首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A field experiment was conducted for two crop cycles during 2003–2005 and 2004–2006 at the Indian Institute of Sugarcane Research, Lucknow in subtropical India. Trichoderma viride and Gluconacetobacter diazotrophicus amended farm yard manure (FYM) increased organic carbon (19.44 Mg ha−1) and available nitrogen (260 kg N ha−1) content of soil from 14.78 Mg ha−1 (OC) and 204 kg N ha−1 observed under farmer's practice (sole N application). Application of bioagents amended FYM improved soil porosity and reduced compaction (bulk density—1.39 Mg m−3 over 1.48 Mg m−3 under farmer's practice). Sugarcane ratoon crop removed the highest amount of nitrogen (N—165.7 kg ha−1), phosphorus (P—24.01 kg ha−1) and potassium (K—200.5 kg ha−1) in the plots receiving FYM with Trichoderma and Gluconacetobacter. Inoculation of FYM with bioagents improved population of ammonifying and nitrifying bacteria in the soil. Phosphorus and potassium uptake of the crop was greatest in the plots receiving FYM, Trichoderma and Gluconacetobacter. Bioagents (Trichoderma and Gluconacetobacter) amended FYM increased ratoon cane (70.2 Mg ha−1) and sugar yields (7.93 Mg ha−1) compared with control (62.3 and 7.06 Mg ha−1 ratoon cane and sugar yields, respectively).  相似文献   

2.
This study provides a comparative assessment of greenhouse gas (GHG) emissions when converting a reclaimed minesoil that was previously under meadow to miscanthus (Miscanthus  × giganteus ) and maize (Zea mays L.) land uses in Ohio, USA. Additionally, effluent from an anaerobic digester at rates of 0, 75, 150, and 225 kg N ha−1 rates was also assessed for C and nutrient fertilization. Results from the study show that land use conversion to maize had the highest net release of GHG equivalent of 6·6 Mg CO2equ ha−1 y−1, on average, across effluent application rates. Under miscanthus land use with no and high effluent application rates, net GHG equivalent on average was 4·3 Mg CO2equ ha−1 y−1, which was larger when compared with that under the meadow land use (1·6 Mg CO2equ ha−1 y−1). Miscanthus land use under medium rates of effluent application had similar net GHG equivalent (7·1 Mg CO2equ ha−1 y−1) to the maize land use. The application of effluent did increase CO2–C and N2O–N emissions; but increases in above‐ground–below‐ground biomass production (1·6 Mg C ha−1) in the meadow land use and C input from effluent retained in the soil in the miscanthus and maize land uses offset most of the effluent‐induced GHG equivalent emissions. Contribution of cumulative N2O–N to GHG equivalent emissions in general was 11% when no effluent was applied and 22% when effluent was applied across land uses. Findings from this study show that land use changes from antecedent meadow to maize and miscanthus during the first year of establishment would result in net increase of GHG emissions. Published 2017. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

3.
A study was carried out on a previously eroded Oxic Paleustalf in Ibadan, southwestern Nigeria to determine the extent of soil degradation under mound tillage with some herbaceous legumes and residue management methods. A series of factorial experiments was carried out on 12 existing runoff plots. The study commenced in 1996 after a 5-year natural fallow. Mound tillage was introduced in 1997 till 1999. The legumes – Vigna unguiculata (cowpea), Mucuna pruriens and Pueraria phaseoloides – were intercropped with maize in 1996 and 1998 while yam was planted alone in 1997 and 1999. This paper covers 1997–1999. At the end of each year, residues were either burned or mulched on respective plots. Soil loss, runoff, variations in mound height, bulk density, soil water retention and sorptivity were measured. Cumulative runoff was similar among interactions of legume and residue management in 1997 (57–151 mm) and 1999 (206–397 mm). However, in 1998, cumulative runoff of 95 mm observed for Mucuna-burned residue was significantly greater than the 46 mm observed for cowpea-burned residue and the 39–51 mm observed for mulched residues of cowpea, Mucuna and Pueraria. Cumulative soil loss of 7.6 Mg ha−1 observed for Mucuna-burned residue in 1997 was significantly greater than those for Pueraria-mulched (0.9 Mg ha−1) and Mucuna-mulched (1.4 Mg ha−1) residues whereas in 1999 it was similar to soil loss from cowpea treatments and Pueraria-burned residue (2.3–5.3 Mg ha−1). There were no significant differences in soil loss in 1998 (1–3.2 Mg ha−1) whereas Mucuna-burned residue had a greater soil loss (28.6 Mg ha−1) than mulched cowpea (6.9 Mg ha−1) and Pueraria (5.4 Mg ha−1). Mound heights (23 cm average) decreased non-linearly with cumulative rainfall. A cumulative rainfall of 500 mm removed 0.3–2.3 cm of soil from mounds in 1997, 3.5–6.9 cm in 1998 and 2.3–4.6 cm in 1999, indicating that (detached but less transported) soil from mounds was far higher than observed soil loss in each year. Soil water retention was improved at potentials ranging from −1 to −1500 kPa by Mucuna-mulched residue compared to the various burned-residue treatments. Also, mound sorptivity at −1 cm water head (14.3 cm h−1/2) was higher than furrow sorptivity (8.5 cm h−1/2), indicating differences in hydraulic characteristics between mound and furrow. Pueraria-mulched residues for mounds had the highest sorptivity of 17.24 cm h−1/2, whereas the least value of 6.96 cm h−1/2 was observed in furrow of Mucuna-burned residue. Pueraria phas eoloides was considered the best option for soil conservation on the previously eroded soil, cultivated with mound tillage.  相似文献   

4.
Distillery effluent, a foul smelling, dark coloured by-product of distillery industries, is usually applied as irrigation water or as an amendment to arable land in some areas which are in the vicinity of the distillery industries. A field experiment on soybean–wheat system was conducted for 3 consecutive years in a Vertisol of central India to evaluate the effect of distillery effluent (DE) as an amendment on soil properties and crop productivity. The treatments were control (no fertilizer or manure or DE, T1), 100% NPK + FYM @ 4 Mg ha−1 to soybean (T2) and four graded levels of DE, viz.: 2.5 cm DE to soybean and wheat on residual nutrition (T3), 2.5 cm DE to soybean and 1.25 cm to wheat (T4), 5 cm DE to soybean and wheat on residual nutrition (T5), 5 cm DE to soybean and 2.5 cm to wheat (T6). The organic carbon, microbial biomass carbon and electrical conductivity (EC) of the surface (0–10 cm) soil increased significantly with application of DE compared to T1 and T2, but the soil pH was not affected. The EC increased from 0.47 dS m−1 and 0.58 dS m−1, respectively, in T1 and T2 to 1.52 dS m−1 in T6, where highest dose of DE was applied. This indicated a slight build-up of salinity with DE application. The application of DE showed a significant improvement in the physical properties of the soil. The mean weight diameter (MWD), saturated hydraulic conductivity, water retention at field capacity and available water content were significantly (P < 0.05) higher, while bulk density (BD) and penetration resistance of the surface soil were significantly lower (P < 0.05) in all DE treated plots except in T3 than those in T1 and T2. The fractions of WSA of more than 1 mm diameter in T6, T5 and T4 were, respectively, 141%, 107% and 116% more than the control. The MWD showed a positive linear relationship with the organic carbon (r = 0.84**) and microbial biomass carbon (r = 0.90**) of the soil. A significant (P < 0.01) negative linear relationship (r = 0.70**) was found between soil organic carbon and BD. Except T3, all the DE treated plots recorded significantly higher total and microporosity of the soil than control. Water retention at permanent wilting point and macroporosity of the soil were not affected by treatment. The seed yield of soybean in all the DE treatments was similar with T2 (1.86 Mg ha−1) but significantly more than control (1.28 Mg ha−1). The DE application levels have not affected the seed yield of soybean. In wheat highest grain yield was recorded in T2 (3.47 Mg ha−1), which was similar with T4 (3.16 Mg ha−1), T5 (3.22 Mg ha−1) and T6 (3.46 Mg ha−1). DE application up to T4 level was found suitable from productivity, salinity and sustainability point of view. The study showed that judicious application of DE as an amendment to the agricultural field could be considered as a viable option for safe disposal of this industrial waste.  相似文献   

5.
Evaluation of carbon dynamics is of great concern worldwide in terms of climate change and soil fertility. However, the annual CO2 flux and the effect of land management on the carbon budget are poorly understood in Sub-Saharan Africa, owing to the relative dearth of data for in situ CO2 fluxes. Here, we evaluated seasonal variations in CO2 efflux rate with hourly climate data in two dry tropical croplands in Tanzania at two sites with contrasting soil textures, viz. clayey or sandy, over four consecutive crop-cultivation periods of 40 months. We then: (1) estimated the annual CO2 flux, and (2) evaluated the effect of land management (control plot, plant residue treatment plot, fertilizer treatment plot, and plant residue and fertilizer treatment plot) on the CO2 flux and soil carbon stock at both sites. Estimated annual CO2 fluxes were 1.0–2.2 and 0.9–1.9 Mg C ha?1 yr?1 for the clayey and sandy sites, respectively. At the end of the experiment, crop cultivation had decreased the surface soil carbon stocks by 2.4 and 3.0 Mg C ha?1 (soil depth 0–15 cm) at the clayey and sandy sites, respectively. On the other hand, plant residue application (7.5 Mg C ha?1 yr?1) significantly increased the surface soil carbon stocks, i.e., 3.5–3.8 and 1.7–2.1 Mg C ha?1 (soil depth 0–15 cm) at the clayey and sandy sites, respectively, while it also increased the annual CO2 fluxes substantially, i.e., 2.5–4.0 and 2.4–3.4 Mg C ha?1 yr?1 for the clayey and sandy soils, respectively. Our results indicate that these dry tropical croplands at least may act as a carbon sink, though the efficiency of carbon accumulation was substantially lower in sandy soil (6.8–8.4%) compared to clayey soil (14.0–15.2%), possibly owing to higher carbon loss by leaching and macro-faunal activity.  相似文献   

6.
Crop residue retention is important for sequestering soil organic carbon (SOC), controlling soil erosion, and improving soil quality. Magnitude of residue management impacts on soil structural properties and SOC sequestration is, however, site specific. This study assessed long-term (10 year) impacts of three levels (0, 8, and 16 Mg ha−1 on a dry matter basis) of wheat (Triticum aestivum L.) straw applied annually on SOC concentration and physical properties of the bulk soil and individual 5- to 8-mm aggregates for the 0- to 50-cm soil depth under no-till (NT) on a Crosby silt loam (fine, mixed, active, mesic Aeric Epiaqualfs) in central Ohio. This study also quantified relationships between soil properties and straw-induced changes in SOC concentration. Changes in soil properties due to straw mulching were mostly confined to the upper 5 cm of the soil. Mulching increased SOC concentration, but it did not significantly change cone index (CI) and shear strength (SHEAR). Within the upper 0–5-cm soil depth, mulching decreased bulk density (ρb) by 40–50%, aggregate density (ρagg) by 30–40%, and particle density (ρs) by 10–15%, and increased tensile strength (TS) of aggregates by up to 14 times as compared to unmulched soil. At the same depth, soil with mulch retained >30% more water than soil without mulch from 0 to −1500 kPa potentials. The SOC amount was 16.0 Mg ha−1 under no straw, 25.3 Mg ha−1 under 8 Mg ha−1 straw, and 33.5 Mg ha−1 under 16 Mg ha−1 straw in the 0- to 10-cm depth. Below 10 cm, differences in SOC pool between mulched and unmulched soil were not significant. Overall, SOC from 0- to 50-cm depth was 82.5 Mg ha−1 for unmulched soil, 94.1 Mg ha−1 for 8 Mg ha−1 mulch, and 104.9 Mg ha−1 for 16 Mg ha−1. About 33% of C added with straw over the 10-year period was sequestered in soil. This means that 2/3 of the wheat straw applied was not converted to SOC and most probably was lost as emissions of CO2 and CH4. The annual rate of total C accrual was 1.2 Mg ha−1 in soil mulched with 8 Mg ha−1 and 2.2 Mg ha−1 in soil mulched with 16 Mg ha−1 of straw in the 0- to 50-cm depth. The percentage of macroaggregates (>5-mm) was six times higher under 8 Mg ha−1 of straw and 12 times higher under 16 Mg ha−1 compared to unmulched treatments. Macroaggregates contained greater SOC than microaggregates in mulched soil. The SOC concentration explained the variability in aggregate properties by as much as 96%. Overall, long-term straw mulching increased SOC concentration and improved near-surface aggregate properties.  相似文献   

7.
Pigeon pea is cultivated by most smallholder crop–livestock farmers mainly as a border crop. It is quite often sparsely intercropped in cereal‐based cropping systems in the subhumid zone of Ghana. Management of pigeon pea and its biomass is a promising means of improving many abandoned arable fields but has not been consciously undertaken. The objective of this trial was to explore the use of pigeon pea and the management of its pruned biomass as part of an improved fallow for crop–livestock farming. Three pigeon‐pea management options and a natural fallow (two‐year fallow period) were compared in terms of maize grain yield and changes in soil organic carbon, total nitrogen and cation exchange capacity. Pigeon pea grain yield ranged between 615 and 678 kg ha−1 and 527 and 573 kg ha−1 in the first and second year of fallow, respectively. In the first year after fallow, maize grain yield ranged between 0·43 and 2·39 t ha−1 and was significantly influenced by the fallow system. There was a marked decrease in maize grain on the pigeon pea fallow plots in the second year, ranging between 50 and 38·6 per cent in Kumayili and between 42·6 and 17·6 per cent in Tingoli. After the two‐year fallow period, increase of soil organic carbon on the pigeon pea fallow plot compared with the natural fallow plot was 30·5 per cent, and there was an improvement of total nitrogen (48·5 per cent) and CEC (17·8 per cent). Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
Abstract. After six years of bush‐fallow, residual effects on soil productivity of tillage practices prior to the fallow were investigated on an Alfisol in south western Nigeria. In 1996 fallow was followed by maize intercropped with cover crops of Pueraria phaseoloides, Mucuna pruriens or cowpea (Vigna unguiculata) and no intercrop. Parameters measured included soil properties, ground cover, crop growth and yield, rainfall erosivity, runoff and soil loss. In spite of six‐years of bush‐fallow and establishment of cover crops, soil erosion was significantly greater on plots that had been conventionally cultivated previously using disc ploughs, harrows and mechanical rotovators (1.78 t ha?1season?1) compared to previously no‐till plots (1.34 t ha?1season?1). Crop growth and yields were least and soil loss greatest (2.83 t ha?1season?1) on the previous bare plot. Maize grain yield was highest using Pueraria phaseoloides as an intercrop (2.15 t ha?1) followed by a cowpea intercrop (1.92 t ha?1), maize without intercrop (1.87 t ha?1) and Mucuna pruriens intercrop (1.71 t ha?1). The maize grain yields reflected levels of competition from the cover crops. Cowpea–maize intercrop may be most suitable for farmers because maize yields were satisfactory and cowpea grain serves as additional subsistence. Cowpea yields were 390 kg ha?1. Soil erosion was also moderate using cowpea as an intercrop (1.71 t ha?1season?1). However, Pueraria phaseoloides gave the best erosion control with a soil loss of 1.34 t ha?1season?1.  相似文献   

9.
ABSTRACT

A study was conducted from 2014 to 2017 in Malawi to elucidate the short-term effects of maize-legume intercropping and rotation systems under conservation agriculture (CA) and conventional tillage (CT) on crop productivity and profitability. Twelve farmers hosted on-farm trials per district, in three districts, with each farmer having six plots. The design of the study was randomised complete block design arranged in a split plot fashion with tillage as main plot and cropping systems as sub-plots, with each farmer acting as a replicate. CA had 1400 and 3200 kg ha?1 more maize grain yield in the second and third seasons, respectively compared with CT. In the first two seasons, CT had 310, 180 and 270 kg ha?1 more cowpea, soybean and pigeon pea grain yields in Salima, Mzimba and Mangochi districts, respectively, compared with CA. Similarly, CA had 1100 and 950 kg ha?1 more groundnut grain yields than CT in Salima and Mzimba districts in the second and third seasons, respectively. Over the three-year study period, partial land equivalent ratio for maize ranged from 0.78 to 1.24. Largest net returns were achieved by intercropping maize with pigeon pea in Mangochi and rotating maize and groundnut in Mzimba and Salima districts.  相似文献   

10.
Abstract

Imbalanced and indiscriminate use of chemical fertilizers has been adversely influencing the quality of soil, environment, biodiversity and nutrient status in soil. Conjoint application of bio-inoculants (BI) with organic or inorganic sources of nutrients tweaks nutrient synchrony in soil and improves plant nutrition. With this backdrop an experiment was conducted at Indian Agricultural Research Institute, New Delhi during 2016–2018. The objectives were to identify the suitable combinations of BI-mediated nutrient sources for higher productivity and profitability in pigeon pea–wheat cropping system (PWCS). The nine pigeon pea treatments; four sole applications viz., recommended dose of fertilizers (RDF), vermicompost (VC), farm yard manure (FYM), leaf compost (LC) and four conjoint applications viz., RDF?+?BI, VC?+?BI, FYM?+?BI and LC?+?BI and one control were replicated thrice under randomized block design (RBD). However, in succeeding wheat, each of the treatments applied to pigeon pea was further allocated to two levels (50% and 100%) in factorial RBD. Findings exhibit that FYM?+?BI could result into higher equivalent-system grain productivity (10.4 and 10.8?t?ha?1 during 1st and 2nd year, respectively) of PWCS. However, profitability parameters of PWCS were higher with the RDF?+?BI. Uptake of nutrients (NPK) was significantly higher with FYM?+?BI in pigeon pea and RDF?+?BI in wheat. Nutrient harvest index (NHI) did not vary significantly in both the crops. Conclusively, bio-inoculation is more productive and beneficial in general, while, over the various combinations, recommendation of FYM?+?BI combination could be more productive and sustainable.  相似文献   

11.
Abstract

A two-year field experiment was conducted to investigate the impact of short crop rotation and organic amendments on rapeseed yield under weed competition conditions. The primary experimental plots consisted of either triticale or pea as a prior crop, consisting of four subplots with either 25 tons of composted cattle manure (CCM), 150?kg urea N ha?1 (N), 25 tons composted cattle manure + 75?kg urea N ha?1 (CCM?+?N), or no urea N or manure added as the control (C0). Rapeseed seed yield was not significantly affected by previous crops, except for rapeseed grown after pea which had slightly higher seed yield (2058?kg ha?1) than those grown after triticale (1942?kg ha?1). Plants that received CCM?+?N produced the highest amount of seed yield (2447?kg ha?1), but were not significantly different from plants that received just urea N (2218?kg ha?1). Weeds gained more biomass when the previous crop was pea compared to those whose previous crop was triticale. Weeds in plots that received CCM?+?N produced the greatest biomass, followed by N, and CCM plots, respectively.  相似文献   

12.
Improved quantification is needed for long‐term soil organic carbon (SOC) transport in runoff at watershed scales. Coshocton wheel samplers were used to collect runoff samples from no‐till and chisel‐till watersheds in corn (Zea mays) and soybean (Glycine max) rotations over 13 years. Samples were analyzed for SOC, N, P, K, and soil losses. The SOC losses, ranging from 0 to 357 kg ha−1 event−1, were correlated (r2 = 0·80–0·94) in power law relationships with N, P, K, soil loss, and runoff. Two events occurring in corn when soybean and cover crop residue were present in no‐till had combined SOC transport of 460 kg ha−1, nearly double the no‐till losses of a previous 11‐year period and 20 times higher than chisel‐till in the same events. Infrequent, extreme transport events that are not well characterized empirically, particularly in no‐till, can strongly influence hydrologic C transport from agriculture watersheds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Sarpagandha (Rauvolfia serpentinaBenth. Ex Kurz.), a natural source of the alkaloid reserpine, is generally found growing under partial shade of deciduous forests in the tropics and subtropics. To promote its commercial cultivation under subtropical environment of the north Indian plains, a field trial was conducted during 2006–2009 to optimize the plant populations (row ratios) of pigeon pea and sarpagandha for higher productivity, land utilization efficiency and economic return in an intercropping system. Intercropping of two rows of sarpagandha with pigeon pea sown at a row distance of 90 cm proved highly beneficial in terms of total production (5.15 t ha?1 grain and 10.27 t ha?1 straw + stalk of pigeon pea and an additional dry root yield of 2.56 t ha?1 of sarpagandha) from a unit area and time. The highest land equivalent ratio, LER (2.21), area time equivalent ratio, ATER (1.76), monetary equivalent ratio, MER (2.0), land-use efficiency, LUE (198%) and net return (Rs. 273,810 ha?1) were obtained for the combination of pigeon pea and sarpagandha in 1:2 row ratio. Integration of two rows of sarpagandha as an intercrop with pigeon pea sown at 90 cm row distance is recommended for sustainable crop production.  相似文献   

14.
Information on N cycling in dryland crops and soils as influenced by long-term tillage and cropping sequence is needed to quantify soil N sequestration, mineralization, and N balance to reduce N fertilization rate and N losses through soil processes. The 21-yr effects of the combinations of tillage and cropping sequences was evaluated on dryland crop grain and biomass (stems + leaves) N, soil surface residue N, soil N fractions, and N balance at the 0–20 cm depth in Dooley sandy loam (fine-loamy, mixed, frigid, Typic Argiboroll) in eastern Montana, USA. Treatments were no-tilled continuous spring wheat (Triticum aestivum L.) (NTCW), spring-tilled continuous spring wheat (STCW), fall- and spring-tilled continuous spring wheat (FSTCW), fall- and spring-tilled spring wheat–barley (Hordeum vulgare L.) (1984–1999) followed by spring wheat–pea (Pisum sativum L.) (2000–2004) (FSTW-B/P), and spring-tilled spring wheat–fallow (STW-F). Nitrogen fractions were soil total N (STN), particulate organic N (PON), microbial biomass N (MBN), potential N mineralization (PNM), NH4-N, and NO3-N. Annualized crop grain and biomass N varied with treatments and years and mean grain and biomass N from 1984 to 2004 were 14.3–21.2 kg N ha−1 greater in NTCW, STCW, FSTCW, and FSTW-B/P than in STW-F. Soil surface residue N was 9.1–15.2 kg N ha−1 greater in other treatments than in STW-F in 2004. The STN at 0–20 cm was 0.39–0.96 Mg N ha−1, PON 0.10–0.30 Mg N ha−1, and PNM 4.6–9.4 kg N ha−1 greater in other treatments than in STW-F. At 0–5 cm, STN, PON, and MBN were greater in STCW than in FSTW-B/P and STW-F. At 5–20 cm, STN and PON were greater in NTCW and STCW than in STW-F, PNM and MBN were greater in STCW than in NTCW and STW-F, and NO3-N was greater in FSTW-B/P than in NTCW and FSTCW. Estimated N loss through leaching, volatilization, or denitrification at 0–20 cm depth increased with increasing tillage frequency or greater with fallow than with continuous cropping and ranged from 9 kg N ha−1 yr−1 in NTCW to 46 kg N ha−1 yr−1 in STW-F. Long-term no-till or spring till with continuous cropping increased dryland crop grain and biomass N, soil surface residue N, N storage, and potential N mineralization, and reduced N loss compared with the conventional system, such as STW-F, at the surface 20 cm layer. Greater tillage frequency, followed by pea inclusion in the last 5 out of 21 yr in FSTW-B/P, however, increased N availability at the subsurface layer in 2004.  相似文献   

15.
High population pressure in the central highlands of Kenya has led to continuous cultivation of land with minimal additional inputs leading to soil nutrient depletion. Research work has reported positive results from use of manure and biomass from Tithonia, Calliandra, Leucaena, Mucuna and Crotolaria for soil fertility replenishment. An experimental field was set up in Chuka Division to test different soil nutrient replenishment treatments. The experimental design was randomised complete block with 14 treatments replicated three times. At the beginning and end of the experiment, soil was sampled at 0–15 cm depth and analysed for pH, Ca, Mg, K, C, N and P. End of the 2000/2001 short rains (SR) season and 2001 long rains (LR) season, soil samples were taken at 0–30, 30–100 and 100–150 cm for nitrate and ammonium analysis. All the treatments received an equivalent of 60 kg N ha−1, except herbaceous legume treatments, where N was determined by the amount of the biomass harvested and incorporated in soil and control treatment received no inputs. Results indicate soil fertility increased slightly in all treatments (except control) over the 2-year study period. Average maize grain yield across the treatments was 1.1, 5.4, 3.5 and 4.0 Mg ha−1 during the 2000 LR, 2000/2001 SR, 2001 LR and 2001/2002 SR, respectively. The reduced yield in 2000 LR and 2001 LR are attributed to poor rainfall distribution during the two seasons. On average, Tithonia with half recommended rate of inorganic fertilizer recorded the highest (4.8 Mg ha−1) maize yield followed by sole Tithonia (4.7 Mg ha−1). Highest average concentration (144.8 and 115.5 kg N ha−1) of mineral N was recorded at the 30–100 cm soil depth at the end of both 2000/2001 SR and LR, respectively. The lowest average concentration (67.1 kg N ha−1) was recorded in the 100–150 cm soil depth in both seasons, while during the 2001 LR, the 0–30 cm soil depth recorded the lowest concentration (52.3 kg N ha−1). The residual mineral N in the 100–150 cm soil depth doubled at the end of the LR 2001 compared to what was present and the end of the SR 2000/2001 season in all treatments. This shows that there is substantial amount of mineral N that is being leached below the rooting zone of maize in this region.  相似文献   

16.
This study aimed at investigating the effects of agricultural exploitation on desert soil organic C, N and P, and soil aggregation. Four land uses were assessed: (1) 5-year wheat (Triticum aestivum L.)/barley (Hordeum vulgare L.) + 5-year maize (Zea mays L.); (2) 5-year wheat/barley + 5-year alfalfa (Medicago sativa L.); (3) 6-year wheat/barley + 4-year acacia (Robinia pseudoacacia L.) and (4) uncultivated desert soil. The desert soil contained total organic C (TOC) of 3.1, 3.7 and 4.2 g kg−1 and particulate organic C (POC) of 0.6, 0.7 and 0.8 g kg−1 at 0–10, 10–20 and 20–30 cm depths, respectively. The soil TOC concentration was increased by 32–68% under wheat–maize rotation and by 27–136% under wheat–acacia at 0–20 cm depth, and by 48% under wheat–alfalfa only at 0–10 cm depth. This contrasted with an increase in the soil POC concentration by 143–167% at depth 0–20 cm under wheat–maize and by 217%, 550% at depth 0–10 cm under wheat–alfalfa and wheat–acacia, respectively. The desert soil had 13 Mg ha−1 TOC stock and 2 Mg ha−1 POC stock at depth 0–30 cm, whereas crop rotations increased the soil TOC stock by 30–65% and POC stock by 200–350%. Over the 10-year period, the rates of TOC accumulation were 0.6, 0.3, 0.8 Mg ha−1 year−1 and the rates of POC accumulation were 0.4, 0.4 and 0.7 Mg ha−1 year−1 under wheat–maize, wheat–alfalfa and wheat–acacia rotations, respectively. At 0–30 cm depth, total soil N was increased by 61–64% under wheat–maize and wheat–acacia, but total soil P was reduced by 38% under wheat–alfalfa. A significant improvement in clay stability but not in aggregate water-stability was observed in cultivated soils. The results showed a significant increase in soil organic C pool but unimproved macro-aggregation of the desert soil after 10 years of cultivation.  相似文献   

17.
Mineral N accumulates in autumn under pastures in southeastern Australia and is at risk of leaching as nitrate during winter. Nitrate leaching loss and soil mineral N concentrations were measured under pastures grazed by sheep on a duplex (texture contrast) soil in southern New South Wales from 1994 to 1996. Legume (Trifolium subterraneum)‐based pastures contained either annual grass (Lolium rigidum) or perennial grasses (Phalaris aquatica and Dactylis glomerata), and had a control (soil pH 4.1 in 0.01 m CaCl2) or lime treatment (pH 5.5). One of the four replicates was monitored for surface runoff and subsurface flow (the top of the B horizon), and solution NO3 concentrations. The soil contained more mineral N in autumn (64–133 kg N ha?1 to 120 cm) than in spring (51–96 kg N ha?1), with NO3 comprising 70–77%. No NO3 leached in 1994 (475 mm rainfall). In 1995 (697 mm rainfall) and 1996 (666 mm rainfall), the solution at 20 cm depth and subsurface flow contained 20–50 mg N l?1 as NO3 initially but < 1 mg N l?1 by spring. Nitrate‐N concentrations at 120 cm ranged between 2 and 22 mg N l?1 during winter. Losses of NO3 were small in surface runoff (0–2 kg N ha?1 year?1). In 1995, 9–19 kg N ha?1 was lost in subsurface flow. Deep drainage losses were 3–12 kg N ha?1 in 1995 and 4–10 kg N ha?1 in 1996, with the most loss occurring under limed annual pasture. Averaged over 3 years, N losses were 9 and 15 kg N ha?1 year?1 under control and limed annual pastures, respectively, and 6 and 8 kg N ha?1 year?1 under control and limed perennial pastures. Nitrate losses in the wet year of 1995 were 22, 33, 13 and 19 kg N ha?1 under the four respective pastures. The increased loss of N caused by liming was of a similar amount to the decreased N loss by maintaining perennial pasture as distinct from an annual pasture.  相似文献   

18.
Abstract. In dairy farming systems the risk of nitrate leaching is increased by mixed rotations (pasture/arable) and the use of organic manure. We investigated the effect of four organic farming systems with different livestock densities and different types of organic manure on crop yields, nitrate leaching and N balance in an organic dairy/crop rotation (barley–grass-clover–grass-clover–barley/pea–winter wheat–fodder beet) from 1994 to 1998. Nitrate concentrations in soil water extracted by ceramic suction cups ranged from below 1 mg NO3-N l?1 in 1st year grass-clover to 20–50 mg NO3-N l?1 in the winter following barley/pea and winter wheat. Peaks of high nitrate concentrations were observed in 2nd year grass-clover, probably due to urination by grazing cattle. Nitrate leaching was affected by climatic conditions (drainage volume), livestock density and time since ploughing in of grass-clover. No difference in nitrate leaching was observed between the use of slurry alone and farmyard manure from deep litter housing in combination with slurry. Increasing the total-N input to the rotation by 40 kg N ha?1 year?1 (from 0.9 to 1.4 livestock units ha?1) only increased leaching by 6 kg NO3-N ha?1. Nitrate leaching was highest in the second winter (after winter wheat) following ploughing in of the grass-clover (61 kg NO3-N ha?1). Leaching losses were lowest in 1st year grass-clover (20 kg NO3-N ha?1). Averaged over the four years, nitrate concentration in drainage water was 57 mg l?1. Minimizing leaching losses requires improved utilization of organic N accumulated in grazed grass-clover pastures. The N balance for the crop rotation as a whole indicated that accumulation of N in soil organic matter in the fields of these systems was small.  相似文献   

19.
Soil organic matter (SOM) contributes to the productivity and physical properties of soils. Although crop productivity is sustained mainly through the application of organic manure in the Indian Himalayas, no information is available on the effects of long-term manure addition along with mineral fertilizers on C sequestration and the contribution of total C input towards soil organic C (SOC) storage. We analyzed results of a long-term experiment, initiated in 1973 on a sandy loam soil under rainfed conditions to determine the influence of different combinations of NPK fertilizer and fertilizer + farmyard manure (FYM) at 10 Mg ha−1 on SOC content and its changes in the 0–45 cm soil depth. Concentration of SOC increased 40 and 70% in the NPK + FYM-treated plots as compared to NPK (43.1 Mg C ha−1) and unfertilized control plots (35.5 Mg C ha−1), respectively. Average annual contribution of C input from soybean (Glycine max (L.) Merr.) was 29% and that from wheat (Triticum aestivum L. Emend. Flori and Paol) was 24% of the harvestable above-ground biomass yield. Annual gross C input and annual rate of total SOC enrichment were 4852 and 900 kg C ha−1, respectively, for the plots under NPK + FYM. It was estimated that 19% of the gross C input contributed towards the increase in SOC content. C loss from native SOM during 30 years averaged 61 kg C ha−1 yr−1. The estimated quantity of biomass C required to maintain equilibrium SOM content was 321 kg ha−1 yr−1. The total annual C input by the soybean–wheat rotation in the plots under unfertilized control was 890 kg ha−1 yr−1. Thus, increase in SOC concentration under long-term (30 years) rainfed soybean–wheat cropping was due to the fact that annual C input by the system was higher than the required amount to maintaining equilibrium SOM content.  相似文献   

20.
Studies on N balance due to N inputs and outputs and soil N retention to measure cropping system performance and environmental sustainability are limited due to the complexity of measurements of some parameters. We measured N balance based on N inputs and outputs and soil N retention under dryland agroecosystem affected by cropping system and N fertilization from 2006 to 2011 in the northern Great Plains, USA. Cropping systems were conventional tillage barley (Hordeum vulgaris L.)–fallow (CTB‐F), no‐tillage barley–fallow (NTB‐F), no‐tillage barley–pea (Pisum sativum L.) (NTB‐P), and no‐tillage continuous barley (NTCB). In these cropping systems, N was applied to barley at four rates (0, 40, 80, and 120 kg N ha?1), but not to pea and fallow. Total N input due to N fertilization, pea N fixation, soil N mineralization, atmospheric N deposition, nonsymbiotic N fixation, and crop seed N and total N output due to grain N removal, denitrification, volatilization, N leaching, gaseous N (NOx) emissions, surface runoff, and plant senescence were 28–37% greater with NTB‐P and NTCB than CTB‐F and NTB‐F. Total N input and output also increased with increased N rate. Nitrogen accumulation rate at the 0–120 cm soil depth ranged from –32 kg N ha?1 y?1 for CTB‐F to 40 kg N ha?1 y?1 for NTB‐P and from –22 kg N ha?1 y?1 for N rates of 0 kg N ha?1 to 45 kg N ha?1 y?1 for 120 kg N ha?1. Nitrogen balance ranged from 1 kg N ha?1 y?1 for NTB‐P to 74 kg N ha?1 y?1 for CTB‐F. Because of increased grain N removal but reduced N loss to the environment and N fertilizer requirement as well as efficient N cycling, NTB‐P with 40 kg N ha?1 may enhance agronomic performance and environmental sustainability while reducing N inputs compared to other management practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号