首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optical sensors, coupled with mathematical algorithms, have proven effective at determining more accurate mid-season nitrogen (N) fertilizer recommendations in winter wheat. One parameter required in making these recommendations is in-season grain yield potential at the time of sensing. Four algorithms, with different methods for determining grain yield potential, were evaluated for effectiveness to predict final grain yield and the agronomic optimum N rate (AONR) at 34 site-years. The current N fertilizer optimization algorithm (CNFOA) outperformed the other three algorithms at predicting yield potential with no added N and yield potential with added N (R2 = 0.46 and 0.25, respectively). However, no differences were observed in the amount of variability accounted for among all four algorithms in regards to predicting the AONR. Differences were observed in that the CNFOA and proposed N fertilizer optimization algorithm (PNFOA), under predicted the AONR at approximately 75 % of the site-years; whereas, the generalized algorithm (GA) and modified generalized algorithm (MGA) recommended N rates under the AONR at about 50 % of the site-years. The PNFOA was able to determine N rate recommendations within 20 kg N ha?1 of the AONR for half of the site-years; whereas, the other three algorithms were only able recommend within 20 kg N ha?1 of the AONR for about 40 % of the site-years. Lastly, all four algorithms reported more accurate N rate recommendations compared to non-sensor based methodologies and can more precisely account for the year to year variability in grain yields due to environment.  相似文献   

2.
Active canopy sensor (ACS)—based precision nitrogen (N) management (PNM) is a promising strategy to improve crop N use efficiency (NUE). The GreenSeeker (GS) sensor with two fixed bands has been applied to improve winter wheat (Triticum aestivum L.) N management in North China Plain (NCP). The Crop Circle (CC) ACS-470 active sensor is user configurable with three wavebands. The objective of this study was to develop a CC ACS-470 sensor-based PNM strategy for winter wheat in NCP and compare it with GS sensor-based N management strategy, soil Nmin test-based in-season N management strategy and conventional farmer’s practice. Four site-years of field N rate experiments were conducted from 2009 to 2013 to identify optimum CC vegetation indices for estimating early season winter wheat plant N uptake (PNU) and grain yield in Quzhou Experiment Station of China Agricultural University located in Hebei province of NCP. Another nine on-farm experiments were conducted at three different villages in Quzhou County in 2012/2013 to evaluate the performance of the developed N management strategy. The results indicated that the CC ACS-470 sensor could significantly improve estimation of early season PNU (R2 = 0.78) and grain yield (R2 = 0.62) of winter wheat over GS sensor (R2 = 0.60 and 0.33, respectively). All three in-season N management strategies achieved similar grain yield as compared with farmer’s practice. The three PNM strategies all significantly reduced N application rates and increased N partial factor productivity (PFP) by an average of 61–67 %. It is concluded that the CC sensor can improve estimation of early season winter wheat PNU and grain yield as compared to the GS sensor, but the PNM strategies based on these two sensors perform equally well for improving winter wheat NUE in NCP. More studies are needed to further develop and evaluate these active sensor-based PNM strategies under more diverse on-farm conditions.  相似文献   

3.
In-season site-specific nitrogen (N) management is a promising strategy to improve crop N use efficiency and reduce risks of environmental contamination. To successfully implement such precision management strategies, it is important to accurately estimate yield potential without additional topdressing N application (YP0) as well as precisely assess the responsiveness to additional N application (RI) during the growing season. Previous research has mainly used normalized difference vegetation index (NDVI) or ratio vegetation index (RVI) obtained from GreenSeeker active crop canopy sensor with two fixed bands in red and near-infrared (NIR) spectrums to estimate these two parameters. The development of three-band Crop Circle active sensor provides a potential to improve in-season estimation of YP0 and RI. The objectives of this study were twofold: (1) identify important vegetation indices obtained from Crop Circle ACS-470 sensor for estimating rice YP0 and RI; and (2) evaluate their potential improvements over GreenSeeker NDVI and RVI. Four site-years of field N rate experiments were conducted in 2012 and 2013 at the Jiansanjiang Experiment Station of China Agricultural University located in Northeast China. The GreenSeeker and Crop Circle ACS-470 active canopy sensor with green, red edge, and NIR bands were used to collect rice canopy reflectance data at different key growth stages. The results indicated that both the GreenSeeker (best R2 = 0.66 and 0.70, respectively) and Crop Circle (best R2 = 0.71 and 0.77, respectively) sensors worked well for estimating YP0 and RI at the stem elongation stage. At the booting stage, Crop Circle red edge optimized soil adjusted vegetation index (REOSAVI, R2 = 0.82) and green ratio vegetation index (R2 = 0.73) explained 26 and 22 % more variability in YP0 and RI, respectively, than GreenSeeker NDVI or RVI. At the heading stage, the GreenSeeker sensor indices became saturated and consequently could not be used for YP0 or RI estimation, while Crop Circle REOSAVI and normalized green index could still explain more than 70 % of YP0 and RI variability. It is concluded that both sensors performed similarly at the stem elongation stage, but significantly better results were obtained by the Crop Circle sensor at the booting and heading stages. Furthermore, the results revealed that Crop Circle green band-based vegetation indices performed well for RI estimation while the red edge-based vegetation indices were the best for estimating YP0 at later growth stages.  相似文献   

4.
Previous studies have shown the importance of soil moisture (SM) in estimating crop yield potential (YP). The sensor based nitrogen (N) rate calculator (SBNRC) developed by Oklahoma State University utilizes the Normalized Difference Vegetation Index (NDVI) and the in-season estimated yield (INSEY) as the estimate of biomass to assess YP and to generate N recommendations based on estimated crop need. The objective was to investigate whether including the SM parameter into SBNRC could help to increase the accuracy of YP prediction and improve N rate recommendations. Two experimental sites (Lahoma and Perkins) in Oklahoma were established in 2006/07 and 2007/08. Wheat spectral reflectance was measured using a GreenSeeker? 505 hand-held optical sensor (N-Tech Industries, Ukiah, CA). Soil–water content measured with matric potential 229-L sensors (Campbell Scientific, Logan, UT) was used to determine volumetric water content and fractional water index. The relationships between NDVI, INSEY and SM indices at planting and sensing at 5, 25, 60 and 75-cm depths versus grain yield (GY) were evaluated. Wheat GY, NDVI at Feekes 5 and soil WC at planting and as sensed at three depths were also analyzed for eight consecutive growing seasons (1999–2006) for Lahoma. Incorporation of SM into NDVI and INSEY calculations resulted in equally good prediction of wheat GY for all site-years. This indicates that NDVI alone was able to account for the lack of SM information and thus lower crop YP. Soil moisture data, especially at the time of sensing at the 5-cm depth could assist in refining winter wheat YP prediction.  相似文献   

5.
6.
Researchers from Colorado State University, in collaboration with scientists from the United States Department of Agriculture (USDA), initiated a long-term multi-disciplinary study in precision agriculture in 1997. Site-specific management zones (SSMZ) were investigated as a means of improving nitrogen management in irrigated maize cropping systems. The objective was to develop precise nutrient management strategies for semi-arid irrigated cropping systems. This study was conducted in five fields in northeastern Colorado, USA. Two techniques for delineating management zones were developed and compared: SSMZ and yield-based management zones (YBMZ). Nitrogen uptake and grain yield differences among SSMZs were compared as were soil properties. Both management zone techniques were used to divide fields into smaller units that were different with regard to productivity potential (e.g., high zones had high productivity potential while low zones had low productivity potential). Economic analysis was also performed. Based on grain yield productivity, the SSMZs performed better than the YBMZ technique in most cases. Grain yield and N uptake between the low and high productivity management zones were statistically different for most site-years and N fertilizer rates (p < 0.05). Soil properties helped to explain the productivity potential of the management zones. The low SSMZ was markedly different from the high SSMZ based on bulk density, organic carbon, sand, silt, porosity and soil moisture. Net returns ranged from 188 to 679 USD ha?1. In two out of three site-years the variable yield goal strategy resulted in the largest net returns. In this study, the SSMZ approach delineates areas of different productivity accurately across the agricultural fields. The SSMZs are different with regard to soil properties as well as grain yield and N uptake. Site-specific management zones are an inexpensive and pragmatic approach to precise N management in irrigated maize.  相似文献   

7.
8.
Identification of areas with similar restrictions to crop productivity could improve the efficiency to manage agricultural systems, guarantee stable yields, and reduce the effect of droughts in rainfed systems. The ability of any vegetation index to discriminate N and moisture-related changes in leaf reflectance would present an important advantage over the present diagnostic system which involves soil-testing for moisture and available N. The purpose of the study was to calibrate different vegetation indices regarding their capacity to identify water and nitrogen availability for rainfed corn crops in the semiarid Pampas of Argentina. A field experiment with corn with a control without fertilization (N0), and fertilized with 120 kg ha?1 of nitrogen (N120) was used. Two sites, Low (L) and High (H), were identified within the field, according to their altimetry, a multi-spectral aerial photography was taken from a manned airplane during flowering stage of the corn crop, and four spectral indices were calculated (NDVI, green NDVI, NGRDI, (NIR/GREEN)-1). At six georeferenced points at each site soil texture, organic matter, available phosphorus, nitrogen and moisture contents as well as corn aerial biomass and grain yield were determined. The two sites differed in most of the evaluated soil properties, crop biomass and grain yield. The spectral information obtained at crop flowering showed clear differences between sites H and L for all four indices, indicating that any of these would be able to detect the differences in soil moisture and fertility among these environments. Both (NIR/GREEN)-1 and green NDVI had the best correlation with crop yield determined in the field, and therefore could be considered most appropriate for estimating corn yields from images taken at flowering. For estimation of N requirements, green NDVI differentiated best between fertilized and non-fertilized crop in the moisture limited environment (H), while (NIR/GREEN)-1 performed better in the site where soil moisture was non-limiting (L).  相似文献   

9.
Crop yield variations are strongly influenced by the spatial and temporal availabilities of water and nitrogen in the soil during the crop growth season. To estimate the quantities and distributions of water and nitrogen within a given soil, process-oriented soil models have often been used. These models require detailed information about the soil characteristics and profile architecture (e.g., soil depth, clay content, bulk density, field capacity and wilting point), but high resolution information about these soil properties, both vertically and laterally, is difficult to obtain through conventional approaches. However, on-the-go electrical resistivity tomography (ERT) measurements of the soil and data inversion tools have recently improved the lateral resolutions of the vertically distributed measurable information. Using these techniques, nearly 19,000 virtual soil profiles with defined layer depths were successfully created for a 30 ha silty cropped soil over loamy and sandy substrates in Central Germany, which were used to initialise the CArbon and Nitrogen DYnamics (CANDY) model. The soil clay content was derived from the electrical resistivity (ER) and the collected soil samples using a simple linear regression approach (the mean R2 of clay = 0.39). The additional required structural and hydrological properties were derived from pedotransfer functions. The modelling results, derived soil texture distributions and original ER data were compared with the spatial winter wheat yield distribution in a relatively dry year using regression and boundary line analysis. The yield variation was best explained by the simulated soil water content (R2 = 0.18) during the grain filling and was additionally validated by the measured soil water content with a root mean square error (RMSE) of 7.5 Vol%.  相似文献   

10.
The objective of this study was to investigate the inaccuracy of a capacitance moisture sensor mounted on a combine harvester based on the datasets of six consecutive years. Variation of sensed volume is a major cause of measurement error for a capacitive sensor. The percentage of the sensed volume occupied by grain changes continuously by filling and emptying of the grain bin, which causes a large fluctuation in sensor output during on-the-go moisture sensing. At the beginning of the bin filling process when the grain bin is empty, under-measures were recorded and when it is approximately 60 % full, large over-measures are observed compared to the actual moisture values. This effect mainly influences the precision of the recorded site-specific moisture values and causes inaccurate yield maps. To assess the effect of varying sensed volume content during harvest operation, a bin level transmitter sensor was mounted on the top of the grain bin to continuously measure the height of the grain. A clear correlation between the actual amount of material (available space) in the grain bin to the bias from the standard moisture was demonstrated. The coefficient of determination was R2 = 0.86 for corn (Zea mays L.) and R2 = 0.87 for winter wheat (Triticum aestivum L.). By using equations generated from the datasets of consecutive years (2008, 2009 and 2010), an effective post-correction method for the recorded data is proposed.  相似文献   

11.
Information on crop height, crop growth and biomass distribution is important for crop management and environmental modelling. For the determination of these parameters, terrestrial laser scanning in combination with real-time kinematic GPS (RTK–GPS) measurements was conducted in a multi-temporal approach in two consecutive years within a single field. Therefore, a time-of-flight laser scanner was mounted on a tripod. For georeferencing of the point clouds, all eight to nine positions of the laser scanner and several reflective targets were measured by RTK–GPS. The surveys were carried out three to four times during the growing periods of 2008 (sugar-beet) and 2009 (mainly winter barley). Crop surface models were established for every survey date with a horizontal resolution of 1 m, which can be used to derive maps of plant height and plant growth. The detected crop heights were consistent with observations from panoramic images and manual measurements (R2 = 0.53, RMSE = 0.1 m). Topographic and soil parameters were used for statistical analysis of the detected variability of crop height and significant correlations were found. Regression analysis (R2 < 0.31) emphasized the uncertainty of basic relations between the selected parameters and crop height variability within one field. Likewise, these patterns compared with the normalized difference vegetation index (NDVI) derived from satellite imagery show only minor significant correlations (r < 0.44).  相似文献   

12.
Variable-rate application (VRA) addresses in-field variation in soil nitrogen (N) availability and crop response, and as such is a tool for more effective site-specific management. This study assessed the performance of a VRA system for on-the-go delivery of granular fertilizer in 7-m wide and 200-m long strips of a 2.4-ha wheat field. A randomized complete block design consisted of three treatment strips (a preplant uniform application of 100 kg N/ha, a preplant + in-season uniform farmer rate of 212 kg N/ha and a preplant + in-season VRA) within four blocks. The VRA prototype consisted of Crop Circle ACS-430 active canopy sensors, a GeoScout X data logger that processed the geospatial data to convey a real-time N rate signal (1 Hz) to a Gandy Orbit Air 66FSC spreader through a Raven SCS 660 controller. Crop monitoring included analysis of in-season soil and plant samples, water balance and grain yield. VRA delivered an economic optimum N rate using 72% less in-season N or 38% less total N (131 kg N/ha) than that applied by the farmer (212 kg N/ha). The reduction of total N inputs came about without any yield losses and translated to 58% N-use efficiency in comparison to 44% of the farmer practice and 52% of the preplant control. VRA also provided a much higher revenue over fertilizer costs, €68/ha and €118/ha higher than the preplant control and the farmer practice, respectively. The return of VRA per unit of N was equal to that of the large preplant application due to low leaching losses. Overall, the high-resolution VRA was superior in terms of environmental benefits and profitability with the least uncertainty to the farmer.  相似文献   

13.
Precision viticulture aims at managing vineyards at a sub-field scale according to the real needs of each part of the field. The current study focused on delineating management zones using fuzzy clustering techniques and developing a simplified approach for the comparison of zone maps. The study was carried out in a 1.0 ha commercial vineyard in Central Greece during 2009 and 2010. Variation of soil properties across the field was initially measured by means of electrical conductivity, soil depth and topography. To estimate grapevine canopy properties, NDVI was measured at different stages during the vine growth cycle. Yield and grape composition (must sugar content and total acidity) mapping was carried out at harvest. Soil properties, yield and grape composition parameters showed high spatial variability. All measured data were transformed on a 48-cell grid (10 × 20 m) and maps of two management zones were produced using the MZA software. Pixel-by-pixel comparison between maps of electrical conductivity, elevation, slope, soil depth and NDVI with yield and grape composition maps, set as reference parameters, allowed for the calculation of the degree of agreement, i.e. the percentage of pixels belonging to the same zone. The degree of agreement was used to select the best-suited parameters for final management zones delineation. For the year 2009 soil depth, early and mid season NDVI were used for yield-based management zones while for quality-based management zones ECa, early and mid season NDVI were utilized. For the year 2010 ECa, elevation and NDVI acquired during flowering and veraison were used for the delineation of yield-based management zones while for quality-based management zones ECa and NDVI acquired during flowering and harvest were utilized. Results presented here could be the basis for simple management zone delineation and subsequent improved vineyard management.  相似文献   

14.
The objective of this study was to compare performance of partial least square regression (PLSR) and best narrowband normalize nitrogen vegetation index (NNVI) linear regression models for predicting N concentration and best narrowband normalize different vegetation index (NDVI) for end of season biomass yield in bioenergy crop production systems. Canopy hyperspectral data was collected using an ASD FieldSpec FR spectroradiometer (350–2500 nm) at monthly intervals in 2012 and 2013. The cropping systems evaluated in the study were perennial grass {mixed grass [50 % switchgrass (Panicum virgatum L.), 25 % Indian grass “Cheyenne” (Sorghastrum nutans (L.) Nash) and 25 % big bluestem “Kaw” (Andropogon gerardii Vitman)] and switchgrass “Alamo”} and high biomass sorghum “Blade 5200” (Sorghum bicolor (L.) Moench) grown under variable N applications rates to estimate biomass yield and quality. The NNVI was computed with the wavebands pair of 400 and 510 nm for the high biomass sorghum and 1500 and 2260 nm for the perennial grass that were strongly correlated to N concentration for both years. Wavebands used in computing best narrowband NDVI were highly variable, but the wavebands from the red edge region (710–740 nm) provided the best correlation. Narrowband NDVI was weakly correlated with final biomass yield of perennial grass (r2 = 0.30 and RMSE = 1.6 Mg ha?1 in 2012 and r2 = 0.37 and RMSE = 4.0 Mg ha?1, but was strongly correlated for the high biomass sorghum in 2013 (r2 = 0.72 and RMSE = 4.6 Mg ha?1). Compared to the best narrowband VI, the RMSE of the PLSR model was 19–41 % lower for estimating N concentration and 4.2–100 % lower for final biomass. These results indicates that PLSR might be best for predicting the final biomass yield using spectral sample obtained in June to July, but narrowband NNVI was more robust and useful in predicting N concentration.  相似文献   

15.
Three consecutive crops of malting barley grown during 2002–2004 on clay-loam on a Swedish farm (59°74’ N, 17°00’ E) were monitored for canopy reflectance at growth stages GS32 (second node detectable) and GS69 (anthesis complete), and the crops were sampled for above ground dry matter and nitrogen content. GPS-positioned unfertilised plots were established and used for soil sampling. At harvest, plots of 0.25 m2 were cut in both fertilised and unfertilised plots, and 24 m2 areas were also harvested from fertilised barley. The correlations between nine different vegetation indices (VIs) from each growth stage and yield and grain protein were tested. All indices were significantly correlated (at 5% level) with grain yield (GY), and protein when sampled at GS69 but only four when sampled at GS32. Three variables (the best-correlated vegetation index sampled at GS32; an index for accumulated elevated daily maximum temperatures for the grain filling period, and normalised apparent electrical conductivity (ECa) of the soil) were sufficient input in the final regressions. Using these three variables, it was possible to make either one multivariate (PLS) regression model or two linear multiple regression models for grain yield (GY) and grain protein, with correlation coefficients of 0.90 and 0.73 for yield and protein, respectively.  相似文献   

16.
The general objective of this study was to evaluate the stability of patterns of apparent soil electrical conductivity (ECa) in dry versus wet soil conditions in a shallow soil typically used for pastures in Mediterranean conditions of the southern region of Portugal. A 6 ha experimental field of permanent bio-diverse pasture was divided into 76 squares of 28 × 28 m. The soil electrical conductivity was measured using a Dualem 1S sensor under dry conditions (June 2007) and under wet conditions during the rainy season (March 2010). Soil samples, geo-referenced with GPS, were collected in a depth range of 0–0.30 m. The soil was characterized in terms of bedrock depth, moisture content, texture, pH, organic matter content, and macronutrients (nitrogen, phosphorus, and potassium). Pasture samples, also geo-referenced with GPS, were collected to measure the pasture dry matter yield. The statistical analysis of apparent electrical conductivity between dry and wet soil conditions resulted in a linear significant correlation coefficient (R = 0.88). The results also showed a significant correlation between apparent electrical conductivity and the relative field elevation (R = ?0.64 and R = ?0.66), the pasture dry matter yield (R = 0.42 and R = 0.48), the bedrock depth (R = 0.40 and R = 0.27), the pH (R = 0.50 and R = 0.49), the silt (R = 0.27 and R = 0.38) and soil moisture content (R = 0.48 and R = 0.45), in dry and wet conditions, respectively. A multi-variate regression was carried out using the following soil parameters that showed significant correlation with ECa and that did not present multi-collinearity: pH, bedrock depth, silt and moisture content. The results showed, in dry and wet conditions, that the analysis was significant (R = 0.75 and R = 0.84, respectively). Overall, these results indicate the temporal stability of ECa patterns under different soil moisture contents, which is relevant with respect to the time when a field should be surveyed and is important for using the electrical conductivity sensor, as a decision support tool for management zones in precision agriculture.  相似文献   

17.
Advances in precision agriculture technology have led to the development of ground-based active remote sensors that can determine normalized difference vegetation index (NDVI). Studies have shown that NDVI is highly related to leaf nitrogen (N) content in maize (Zea mays L.). Remotely sensed NDVI can provide valuable information regarding in-field N variability and significant relationships between sensor NDVI and maize grain yield have been reported. While numerous studies have been conducted using active sensors, none have focused on the comparative effectiveness of these sensors in maize under semi-arid irrigated field conditions. Therefore, the objectives of this study were (1) to determine the performance of two active remote sensors by determining each sensor’s NDVI relationship with maize N status and grain yield as driven by different N rates in a semi-arid irrigated environment and, (2) to determine if inclusion of ancillary soil or plant data (soil NO3 concentration, leaf N concentration, SPAD chlorophyll and plant height) would affect these relationships. Results indicated that NDVI readings from both sensors had high r 2 values with applied N rate and grain yield at the V12 and V14 maize growth stages. However, no single or multiple regression using soil or plant variables substantially increased the r 2 over using NDVI alone. Overall, both sensors performed well in the determination of N variability in irrigated maize at the V12 and V14 growth stages and either sensor could be an important tool to aid precision N management.  相似文献   

18.
Wild blueberry (Vaccinium angustifolium Ait.) fields in the north east Canada are naturally grown in a course textured thin layer of soil and below this layer is a soilless layer of gravel. The root zone depth of this crop varies from 10 to 15 cm. Investigating the depth to the gravel layer below the course textured soil is advantageous, as it affects the water holding capacity of the root zone. Water and nutrient management are the two primary determinants of crop yield and the amount of leaching. The objective of this study was to estimate the depth to the gravel layer using DualEM-2 instrument. A C++ program written in Visual Studio 2010 was used to develop mathematical models for estimating the depth to the gravel layer from the outputs of DualEM-2 sensor. Two wild blueberry fields were selected in central Nova Scotia, Canada to evaluate the performance of DualEM-2 instrument in estimating the rootzone depth above the gravel layer. The mid points of squares created by grid lines were used as the sampling points at each experimental site. The actual depth to the interface was measured manually at selected grid points (n = 50). The apparent ground conductivity (ECa) values of DualEM-2 were recorded and the depth to the interface was estimated for the same sampling points within the selected fields. The fruit yield samples were also collected from the same grid points to identify the impact of the depth to the gravel layer on crop yield. After calibrations, comprehensive surveys were conducted and the actual and estimated depths to the interface were established. The interpolated maps of fruit yield, and the actual (zin) and estimated (\( {\text{z}}_{\text{in}}^{*} \)) depths to the interface were created in ArcGIS 10 software. Results indicated that the zin was significantly correlated with \( {\text{z}}_{\text{in}}^{*} \) for the North River (R 2 = 0.73; RMSE = 0.27 m) and the Carmel (R 2 = 0.45; RMSE = 0.20 m) sites. Results revealed that the areas with shallow depth to the gravel layer were low yielding, indicating that the variation in the depth to the gravel layer can have an impact on crop productivity. Non-destructive estimations of the depth to the gravel layer can be used to develop erosion control strategies, which will result in an increased crop production.  相似文献   

19.
土壤剖面基础性质差异对农田水氮过程和作物产量的影响   总被引:4,自引:0,他引:4  
【目的】华北平原地区是中国最重要的冬小麦和夏玉米生产基地,不同农田土壤基础性质差异是造成该地区农田生产力空间变异的基本原因。通过研究该地区冲积始成土冬小麦-夏玉米轮作农田土壤剖面性质对水氮过程以及作物产量形成的影响,以期为该地区高产农田的水氮利用与管理提供参考。【方法】选取位于山东省泰安市研究区3块具有不同土壤基础性质且产量存在显著性差异的农田,进行3年田间试验,测定土壤剖面的土壤基本性质,具体包括机械组成、饱和导水率、田间持水量、永久萎蔫点、有机碳、全氮;监测土壤剖面0-160 cm的水分和硝态氮的动态变化以及作物生物量、叶面积指数和产量等。运用根区水质模型(RZWQM)对各农田的水氮过程进行模拟计算。【结果】RZWQM模型在整体上可以很好地模拟2009年10月至2012年9月3年不同基础土壤性质农田水分、无机氮、作物产量、地上部生物量和叶面积动态特征,并计算各农田水氮平衡项。各农田土壤基础性质差异对水氮过程及产量形成的影响具体为:高产农田0-160 cm剖面的最大有效贮水量为223 mm,分别高出中产和低产农田28和56 mm,同时30 cm深度以下土层具有相对较低的饱和导水率。该基础性质差异使得高产农田年均水分损失(地表径流+深层渗漏)仅为150.3 mm,分别低于中产和低产农田5.7和26.4 mm,从而使高产农田作物受到相对低的水分胁迫。高产农田土壤表层土壤有机碳含量较中低产田高,而碳氮比则较低,使得高产农田具有更高的净矿化氮量(较中产和低产农田高52.0和82.6 kg·hm-2),且较低的氮损失(氨挥发+氮淋洗+反硝化作用),较中产和低产农田分别少6.9和10.9 kg·hm-2。高产农田的水分利用效率(WUE)为2.32 kg·m-3,分别较中产和低产农田高12.1%和6.8%,这是因为高产农田受到较低的氮素胁迫。在本研究区不同土壤基础性质农田的氮素利用效率(NUE)差异不显著。【结论】在华北平原冬小麦-夏玉米轮作区,理想的土体构型能够存储更多的有效水,高土壤有机碳含量和低的碳氮比能矿化出更多的无机氮,保障了充足的水氮供应,减缓作物受到的水氮胁迫,从而获得高产。  相似文献   

20.
Identifying corn plant location and/or spacing is important for predicting yield potential and making decisions for in-season nitrogen application rate. In this study, an automatic corn stalk identification system based on a laser line-scan technique was developed to measure stalk locations during corn mid-growth stages. A laser line-scan technique is advantageous in this application because the line-scan data sets taken from various points of view of a plant stalk results in less interference and higher probability of plant recognition. Data were collected for two 10-meter-long corn rows at the growth stages of V8 and V10 using a mobile test platform in 2011. Each potential stalk cluster was identified in a scan and registered with the same stalks in previous scans. The final location of a stalk was the average of the measured locations in all scans. The current system setup with data processing algorithms achieved 24.0 and 10.0 % of mean total errors in plant counting at the V8 and V10 growth stages, respectively. The root-mean-squared error (RMSE) between system measured plant locations and manually measured ones were 2.3 and 2.6 cm at the V8 and V10 growth stages, respectively. The interplant spacing measured by the developed system had a good correlation with the manual measurement with an R 2 of 0.962 and 0.951 for the V8 and V10 growth stages, respectively. This system can be ultimately integrated in a variable-rate-spraying system to improve real-time, high spatial resolution variable-rate nitrogen applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号