首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Butachlor is a systemic selective pre-emergent herbicide most commonly used to control grasses and broadleaf weeds. Residual butachlor in soil can have harmful ecotoxological effects and remediation is, therefore, important. Effects of Rhodopseudomonas marshes in wastewater effluent on biorestoration of butachlor in soil were investigated. Over a time period of one day, butachlor induced EthB gene expression to synthesize cytochrome P450 monooxygenase which led to the successful bioremediation of the herbicide. Residual organics in wastewater effluent provided sufficient carbon sources for continued growth of R. marshes beyond one day.  相似文献   

2.
Fu  HaiMei  Duan  YingHua  Zhu  Ping  Gao  HongJun  Xu  MingGang  Yang  XiaoMei 《Journal of Soils and Sediments》2021,21(2):905-913
Purpose

Understanding the soil nitrogen (N) mineralization potential (N0) and crop N availability during the growing season is essential for improving nitrogen use efficiency (NUE) and preventing over-fertilization, which lead to negative environmental impacts.

Methods

Five black soils with different levels of fertility were selected in Northeast China. The N0 and kinetics of these soils were estimated through laboratory experiments at different incubation temperatures (15, 25, and 35 °C). N mineralization dynamics were simulated using field soil temperature according to the incubation results. Moreover, the N uptake dynamics of maize were simulated according to the literature.

Results

Compared with the very low-fertility soils, the cumulative mineralized nitrogen increased under all incubation temperatures (15, 25, and 35 °C), by 48–136%, 8–61%, and 24–59%, respectively, in the medium- and high-fertility soils. The highest N0 values (96.90, 115.31, and 121.33 mg/kg at the three different temperatures) were recorded in the very high-fertility soils. The soil N mineralization dynamics and N uptake of maize in the growing season were highly consistent over time, although the soil N supply could not meet the maize growth requirements. The higher the soil fertility, the lower the N fertilizer requirement.

Conclusions

Different fertilizer strategies were developed based on the cumulative mineralized N, N uptake by maize, and NUE in soils with different fertility levels. We suggested a reduction of 50–65 kg N/ha in N fertilizer in the two highest fertility soils. This study provided basic data to reduce chemical N fertilizer to improve NUE and reduce negative environmental impacts.

  相似文献   

3.
Abstract

The effect of placement (broadcast versus banded) and level of phosphorus (P) applied as superphosphate at 0 to 450 kg P/ha was measured using the yields of cauliflower (Brassica oleracea var botrytis) on newly cleared Karrakatta sands of low natural P fertility. While there was a significant (P<0.01) yield response to level of P, there was no significant response to fertilizer placement. Phosphorus recovery efficiency by curds (P uptake curds/P applied both in kg/ha) decreased from 0.35 at 20 to 0.09 at 320 kg applied P/ha. Phosphorus recovery efficiency by whole plants decreased from 0.58 at 20 kg P/ha to 0.18 at the highest level. Bicarbonate‐soluble P extracted from the top 15 cm of soil was determined on residual P sites from experiments over two years where P was applied from 0 to 450 kg P/ha. These soil test values were related to yield. The critical soil test values required for 95 and 99% of maximum yield were 40 and 55 (μg/g, respectively. The level of freshly‐applied P required for either 95 or 99% of maximum yield varied from 108 to 175 kg P/ha, respectively at <5 μg/g soil test P to 0 at the critical values. Phosphorus in the youngest expanded leaf at buttoning required for 95 and 99% of maximum yield was 0.46±0.02 and 0.47±0.02%, respectively.  相似文献   

4.
Purpose

Land application of farm dairy effluent (FDE) to pasture soils is the preferred practice in New Zealand. Recently, a new FDE treatment technology has been developed to recycle the water for washing the yard Cameron and Di (J Soils Sediments 2018). Here we report a lysimeter study to compare the leaching losses of Escherichia coli, phosphorus (P), and nitrogen (N) and emissions of greenhouse gases from the treated FDE compared with the untreated original FDE.

Materials and methods

Lysimeters were collected from a Balmoral silt loam soil (Typic Dystrudept, USDA) and installed in a field trench facility. Treatments included (1) treated effluent (TE), (2) a mixture of TE and recycled water (M), (3) untreated original FDE (FDE), and (4) water as control. The effluents were applied at a surface application rate of 24 mm on each lysimeter in May and again in September 2017. Measurements included leaching losses of E. coli, total phosphorus (TP), dissolved reactive phosphorus (DRP), total mineral nitrogen (TN), ammonium-N (NH4+-N), and nitrate-N (NO3?-N); emissions of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4); herbage yield; and N uptake.

Results and discussion

The results showed that E. coli, TP, and DRP leaching losses from the TE were 1.31?×?1010 cfu/ha, 0.26 kg P/ha, and 0.009 kg DRP/ha and from M treatments were 6.96?×?108 cfu/ha, 0.18 kg P/ha, and 0.004 kg DRP/ha, respectively, which were significantly (P?<?0.05) lower than those from the FDE which were 4.21?×?1010 cfu/ha, 1.75 kg P/ha, and 0.034 kg DRP/ha, respectively. There were no significant differences in NO3?-N leaching losses amongst the different forms of effluents. There were no significant differences in total N2O, CO2 emissions, and CH4 uptakes from the different effluents (P?<?0.05). Herbage dry matter yields and N uptakes were also similar in the different effluent-treated lysimeters.

Conclusions

Results from this research indicate that land application of the treated effluents (TE) or a mixture of TE plus clarified water (M) would result in significant environmental benefits by reducing E. coli and P leaching without increasing greenhouse gas emissions.

  相似文献   

5.
Purpose

The aim of this research was to quantify the effect of plantain (Plantago lanceolata L.) on soil nitrification rate, functional gene abundance of soil ammonia oxidisers, and the concomitant effect on nitrous oxide emissions from urine patches in a shallow, free-draining soil in Canterbury during late autumn/winter season.

Materials and methods

Urine was collected from dairy cows grazing either ryegrass/white clover (RGWC), 30% plantain (P30) mixed in with RGWC or 100% plantain (P100) pasture, and applied at two rates (700 or 450 kg N ha?1) to intact soil blocks growing either RGWC, P30 or P100 pasture.

Results and discussion

Results showed that increased plantain content reduced N-concentration in urine from 7.2 in RGWC urine to 4.5 and 3.7 g N L?1 in P30 and P100 urine, respectively. Total N2O emissions and emission factors (EF3) from urine-treated pastures were low, <?2 kg N ha?1 and <?0.22%, respectively. Urine application at the lower urine N-loading rate of 450 kg N ha?1 (i.e. representative of that in a P30 urine patch) resulted in 30% lower N2O emissions (P?<?0.01) and 35% lower soil nitrate concentrations (P?<?0.001) compared to those at the higher urine loading rate of 700 kg N ha?1 (i.e. representative of that in a RGWC urine patch). Increasing plantain content in the pasture sward from 0 to 30% and 100% with urine N applied at the same loading rate did not reduce N2O emissions or nitrification compared to the standard ryegrass-white clover pasture. Cow urine derived from the different pasture diets had no effect on N2O emissions, N transformation or ammonia-oxidiser abundance in soil compared to the RGWC urine applied at the same rate.

Conclusions

The main effect of plantain in this study appears to be related to the reduction in urine N-loading rate, rather than factors related to urine properties or plantain-soil interactions.

  相似文献   

6.
Qu  Wendi  Li  Juanyong  Han  Guangxuan  Wu  Haitao  Song  Weimin  Zhang  Xiaoshuai 《Journal of Soils and Sediments》2019,19(2):609-617
Purpose

Climate warming and sea level rise have the potential to change the salt level of soil in tidal wetlands. And it is important to clarify the process and the mechanism of decomposition of soil organic carbon in a tidal wetland under varying salinities. The aim of this study was to evaluate the impacts of soil salinity on the decomposition rate of organic carbon (DROC) and dissolved organic carbon (DOC) in a tidal wetland.

Materials and methods

Two types of soil (surface soil in Suaeda salsa and bare tidal flat) were collected, air-dried, and homogenized. After adding different content of salt (0 g/L, 3 g/L, 6 g/L, 9 g/L, and 12 g/L), the soils were incubated for 28 days at stable room temperature (25?±?2 °C) and added by deionized water to maintain the stability of soil moisture. The gases (CO2 and CH4) emission rates of each salt treatment were measured during 28-day incubation. DROC was determined by the sum of daily CO2-C emission rates and daily CH4-C emission rates in this study.

Results and discussion

Salt addition inhibited the process of gas emissions and DROC. Gases emission rates and DROC of two types of soil showed similar temporal trends, with distinctive drop in the beginning of experiment and no significant decrease followed. Significant difference of DOC among salt treatments was found in the bare tidal flat soil. Variations of partial correlation between DROC and soil salinity and DOC showed similar trends (e.g., in days 9–18, the positive effect of DOC on DROC was greatly promoted (R2?=?0.80, p?<?0.001), and the negative effect of soil salinity was highly improved (R2?=?0.93, p?<?0.001)). Soil properties, in particular DOC, may be primary factors accounting for the discrepancy of gases emission rates and DROC of two types of soil.

Conclusions

Increased soil salinity had a negative effect on DROC during 28-day incubation. The impact of soil salinity and DOC on DROC were varied in different phases of laboratory experiment (soil salinity generally had increasingly negative relationship with DROC, but DOC showed most significantly positive relationship in the middle stage of incubation). Both the formation and consumption of DOC may be valuable for more detail research regarding to decomposition of soil organic carbon.

  相似文献   

7.
Purpose

Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in Havana were quantified and analyzed in relation to possible emission sources to assess metropolitan soil contaminations in a highly dynamic, urban environment. The results of this study will serve Cuban legislators as a basis to develop environmental quality standards for organic pollutants in soils.

Materials and methods

Possible emission sources as, e.g., the vicinity to roads or industrial plants and the influence of the land use were related to the organic contaminants concentrations. Therefore, 28 topsoils in the Havana urban and semi-urban area were sampled at agricultural (n?=?12), organoponic (urban gardens in the capital, n?=?8), public park (n?=?7), and remediation (on-site bioremediation of an oil refinery, n?=?1) sites. Their PAH and PCB concentrations were measured with gas chromatography mass spectroscopy and the total organic carbon (TOC) and black carbon (BC) concentrations with the chemo-thermal oxidation.

Results and discussion

The sum of the 16 PAH concentrations ranged from 0.04 mg/kg in agricultural and organoponic soils to up to 72 mg/kg in a public park at about 1.5 km distance from an oil refinery. The lowest sum of the seven PCB congener concentrations was also measured in organoponic soils (0.002 mg/kg) and the highest in an arable patch of land between the rail roads and a main road (0.1 mg/kg). Both, PAH as well as PCB soil concentrations in Havana were almost up to two orders of magnitudes higher compared to a soil monitoring in the neighboring province of Mayabeque, but overall in the typical range of urban soils reported by other studies. The pollutants showed no relationship between TOC and BC except for PAHs with BC. For PAHs, combustion was the main source.

Conclusions

A comparison of the pollutant concentrations with regulatory guidance values (RGV) of other countries revealed PCB concentrations in Havana soils far below these RGV. In contrast, some concentrations of benzo[a]pyrene, the most carcinogenic PAH, in agricultural and park soils in Havana exceeded some RGV. Thus, some public parks pose a risk according to the Canadian quality guidelines when people have direct contact with these soils but not if they were consuming products thereof.

  相似文献   

8.
[目的]为探索拉萨河下游湿地土壤的养分特征和肥力状况。[方法]选取甘曲湿地、巴嘎雪湿地、拉鲁湿地和茶巴朗湿地4个代表性区域的土壤为研究对象,共采集69份土壤样本,测定样品的pH、总氮(TN)、总磷(TP)、总钾(TK)、全盐、电导率、氧化还原电位(redox potential)、阳离子交换量(CEC)和有机质(OM)值,并利用改进内梅罗综合指数法对湿地土壤肥力进行全面的评价。[结果](1)研究区土壤的pH范围为5.77~7.78,均值为6.62,呈中性;有机质和总氮的相关性强,分布特征相似,含量分别为61.82,3.13 g/kg,均为很丰富的状态,属于一级水平;总磷和总钾含量分别为0.75,18.05 g/kg,为适中的状态,属于三级水平;全盐含量为0.92 g/kg,电导率为2.97 mS/m,整体来看,研究区土壤具有较强的保肥能力。(2)湿地土壤综合肥力系数(P)顺序为茶巴朗湿地(2.01)>巴嘎雪湿地(1.95)>拉鲁湿地(1.93)>甘曲湿地(1.86),均属于肥沃等级,影响湿地土壤综合肥力的指标是总钾,因各自然湿地形成条件相似,土壤综合肥力系数无显著差异...  相似文献   

9.
Purpose

Vanadium (V) contamination in soil can cause diverse damage to soil ecosystem and has attracted research interests in exploring soil V stabilization methods, but only a few materials were proposed and studied. Here, a pot experiment was firstly conducted to estimate the efficiency of nano-hydroxyapatite (n-HAP) in stabilizing V in soil. To verify the impact of n-HAP on soil V bioavailability and phytotoxicity, cabbages (Brassica chinensis L.) were grown in V-spiked soils after n-HAP amendment.

Materials and methods

Soils were sampled from a farmland in China, and the n-HAP was prepared in the laboratory. In each pot of soil spiked with 0, 75, 150, 300, and 600 mg/kg V, 2% n-HAP was amended for 30 days, while soils without n-HAP amendment were set as controls. The stabilization effect of n-HAP on V in soil was estimated by the water-extractable and bioavailable V concentrations in soils. Cabbages were grown in pots subsequently. The V(V/IV) concentrations in cabbage leaves and roots, the organic bound V concentrations in cabbage roots, and the chlorophyll concentrations in leaves were determined. Bioconcentration factor and translocation factor were calculated. The composition of organic bound V in leaf was characterized by fluorescence excitation–emission matrix.

Results and discussion

In soils spiked with 150 mg/kg V, n-HAP amendment yielded the highest stabilization rates of 51.0% and 42.4% for water-extractable and bioavailable V, respectively. In 75, 150, and 300 mg/kg V-spiked soil, the plant weight, plant height, and root length of cabbage after 60-day growing decreased 54.6%/89.6%, 30.9%/45.5%, and 41.5%/51.4% in groups with/without n-HAP, respectively. Cabbage leaf chlorophyll concentrations descend firstly then ascend with rising soil V concentration. Leaf V speciation analysis revealed that less leaf V was reduced to V(IV) in groups amended with n-HAP than groups without n-HAP amendment. In 150 and 300 mg/kg V-spiked soil, n-HAP effectively reduced the V content and the V bioconcentration factor of cabbage root. Tyrosine-like and humic acid-like analogues composed the principal part of V complex.

Conclusions

In general, n-HAP amendments are potential to decrease the mobility of V in soils, as well as inhibit the bioavailability and phytotoxicity of V to cabbage. In V-spiked soils, n-HAP amendment can alleviate the toxicity of V to the cabbage. Overall, 2% n-HAP is efficient for the amendment of slight V-polluted (150–300 mg/kg) soils to alleviate the soil V stress to cabbage.

  相似文献   

10.
Hong  Xi  Ma  Chao  Gao  Jusheng  Su  Shiming  Li  Tao  Luo  Zunchang  Duan  Ran  Wang  Yanan  Bai  Lingyu  Zeng  Xibai 《Journal of Soils and Sediments》2019,19(1):73-80
Purpose

Although green manure rotation is often used to promote soil fertility and crop yield, the effects of this management practice on the nitrogen or phosphorus balance and the relationship between nutrient balance and the increase in soil nutrients have not been systematically studied.

Materials and methods

We investigated the apparent nitrogen and phosphorus balances and their associations with soil nitrogen and phosphorus increases, respectively, in a 34-year-old experimental site with various green manures and rice rotations using linear and logistic models. Cropping treatments included a rice-rice-winter fallow treatment as a control (RRW) and three green manure rotation treatments: rice-rice-ryegrass (RRR), rice-rice-oil rape (RRO), and rice-rice-Chinese milk vetch (RRC).

Results and discussion

We found that apparent nitrogen and phosphorus balances of RRR, RRO, and RRC were 164, 162, and 149 kg hm?2, which were all significantly lower than 200 kg hm?2 of RRW (P <?0.05). Moreover, the optimal fitted model of the relationship between cumulative nutrient balance and the increase in soil nutrients was different among treatments. Specifically, the correlation coefficients of cumulative nitrogen balance and soil nitrogen increase of RRR, RRO, and RRC in the linear model (0.49, 0.80, and 0.63) were all significantly lower than in the logistic model (0.81, 0.90, and 0.82). The correlation coefficients of cumulative phosphorus balance and increase in soil phosphorus of RRW in the linear model (0.81) were significantly lower than in the logistic model (0.91). Parameter analysis of the optimal fitted model revealed that RRC would increase the storage capacity of soil nitrogen and decrease the rate of soil phosphorus accumulation.

Conclusions

Our results suggested that long-term rice-rice-green manure rotation could significantly change the apparent nitrogen and phosphorus balance and their association with soil nitrogen and phosphorus content, respectively. Our study highlights the importance of green manure rotation in an agro-ecological environment and soil fertility in a double rice cropping system in red paddy soil.

  相似文献   

11.
Sun  Qin  Ding  Shiming  Zhang  Liping  Chen  Xiang  Liu  Qing  Chen  Musong  Wang  Yan 《Journal of Soils and Sediments》2019,19(4):1830-1838
Purpose

Phosphorus influence on arsenic bioavailability in soils and its toxicity to plants is widely recognized. This work compares competitive influence of P on As bioavailability in dry and flooded soils.

Materials and methods

Pot experiments were carried out in dry and flooded soils, respectively. Bioavailable As in soils was measured using diffusive gradients in thin films (DGT), soil solution concentration, and three single chemical extraction methods.

Results and discussion

P concentration at 50 mg/kg promoted wheat growth in dry soil. At concentrations above 50 mg/kg, P competition inhibited wheat growth and enhanced As toxicity. In flooded soil, the rice height and biomass decreased with the increase of P addition. P concentrations above 800 mg/kg were lethal to the rice. The content of As absorbed by wheat and rice roots as well as shoots increased with the increase of P concentration. The bioavailability of As in wheat- and rice-grown soils, determined by all methods, also increased with the increase of P concentration. The correlation analysis between the bioavailable As measured by the all three methods and the content of As in plants showed a significant positive correlation. The Pearson correlation coefficient for the DGT method was higher comparing to all other methods. DGT-induced fluxes in soils (DIFS) modeling further showed sharp decreases of Tc (the characteristic time to reach equilibrium between available solid As pool and soil solution As from DGT perturbation) and increases of desorption and adsorption rate constants (k1 and k?1) of As in P-amended soils, reflecting that the kinetic release of As from available solid As pools became much easy from P competition.

Conclusions

P competition in both dry and flooded soils could significantly increase bioavailability of As and further increase its toxicity. Competition effect was more pronounced in flooded soil. DGT is a more accurate method for As bioavailability evaluation in both dry and flooded soils.

  相似文献   

12.

Cytoplasmic male sterility (CMS) system has been exploited worldwide in field and vegetable crops. In eggplant, alloplasmic CMS lines were developed through interspecific hybridization between Solanum aethiopicum L.?×?S. melongena L., while the restorer (R) lines were isolated from the reciprocal cross. The knowledge about inheritance of Rf gene is must for its further use in breeding and molecular studies. Therefore, four sets of CMS (D-CMS 291A, D-CMS 99A, D-CMS 5A and D-CMS 72A) and restorer (R 2-1, R 3-4, R 6-2 and R 2596-2) lines were used to develop F1, F2 and backcross progenies, to understand the inheritance mechanism. Phenotyping of all the populations and test of goodness of fit revealed involvement of a single dominant gene (Rf) for fertility restoration. The visual scoring of flowers for male sterility and fertility was further validated with the tests on pollen stainability, germination and index. Among others, media containing 0.5% agar?+?300 ppm calcium nitrate?+?5% sucrose?+?50 mg/l boric acid?+?400 mg/l PEG 4000 furnished the best results for in vitro pollen germination. Differences between and within male sterile and restorer lines were observed for pistil and stamen length and girth, pollen stainability and germination. Stable expression of CGMS and restorer lines in all the generation progenies confirmed their utility in future eggplant breeding programs.

  相似文献   

13.
Purpose

Fine sediment accumulates upstream of hydroelectric dams. To ensure that dams can operate properly, part of the sediment has to be dredged and land managed. In parallel, using topsoil from agricultural parcels for urban greening or land restoration is currently controversial because arable surface areas are decreasing. An alternative idea for protecting these natural resources consists in reusing fine dredged sediment to construct multifunctional soils. This agronomic use is only possible if sediment can provide acceptable physical and chemical properties for plant growth.

Materials and methods

Four dredged sediments with contrasted initial agronomic properties and one control soil were mixed or not with green waste compost (40% v/v) and used to construct triplicate 30-cm depth soils in lysimetric containers (1.11?×?0.71 m). The 30 constructed soils were exposed to the in situ conditions and sown with ryegrass (Lolium perenne). The evolution of soil chemical and physical properties and plant development were studied every 6 months for 18 months.

Results and discussion

Above- and below-ground biomass production of the constructed soils contrasted according to the sediment properties and to compost addition. A statistical approach identified eight soil parameters linked to biomass production. Among these parameters, soil structure, quantified from aggregate stability, played a fundamental role. A focus on physical properties confirmed that some sediments were only partially adapted to ryegrass support. Compost addition improved sediment physical properties over time, but caused temporary N deficiency during the first months after installation which limited shoot biomass production. Exogenous plant species developed on the constructed Technosols, especially on the soils where the lack of structure and N deficiency had the strongest effect.

Conclusions

All sediments were suitable for plant growth over the 18 months of the study. A few soil properties emerged as markers of the fertility of sediment-made Technosols. Among them, the soil structure was one of the most determining parameters. It can be assessed by measuring aggregate stability, macroporosity, the crustability index, and bulk density, while available nutrients (N, P, K) and pH seem sufficient to assess chemical fertility. The balance between the properties of the sediment-made Technosols and the needs of the plants seems to be an essential lever for the establishment of functional soil-plant systems for urban greening or for ecological restoration.

  相似文献   

14.
Abstract

Metolachlor (2‐chloro‐N‐(2‐ethyl‐6‐methylphenyl)‐N‐(2‐meth‐oxy‐1‐methylethyl)acetamide) is being considered for control of eastern black nightshade (Solarium ptycanthum Dun.) in cabbage (Brassica oleracea L. var. capitata), broccoli (B. oleracea L. var. Botrytis) and tomato (Lycopersicon esculentum Mill.). We have developed a rapid, sensitive method to determine metolachlor residues in these commodities to ensure its absence in the edible tissue. The crop material was extracted with methanol, the extract partitioned with hexane, then passed through a silica cartridge and analysed for metolachlor by GC/MSD in selected ion mode at m/z 161. Recovery of metolachlor from fortified plant material was greater than 84%. The method detection limit was calculated to be 0.6 ppb for tomato, 1.1 ppb for cabbage, and 4.2 ppb for broccoli. Metolachlor residues were below the detection limit in all commodities harvested from treatments which received 2 or 3 kg metolachlor/ha.  相似文献   

15.
Abstract

Soybean (Glycine max (L.) Merrill) and fababean (Vicar faba (L.)) were grown under field conditions on six Orthic Black Chernozemic soils over three years at two levels of fertility. At flowering, full pod and maturity the yield and N, P, K and S composition of harvested plant materials were compared. Application of fertilizer (P, K and S) increased dry matter and seed yields of both crops. At all, growth stages fababeans produced more dry matter than soybean, and at maturity produced higher yields of seed, hull and stalk. However, the ratio of seed: hull: stalk for both crops was similar and constant at 3.8: 1: 4.7 on all soils and at both levels of soil fertility. At the high level of soil fertility, at the flowering and full pod stages, the concentration of N, P, and K in fababean was higher than that in soybean, but both crops had a similar concentration of S. At low fertility both crops had similar concentrations of P, K and S. At maturity, soybean seed had the higher concentrations of the four nutrients. The concentration of P in the hull and stalk of both crops was similar, but fababean hull had a higher concentration of K and soybean stalk a higher concentration of S. Soybean seed also had a higher protein content and yielded more protein per hectare than fababean seed.  相似文献   

16.
Purpose

Based on two consecutive years of field-scale trials, under different water managements, we illustrated the persistence of remediation effect of palygorskite on a Cd-polluted rice field.

Materials and methods

The Cd uptake by a plant, pH and Cd chemical extractability, available P/K, and extractable Zn/Cu in paddy soils were used to evaluate the influence of palygorskite on Cd immobilization and soil fertility index.

Results and discussion

In contrast to the 1st year, at 0–1.5% palygorskite applied dose in soils, 0.025 M HCl–extractable Cd in continuous flooding reduced by 12.1–19.0%, and that in wetting irrigation increased by 10.9–18.9% in the 2nd year (p?<?0.05). The toxicity characteristic leaching procedure Cd reduction of 3.0–11.4% and increase of 8.9–12.0% were obtained under above-mentioned water managements (p?<?0.05). Compared with the 1st year, at different clay additional concentrations, grain Cd in continuous flooding reduced by 7.0–11.3%, and that in wetting irrigation increased by 6.5–10.8% in the 2nd year (p?<?0.05). Although trace elements in clay treated soils declined, they had no influence on the grain yield due to a minimum value higher than the critical value of 1.5 mg kg?1 for Zn and 2.0 mg kg?1 for Cu. The available P in continuous flooding took on a maximum increase of 8.2% in the 2nd year (p?<?0.05).

Conclusions

Two consecutive years of field-scale in situ demonstration tests revealed that continuous flooding was a preferable water management regime for Cd immobilization using palygorskite in the rice field. There were no remarkable differences in extractable Zn/Cu between 2 years.

  相似文献   

17.
Tang  Bingzhe  Jiao  Juying  Yan  Fangchen  Li  Hang 《Journal of Soils and Sediments》2019,19(3):1456-1466
Purpose

To control the severe soil and water losses on the Loess Plateau, China, a series of vegetation restoration projects were conducted. A better understanding of the effect of vegetation types on the soil infiltration capacity is important for the sustainable development of vegetation restoration. The aim of this study was to establish a soil infiltration capacity index (SIC) and to analyze the mechanism influencing variations in the soil infiltration capacity after vegetation restoration on the Loess Plateau.

Materials and methods

Eight vegetation types (community dominated by Artemisia scoparia, Stipa bungeana, Artemisia gmelinii + S. bungeana, A. gmelinii + Stipa grandis, A. gmelinii + Artemisia giraldii, Sophora viciifolia, Caragana korshinskii, and Robinia pseudoacacia) and bare land as the control were selected for this study. The SIC was established by a steady infiltration rate (SR, 50–60 min) and stage I average infiltration rate (ARSI, 0–5 min) according to principal component analysis (PCA). Path analysis was used to investigate how the soil properties and plant fine root affected the soil infiltration capacity.

Results and discussion

The SIC values of the eight vegetation types were all higher than that of the bare land. The R. pseudoacacia community had the highest SIC value (0.43), followed by the A. scoparia community (0.30) while the bare land (??0.56) had the lowest value. Path analysis showed that the increase in the fractal dimension and non-capillary porosity of soil particles enhanced the SIC directly. Increases in the clay content increased the SIC by affecting the fractal dimension of soil particles, while increases in the fine root density reduced the SIC by affecting the non-capillary porosity. Plant functional groups (grasses and legumes) affected SIC indirectly via non-capillary porosity and plant root.

Conclusions

A comprehensive index, the SIC, was established to describe the soil infiltration capacity by the PCA method. Based on a comparison with bare land, vegetation restoration enhanced the soil infiltration capacity. The R. pseudoacacia community was the most effective at improving the soil infiltration capacity. The improvement in infiltration was closely related to direct increases in the soil non-capillary porosity and soil particle fractal dimension.

  相似文献   

18.
Degradation of metolachlor in soil inoculated with a mixed fungal culture   总被引:2,自引:0,他引:2  
The effect of a mixed fungal culture on the degradation of the herbicide metolachlor in soil was evaluated. Metolachlor was found to degrade up to 92% and 87% after 20 days in sterile and nonsterile soils respectively, when inoculated with a mixed culture of Aspergillus flavus and Aspergillus terricola and treated with 20 g g–1 metolachlor. When the soil was treated at 50 g g–1 level, 84% of the added herbicide degraded in inoculated sterile soil and 80% in nonsterile soil. The half-lives of metolachlor were found to be 5 and 4 times faster at the 20 and 50 g g–1 levels, respectively, in the presence of the mixed fungal culture. In treated soils, four metabolites could be identified by RP-HPLC.  相似文献   

19.
Purpose

Soil physico-chemical properties, biomass production, and root density are considered key factors indicating soil health in an agroecosystem. The soil physico-chemical changes and plant growth (e.g., shoot biomass production and root density) in a 6-year cultivation of plant species used as green manure in a sandy soil from Tropical ecosystem, North-eastern Brazil, were investigated between July and December 2019.

Material and methods

We characterized soil physical and chemical properties, shoot biomass production, and root density under ten plant species used as green manure: Brachiaria decumbens Stapf. cv. Basilisk, Canavalia ensiformis (L.) DC, Crotalaria juncea L., Crotalaria ochroleuca G. Don, Crotalaria spectabilis Roth, Lablab purpureus (L.) Sweet, Mucuna pruriens (L.) DC, Neonotonia wightii (Wight & Arn.) J.A. Lackey, Pennisetum glaucum L., and Stilozobium aterrimum Piper and Tracy.

Results and discussion

The highest values of soil pH, exchangeable cations, CEC, and soil available water capacity were found on the plots where Poaceae plants were cultivated, whereas for H++Al3+, C.E.C., soil available water, and soil available water capacity were found on the plots where Fabaceae plants were cultivated. On the plots where C. ensiformis and N. wightii were cultivated, we found the highest shoot dry biomass and root density, respectively. The results highlight the importance to consider plant species from both Poaceae and Fabaceae family used as green manure as soil conditioner (by promoting soil fertility, nutrient cycling, and hydraulic properties into plant root zone), and thus creating a positive plant-soil feedback.

Conclusions

Our findings suggest that (1) a consecutive green manure practice without any input of fertilizers after 6 years changed positively both soil physical and chemical properties, and improve plant growth (e.g., shoot dry biomass and root density) in tropical savanna climate conditions; and (2) by altering soil fertility, both Poaceae and Fabaceae plants used as green manure may create a sustainable cycle into the soil profile thus promoting soil health.

  相似文献   

20.
Purpose

The purpose of this study was to compare effects of two biostimulating substances (compost and bird droppings) on the proliferation of microorganisms, enzymatic activity, and resistance of spring barley in soil exposed to tebuconazole fungicide. Both biostimulating substances were also assessed for their efficacy in tebuconazole degradation in soil.

Materials and methods

A pot vegetation experiment was performed with soil belonging to the Eutric Cambisols to test the effect of tebuconazole on the biological activity of soil. Its adverse effect on the biological properties of soil was minimized through the use of biostimulating substances (compost and bird droppings), the effect of which was expressed with the IFC/BD index. The RCh index was used to determine the effect of tebuconazole on the proliferation of soil microorganisms and enzymes, the BA21 index was used to express soil fertility based on the activity of soil enzymes, whereas the RS index—to express the resistance of spring barley to the administered doses of tebuconazole. Finally, analyses were conducted to determine the efficacy of soil amendment with biostimulating substances in tebuconazole degradation.

Results and discussion

Study results demonstrate that tebuconazole caused significant changes in the proliferation of the tested groups of microorganisms, in the activity of soil enzymes, and in spring barley yield. It was especially noticeable in pots in which the soil was exposed to its highest dose, i.e., 2.499 mg kg?1. Soil supplementation with bird droppings had a positive effect on the development of soil microorganisms and on the enzymatic activity in the soil. In turn, compost addition to soil exerted various effects on the biological properties of soil. Both biostimulating substances failed to improve spring barley yield. Tebuconazole degradation was more intense in the soil fertilized with bird droppings than with compost.

Conclusions

Results of this study suggest that tebuconazole can affect the stability and health status of soil ecosystems by modifying their biological properties. The high sensitivity of soil microorganisms and enzymes to stress conditions makes them reliable environmental bioindicators. The strive for eliminating the adverse impact of fungicides on soil microbiome through the use of appropriate remediation methods, like, e.g., biostimulation, is of greater concern from the ecological perspective.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号