surface soil (0–20 mm), grading reduced measures of soil P, while P sorption increased. Over 3 years, in the graded bays, Olsen P, Colwell P and P sorption decreased and water extractable P and P sorption saturation increased, while Olsen P and Colwell P decreased in the established bays. After 3 years, total dissolved P (TDP) concentrations in soil water were greater in the established bays, but dissolved reactive P (DRP) concentrations were unaffected. Organic P in soil water comprised 70 and 32% of TDP in the established and graded bays, respectively. The soil water analyses were reflected in surface run‐off. After 3 years, laser grading decreased TDP, TDN, TP and TN exports in wetting front run‐off by 40, 29, 41 and 36%, respectively, compared with established bays. This is an important result for the management of dairy systems as it suggests that the regular cultivation used to renovate pasture on more intensive dairy farms decreases the exports of P and N.  相似文献   

18.
对粤西某硫酸厂周边农田的农作物及其种植土壤中重金属Tl的含量分布、潜在生态风险进行了探讨。结果表明,硫酸厂周边农作物及其种植土壤均受到了Tl污染,其中作物种植土壤中Tl的含量变化范围为3.76~7.24mg·kg^-1,表现出中度以上的Tl污染和较高程度的潜在生态风险;Tl在6种不同农作物中的含量变化范围为20.69~176.7mg·kg^-1,表现出明显的生物富集效应。其中番薯中Tl的富集系数最大,为26.9;油麦菜中Tl的富集系数最小,为4.11。农作物中Tl的健康风险评价表明,在硫酸厂周边农田种植的作物中除毛豆外,其余的农作物可食用部分中Tl的危险商(HQ)值均大于1.0,食用这些农作物将可能对人体产生健康风险,应当引起足够的重视。  相似文献   

19.
Abstract

P status of soils derived from volcanic ash in Guatemala was investigated. Growth chamber and greenhouse studies were conducted with H‐3 hybrid corn (Zea mays). All plants exhibited P deficiency symptoms and yielded less dry matter when they were grown on soils that received only lime at a rate equivalent to 2,240 and 4,480 kg/ha. The P content of plants was low and correlated with P deficiency symptoms. Application of P (336 and 672 kg/ha) under constant liming corrected the P deficiencies and increased dry matter. In comparative studies, plants grown on a highly fertile, non‐volcanic soil showed vigorous growth and yielded high dry matter. Apparently, P was limiting productivity in volcanic ash soils of Guatemala, and due to low exchangeable Al, addition of only lime did not produce beneficial results. The soils responded to P fertilization and they should be supplied large quantities of this macronutrient.  相似文献   

20.
Canola (oil seed rape, Brassica napus L.) is now a major crop grown on the predominantly sandy soils in southwestern Australia and knowledge about the phosphorus (P) requirements of the crop in the region is limited. The results of 22 experiments done in the region are reported to determine the relationships between absolute seed (grain) yield response to applied P and (1) soil test P (Colwell sodium bicarbonate procedure) and (2) concentration of P measured in dried shoots at the rosette growth stage. Large grain yield responses to applied P occurred when Colwell soil test P values for the top 10 cm of soil were < 20 mg/kg soil and when concentrations of P in dried shoots were < 3.6 g/kg. The fertilizer P requirements for optimal economic return for canola grain production in the region varied from 10–35 kg P/ha. The 9 different canola cultivars used in the experiments from 1987–2005 had no major effect on the relationship between absolute grain yield response to applied P and soil test P. Application of fertilizer P mostly had no significant effects on either oil or protein concentrations in grain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号