首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 204 毫秒
1.
As a consequence of intensive mining of the western Erzgebirge since medieval times, floodplain soils of the Mulde river contain large concentrations of arsenic (As) (>50 mg kg−1). Arsenic in soil is often bound to poorly crystalline Fe and Mn (hydr)oxides, which may dissolve under reducing conditions. Part of the As may also exist in primary minerals, predominately sulphides, or in secondary minerals formed upon weathering. In order to better understand the impact of seasonal flooding, we surveyed As‐bearing mineral phases, especially of iron (Fe) (hydr)oxides. Because Fe (hydr)oxides are clay‐sized, soil samples were fractionated into six particle‐size fractions. The fractions were digested with aqua regia for determination of total element concentrations, extracted with hydroxylammonium chloride (NH3OHCl; selective for Mn (hydr)oxides and NH4 oxalate), and analysed by X‐ray diffraction and scanning electron microscopy. The largely similar distribution of As and lead (Pb) suggested the potential co‐existence of the two elements in primary or secondary mineral phases. However, neither As–Pb minerals nor any other As mineral were detected. Association with Mn oxides was negligible. The predominant As‐bearing phases were poorly crystalline Fe (hydr)oxides, which also incorporated large amounts of Pb and were affected by redox dynamics.  相似文献   

2.
The highly degraded mine-affected soils of Lavrion, central Greece, are greatly polluted by heavy metals and arsenic (As). To assess As partitioning in the soils of the area, Wenzel and BCR (Community Bureau of Reference) sequential extraction procedures (SEP) were applied to 29 top soils. The results of the Wenzel SEP showed that As was mainly bound to the well-crystallized (33.3%) and to the amorphous/poorly-crystalline (30.1%) oxides of Fe, Al, and Mn. According to the BCR scheme, most of the total As (78.4%) was retained in the residual phase. Low mobility factor values (Wenzel: 0.34%; BCR: 1.56%) clearly demonstrate the low availability and mobility of As in the studied soils. The specifically-sorbed/inner-sphere and the reducible fractions of As, obtained by the Wenzel SEP, were positively correlated with clay and Fe oxides content, respectively. The reducible As fractions of both SEPs were negatively correlated with carbonates content indicating that carbonates may partially control As sorption on Fe oxides. The comparative evaluation of the two SEPs showed that the application of the BCR protocol in contaminated soils cannot provide reliable information on As sequestration in soils but it can be a first estimate of As labile forms.  相似文献   

3.
Abstract

The extractant Mehlich‐1 is routinely used in Brazil for determination of soil nutrients, whereas Mehlich‐3 has been suggested as a promising extractor for soil fertility evaluation. Both were used for extraction of molybdenum (Mo) in Brazilian soils with Mo dosage by the KI+H2O2 method. The Langmuir and Freundlich isotherms were used to study soil Mo adsorption. Mehlich‐1 extracted more Mo than Mehlich‐3 in soils with high contents of organic matter, clay, and iron (Fe) oxides. Mehlich‐3 and Mehlich‐1 extractions correlated positively and significantly with amorphous Fe oxides, crystalline Fe oxides, and organic matter. Molybdenum recovering rates correlated to crystalline Fe oxides and clay contents but not to organic matter, pH, and Mo adsorption capacity. Amorphous and crystalline Fe oxides, clay, and organic matter were responsible for most of the Mo adsorption. The Langmuir isotherm described better the Mo adsorption to soil amorphous Fe oxides and organic matter than the Freundlich isotherm.  相似文献   

4.
Phosphate sorption on topsoil and subsoil samples from different soils located in the eastern part of Germany was studied. Two models were fitted to sorption data obtained after 4 and 40 d of gentle shaking. The models differ with respect to the fractions of iron and aluminium (hydr)oxides that are considered and whether the phosphate initially sorbed in the soil is taken into zccount. Oxalate-extractable P, (Pox), appears to be a major part of the total soil P. The total P sorption measured, F, was predominantly related to the amounts of amorphous iron (Feox) and aluminium (Alox). A significant relation between crystalline iron (Fed– Feox) and total P sorption was not found. Reversibly adsorbed phosphate (Pi), measured after 40 d reaction time, was a function of clay content and content of amorphous iron and aluminium (hydr)oxides.  相似文献   

5.
Abstract

The importance of various soil components on copper (Cu) retention by Spodosois was investigated. Copper sorption and extraction were conducted on samples from the B horizon from six Danish Spodosois. The investigation was conducted on untreated samples, on hydrogen peroxide‐treated samples (to remove organic matter), on oxalate‐treated samples [to remove amorphous to poorly crystalline aluminum (Al) and iron (Fe) oxides], on hydroxylamine‐treated samples [to remove manganese (Mn) oxides]. Subfractions treated with hydrogen peroxide (H2O2) were further treated with oxalate and citrate‐bicarbonate‐dithionite (CBD). Sorption of Cu from an initial 10‐6 M solution after 48 hours was determined in the pH range 3 to 7 using 0.1M sodium nitrate (NaNO3) as the background electrolyte. The pH‐dependent sorption curve (sorption edge) was shifted to a higher pH with decreasing Al oxide content in the soils, and for the treated sample after removal of organic matter and Al and Fe oxides. A negligible effect was seen after removal of the Mn oxides because of their low abundance. Extraction of sorbed Cu at pH 4 to 6 with 0.1M nitric acid (HNO3) for 24 hours confirmed the sorption results, in inasmuch as removal of the Al (and Fe) oxides increased Cu extractability. Therefore, it was concluded that in the soils investigated, Cu retention is mainly determined by the oxalate‐extractable Al fraction with a minor contribution due to crystalline Fe oxides.  相似文献   

6.
Soil carbon (C) saturation implies an upper limit to a soil's capacity to store C depending on the contents of silt + clay and poorly crystalline Fe and Al oxides. We hypothesized that the poorly crystalline Fe and Al oxides in silt + clay fraction increased the C saturation and thus reduced the capacity of the soil to sorb additional C input. To test the hypothesis, we studied the sorption of dissolved organic carbon (DOC) on silt + clay fractions (<53 µm) of highly weathered oxic soils, collected from three different land uses (i.e., improved pasture, cropping and forest). Soils with high carbon saturation desorbed 38% more C than soils with low C saturation upon addition of DOC, whereas adsorption of DOC was only observed at higher concentration (>15 g kg?1). While high Al oxide concentration significantly increased both the saturation and desorption of DOC, the high Fe oxide concentration significantly increased the desorption of DOC, supporting the proposition that both oxides have influence on the DOC sorption in soil. Our findings provide a new insight into the chemical control of stabilization and destabilization of DOC in soil.  相似文献   

7.
The influence of some complexing agents of (poly)aminopolycarboxylic acids (diethylenetriaminopentaacetic acid (DTPA), ethylenediaminotetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and iminodiacetic acid (IDA)) on the sorption of Cu2+ by crystal and amorphous (hydr)oxides of Fe(III), Al(III), and Mn(IV) that are widespread mineral components of soils was studied. The obtained results are considered in terms of complex-formation in the solution and on the sorbent’s surface. The effect of the complexing agents on the metal sorption (mobilization/immobilization) is determined by (1) the stability, structure, and sorption capability of compexonates formed in the solution; (2) the acidity, and (3) the nature of the sorbent. The desorption effect on Cu2+ cations was found to change in the following sequence of complexing agents: EDTA > DTPA ? NTA > IDA. The high-dentate complexing agents (EDTA, DTPA) had the greatest impact on ?u2+ cations bound with crystalline (hydr)oxides of Fe, Al, and Mn. The low denticity of the complexing agents (IDA, NTA) and binding of ?u2+ with amorphous sorbents leads to the weakening of desorption. The decrease in acidity promoted the mobilization of the metal under the influence of complexing agents; the increase in acidity caused its immobilization. The growth in the mobility of heavy metals bound with soil (hydr)oxides of Fe, Al, and Mn due to the complexing agents entering the surface and ground water is considered a factor of ecological risk.  相似文献   

8.
Abstract

In nineteen surface horizons of red Mediterranean soils from various locations of Greece, phosphorus (P) sorption experiments were conducted and the sorption characteristics were studied in relation to soil properties. Phosphate sorption data were fitted both to the Langmuir and Freundlich equations. From these equations, the following P sorption parameters were determined from the Freundlich equation, X = ACn, the parameters A (the phosphate sorbed at C = 1 mg P/L), n (the P sorption intensity), the P sorption index (PS = X/log C) and maximum P sorption (Xmfr). From the Langmuir equation, C/X = 1/KXm + C/Xm, the parameters K (showing the bonding energy), maximum P sorption (Xmla), the quantity of P adsorbed at a standard concentration of 0.2 mg P/L (P0.2), and P maximum buffering capacity (PMBC). The Freundlich parameter A was strongly correlated to the clay and sesquioxides ("free”; iron and aluminum oxides and amorphous iron oxides) content. Seventy‐four percent of the variance of this parameter was explained by clay and “free”; iron (Fe) content. The Freundlich parameter n was significantly correlated with pH and amorphous iron oxides content, while 52% of its variance was explained by amorphous Fe and dithionite extrac‐table aluminum (Al). The P sorption maxima calculated from the Freundlich equation were in general lower than those calculated by the Langmuir equation. Both these parameters were strongly correlated with clay and more slightly with sesquioxides content. About 50% of their variance was explained by clay content of the soils. The P sorption index was strongly correlated with the clay content and less strongly with dithionite‐extractable Fe and Al. The P‐buffering capacity calculated from the data of Langmuir equation was also strongly correlated with these two parameters. In addition, clay content and dithionite‐extractable Fe and Al were well correlated to the amounts of P required to obtain an equilibrium concentration of 0.2 mg P/L while 61% of the variation of this parameter was explained by the clay and the dithionite‐extractable Fe content. From these findings, it seems that for the red Mediterranean soils from Greece, P sorption is affected by clay content and iron and aluminum oxide contents.  相似文献   

9.
The retention of dissolved organic matter in soils is mainly attributed to interactions with the clay fraction. Yet, it is unclear to which extent certain clay‐sized soil constituents contribute to the sorption of dissolved organic matter. In order to identify the mineral constituents controlling the sorption of dissolved organic matter, we carried out experiments on bulk samples and differently pretreated clay‐size separates (untreated, organic matter oxidation with H2O2, and organic matter oxidation with H2O2 + extraction of Al and Fe oxides) from subsoil horizons of four Inceptisols and one Alfisol. The untreated clay separates of the subsoils sorbed 85 to 95% of the dissolved organic matter the whole soil sorbed. The sorption of the clay fraction increased when indigenous organic matter was oxidized by H2O2. Subsequent extraction of Al and Fe oxides/hydroxides caused a sharp decrease of the sorption of dissolved organic matter. This indicated that these oxides/hydroxides in the clay fraction were the main sorbents of dissolved organic matter of the investigated soils. Moreover, the coverage of these sorbents with organic matter reduced the amount of binding sites available for further sorption. The non‐expandable layer silicates, which dominated the investigated clay fractions, exhibited a weak sorption of dissolved organic matter. Whole soils and untreated clay fractions favored the sorption of ”︁hydrophobic” dissolved organic matter. The removal of oxides/hydroxides reduced the sorption of the lignin‐derived ”︁hydrophobic” dissolved organic matter onto the remaining layer silicates stronger than that of ”︁hydrophilic” dissolved organic matter.  相似文献   

10.
Abstract

Zinc fractions occurring in five wetland soils as a function of organic matter application and soil redox potential were studied under laboratory conditions. The results indicate that a large portion of native or added Zn is bound to the soil mineral component. Exchangeable and organic complexed Zn and Zn bound to amorphous and crystalline sesquioxides were found to be in dynamic equilibrium. Exchangeable and complexed Zn were positively correlated with both native and/or added organic matter, while Zn bound to the amorphous and crystalline sesquioxides were negatively correlated with added organic matter. As soil redox potential decreased, the amount of exchangeable and organic complexed Zn decreased, while Zn bound to the amorphous and crystalline sesquioxides increased. Zinc fractions examined varied, depending upon soil cation exchange capacity, clay and organic carbon content.  相似文献   

11.
Purpose

Urban greenery provides a series of benefits for the environment and inhabitants of cities. However, the substrate preparation mostly implies the mining and erosion of valuable natural soils (e.g., peat). Purpose-designed substrates, preferably made of waste materials, could avoid the extraction damage. The present work aims at improving the production and lowering the costs of a functional stably coated sand with ferrihydrite. This functional substrate combines the Fe (hydr)oxide sorptive capacities and the fast drainage of sand. Thus, secondary raw materials were tested: a dredged sand and three Fe (hydr)oxides; one from groundwater, an industrial intermediate product, and a mining by-product.

Materials and methods

Three Fe (hydr)-oxides were structurally characterized by XRD, XRF analysis, and SSA measurements. Further, amorphous Fe (hydr)oxide concentrations were determined. Sludges of these Fe (hydr)oxides in different concentrations were hand-mixed with a dredged and a mined sand, and dried at 35 °C. The stabilization of the coating was made by heavy shaking (250 rpm) the coated sand with water (3:1 w:w) for 0, 10, and 1000 min, washing and drying at 35 °C afterwards. Thereafter, the effectiveness of this treatment was determined by the Fe concentration and pH of the coated sand, along with the particle size of the detached aggregates during shaking, and the pH in the washing water. The morphology of the coating was observed by scanning electron microscopy.

Results and discussion

All Fe (hydr)oxides were 2-line ferrihydrites with large SSA, and coated both sands. Only after 1000 min shaking, homogeneous and small ferrihydrite aggregates covered the sands surfaces (verified by SEM and particle size). The impurities of the ferrihydrites affected the stabilization of the coating. Calcium carbonates enhanced the aggregation and reattachment of the Fe aggregates to the sand during shaking, while phosphate reduced the reattachment by stabilizing the aggregates in the suspension.

Conclusions

Two out of three ferrihydrites were suitable to develop a stable coating. To coat dredged sand with both ferrihydrites lowers the cost and production time to obtain a functional substrate. One ferrihydrite has a high pH due to its high CaCO3 content, and sand coated with it may be used as an amendment for acidic clayey soils.

  相似文献   

12.
Abstract

The Zn content in 8 soil chemical fractions was determined for 21 greenhouse soils and for 8 reference (open field) soils from Kochi Prefecture, Japan to investigate the forms of spontaneously accumulated Zn in the greenhouse soils associated with heavy application of fertilizers and manures. Sequential extraction method was applied to every soil and each Zn fraction was designated as exchangeable (Ex-Zn), Pb-displaceable (Pb-Zn), acid soluble (Aci-Zn), Mn oxide-occluded (MnO-Zn), organically bound (OM-Zn), amorphous Fe oxide-occluded (AFeO-Zn), crystalline Fe oxide-occluded (CFeO-Zn), and residual (Res-Zn) fractions. The Zn content of the greenhouse soils was significantly higher than that of the reference soils in every fraction, except for the CFeO-Zn, and Res-Zn fractions. The Pb-Zn, Aci-Zn, and MnO-Zn fractions showed a difference of more than 60% in the total Zn content between the two soil groups. The amounts of Zn extracted in the Pb-Zn, Aci-Zn, MnO-Zn, AFeO-Zn, and CFeO-Zn fractions of the greenhouse soils increased con-comitantly with the accumulation of applied macro-nutrients. These results indicated that the accumulation of Zn in greenhouse soils caused by intensive fertilization had proceeded through specific adsorption onto or occlusion by the oxides and hydroxides of Fe and Mn in soils.  相似文献   

13.
Phosphate sorption by calcareous soils has been studied mainly on heavily fertilized agricultural soils and soils with calcite as the main carbonate mineral. We examined factors affecting phosphate adsorption in the soils of a semi-arid, mediterranean, dolomitic, soil and vegetation chrono-sequence in southeastern Spain. The youngest soils are highly eroded, Sandy Regosols (Typic Xerorthents) under gorse-scrubland vegetation. These have small P sorption capacities, large Mg-Ca carbonate contents but small amounts of Fe and Al oxides. Small total P (HNO3/HClO4 digestion) concentrations (30–130 μg P g?1), of which up to 90% is Ca-bound (HCl-extractable), are typical of these young soils. P sorption markedly increased when Ca2+ was added to the solution. The fractionation of previously sorbed P indicates that the fate of most of this extra-sorbed P is the labile-P fraction sorbed on to (carbonate) surfaces and the apatite-like fraction (NaHCO3-extractable and HCl-extractable fractions). At the other extreme, older more-intensively weathered, sandy-clay-loam rendzinas (Entic Haploxerolls), supporting dense mature garrigue, have a much greater P adsorption capacity and larger clay and Fe and Al oxide concentrations. They have more total P (ca 400 μg P g?1), much of it in occluded form (residual fraction). These soils show no significant differences in P sorption whether or not CaCl2 was used as a background electrolyte. Considering the overall variations within the chronosequence, dithionite extractable Fe and Al are the properties best correlated with P sorption. This support the general finding that crystalline Fe-oxides (e.g. goethite and haematite) appear to be the most important P-sorbing component for soils in the Mediterranean region, rather than amorphous Fe-oxides (e.g. ferrihydrite) as is reported for more mesic areas. Stepwise multiple regression and fractionation data, however, suggest that, provided the soil solution is rich in Ca2+, carbonate may also be a significant contributing factor to P sorption, especially in the youngest of these dolomitic soils.  相似文献   

14.
Phosphate sorption and desorption in soils are markedly influenced by iron oxides, although little is known on how the common iron oxides differ in their behaviour towards added phosphate. In this study, we investigated phosphate sorption and desorption in the clay fractions of 12 Terre Rosse that ranged widely in Fe oxide content, had very low contents of oxalate-extractable Fe oxides and different hematite/goethite ratios. Phosphate sorption at an equilibrium concentration of 1 mg P 1?1 was correlated with the goethite but not with the hematite content of the clay fractions. When phosphate was desorbed by electro-ultrafiltration, the difference in desorption half-time between untreated and deferrified clays was positively correlated with the goethite but not with the hematite content. These results suggest that goethite is more active than hematite in phosphate sorption and retention by soils.  相似文献   

15.
Abstract

Arsenite sorption was studied at different temperatures (30,40, and 50°C) to investigate processes that remove arsenite from soil solution (adsorption or precipitation), and if adsorption was taking place, how many sites were involved in this process, and their nature. Adsorption was the only reaction reducing levels of soluble arsenite in the two alkaline soils used in this experiment, Jijona and Agost; however, arsenite precipitation occurred in an acidic substrate (pH 4.0), Galicia soil. Iron (Fe) oxides and clay minerals were the soil components controlling arsenite sorption in the Jijona soil (pH 7.9 and high levels of Fe oxides). Calcite and clay minerals were the inorganic constituents involved in arsenite sorption in the Agost soil (pH 8.0 and high levels of CaCO3). Arsenite sorption was an endothermic and non‐spontaneous process. The fact that the higher the temperature, the higher the arsenite sorption, however, was likely due to an increase in the diffusion rate.  相似文献   

16.
The dependency of the retention of dissolved organic carbon (DOC) on mineral phase properties in soils remains uncertain especially at neutral pH. To specifically elucidate the role of mineral surfaces and pedogenic oxides for DOC retention at pH 7, we sorbed DOC to bulk soil (illitic surface soils of a toposequence) and corresponding clay fraction (< 2 μm) samples after the removal of organic matter and after removal of organic matter and pedogenic oxides. The DOC retention was related to the content of dithionite‐extractable iron, specific surface area (SSA, BET‐N2 method) and cation exchange capacity (pH 7). The reversibility of DOC sorption was determined by a desorption experiment. All samples sorbed 20–40 % of the DOC added. The DOC sorption of the clay fractions explained the total sorption of the bulk soils. None of the mineral phase properties investigated was able to solely explain the DOC retention. A sorption of 9 to 24 μg DOC m–2 indicated that DOC interacted only with a fraction of the mineral surface, since loadings above 500 μg m–2 would be expected for a carbon monolayer. Under the experimental conditions used, the surface of the silicate clay minerals seemed to be more important for the DOC sorption than the surface of the iron oxides. The desorption experiment removed 11 to 31 % of the DOC sorbed. Most of the DOC was strongly sorbed.  相似文献   

17.
Abstract

The changes in availability and uptake of boron (B) by M.26 apple rootstocks as affected by applications of different forms and rates of nitrogen (N) were examined. The study was carried out in a greenhouse using soil with low contents of organic matter, clay, calcium carbonate, NH4‐oxalate soluble aluminum (Al) and iron (Fe), NH2OH·HCl extractable manganese (Mn), poor cation exchange capacity and low pH. Soil N application was in the form of urea, calcium nitrate, ammonium sulphate, or ammonium nitrate at rates of 0, 17, 34, and 51 mg N kg?1. After 1, 3, and 5 days of N application, soil B fractions were determined: B in soil solution, B specifically and non‐specifically adsorbed on soil surfaces, B occluded in Mn oxyhydroxides, and B occluded in crystalline Al and Fe oxides. The results showed that N as calcium nitrate and ammonium nitrate increased B both in soil solution and non‐specifically adsorbed on soil surface and decreased B concentration on Al and Fe oxides. This indicates that N‐NO3 inhibited B sorption on Fe and Al oxides. Maximum B desorption from Fe and Al oxides was obtained within one day after N‐NO3 was supplied. Nitrogen application as calcium nitrate and ammonium nitrate increased availability and uptake of B by plant roots. Thus, it was concluded that apple trees planted on coarse‐textured soils where risk of B deficiency is high, calcium nitrate or ammonium nitrates would be appropriately to apply to keep B more available.  相似文献   

18.
Summary Reduction of Fe(III) of amorphous and crystalline Fe(III) oxides to Fe(II) in flooded soils was studied using 59Fe(OH)3 and 59Fe2O3. The results indicated that Fe(III) in the amorphous oxide was readily amenable to microbial reduction in anaerobic soil condition whereas Fe(III) in the crystalline oxide was not. Following soil submergence, the native as well as the applied crystalline Fe(III) oxides were rapidly converted into the amorphous form. The transformation of the crystalline oxides to the amorphous form appears to be a prerequisite for the reduction of Fe(III) of the oxide. This transformation, probably through hydration, is also mediated by microorganisms.  相似文献   

19.
Abstract

Studies were conducted to investigate phosphorus (P)‐sorption characteristics of some intensely weathered soils in south‐central Kentucky. Phosphorus adsorption characteristics reflected the chemical and mineralogical properties of the soils studied. All adsorption data were adequately described by first order kinetic reactions which implied that the soils have uniform surfaces for P sorption. In spite of the limitations of the Langmuir equation, its usefulness in summarizing data into one adsorption maximum value was demonstrated by nearly identical adsorption maxima estimated by three linear transformations of the equation and small deviations from the observed maxima. Variations in adsorption maxima between surface and subsoils and among soils were best correlated with extractable aluminum (Al) (r = 0.93, p<0.01) and crystalline iron (Fe) oxy‐hydroxides (r = 0.97, p<0.01). Clay content was also highly correlated with P sorption (r = 0.97, p <0.01) as well as with extractable Al (r = 0.83, p<0.05) and crystalline Fe oxides (r = 0.92, p<0.01) suggesting that its contribution may have been through its association with these soil components. In contrast, organic matter had a negative association with P sorption (r = ‐0.83, p<0.05). The results indicate higher P sorption in subsoil than in surface horizons, controlled mainly by extractable Al and crystalline Fe oxyhydroxides.  相似文献   

20.
Abstract

Copper (Cu) is bound strongly to organic matter, oxides of iron (Fe) and manganese (Mn), and clay minerals in soils. To investigate the relative contribution of different soil components in the sorption of Cu, sorption was measured after the removal of various other soil components; organic matter and aluminum (Al) and Fe oxides are important in Cu adsorption. Both adsorption and desorption of Cu at various pH values were also measured by using diverse pasture soils. The differences in the sorption of Cu between the soils are attributed to the differences in the chemical characteristics of the soils. Copper sorption, as measured by the Freundlich equation sorption constants [potassium (K) and nitrogen (N)], was strongly correlated with soil properties, such as silt content, organic carbon, and soil pH. The relative importance of organic matter and oxides on Cu adsorption decreased and increased, respectively, with increasing solution Cu concentrations. In all soils, Cu sorption increased with increasing pH, but the solution Cu concentration decreased with increasing soil pH. The cumulative amounts of native and added soil Cu desorbed from two contrasting soils (Manawatu and Ngamoka) during desorption periods showed that the differences in the desorbability of Cu were a result of differences in the physico‐chemical properties of the soil matrix. This finding suggests that soil organic matter complexes of Cu added through fertilizer, resulted in decreased desorption. The proportions of added Cu desorbed during 10 desorption periods were low, ranging from 2.5% in the 24‐h to 6% in the 2‐h desorption periods. The desorption of Cu decreased with increasing soil pH. The irreversible retention of Cu might be the result of complex formation with Cu at high pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号