首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanoclay polymer composites (NCPCs) were synthesized with partially neutralized acrylic acid and bentonites and loaded with urea and nitrification inhibitors (NIs) to act as a slow release carrier of nitrogen (N). The resulting product was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The XRD of NCPCs revealed that the bentonite layers were completely exfoliated and dispersed in the composite after the polymerization. The water absorbency of pure polymer (Acrylic acid + Acrylamide) was 197.53 g g?1 and 137.75 g g?1 by nanocomposite (8% nanobentonite) in distilled water. The nitrification inhibition ability of these NCPCs was evaluated by incubation study for 60 days in laboratory at 28°C and 50% water-holding capacity. The Schiff base -NCPCs were most effective at inhibiting nitrification (30–87%) compared to dicyandiamide and Neem oil. A column study was performed to know the movement of NH4-N and NO3-N at three different depths. Result showed that the Schiff base -NCPC decreased nitrate movement by 78.5% at the depth of 5 cm in soil column. The slow release of nitrogen and good water retention capacity confirmed that these NCPCs can be viably exploited for application in agriculture.  相似文献   

2.
Simultaneous nitrification and diffusion in soil   总被引:2,自引:0,他引:2  
Darrah et al. (1985b, 1986) presented a model that predicted the distribution of ammonium and nitrate in a column of soil, following the addition of ammonium chloride as a band of fertilizer to one end of the column. Ammonification and nitrification, the inhibition of nitrification by high levels of fertilizer addition and the simultaneous diffusion of ammonium and nitrate were modelled. By simplifying algorithms concerned with the calculation of the concentration of ammonium in solution and the diffusion of solutes in the column, up to eight-fold savings in the time required to run the model could be made without significantly affecting the accuracy of the predictions. This simplified version was used to test the effect of a ±25% change in the values of the main input parameters. The distribution of ammonium was mainly influenced by parameters affecting the diffusive flux of solutes and the concentration of ammonium in the soil solution; that of nitrate was influenced by parameters affecting the growth, activity and inhibition of the nitrifiers. In general, the model was most sensitive to changes in the maximum specific growth rate of the nitrifiers, while almost no effect was observed when the affinity constant for ammonium oxidation was varied. Given the present state of knowledge of the range of parameter values in different soils, it is necessary to measure all the input parameters tested, with the possible exception of the diffusional impedance factor, in order to obtain accurate predictions from the model.  相似文献   

3.
化感物质对土壤硝化作用的影响   总被引:12,自引:1,他引:12  
试验研究了3种化感物质-苯甲酸、对羟基苯甲酸和阿魏酸在3种浓度(0.5mmoL、2.5mmoL和5.0mmol)、不同pH、不同土壤含水量等环境因子作用下对土壤硝化作用的影响,在第1d、4d、7d、10d、14d取样与对照比较,测定其对土壤中NH4^ -N转化为NO3^--N过程中的影响。结果表明,阿魏酸和苯甲酸对硝化作用的抑制率略高于对羟基苯甲酸,且阿魏酸随浓度升高而抑制作用加强。研究所采用的2种不同pH的土壤未表现出明显的差异;不同土壤含水量对转化为NO3^--N的总量影响较大,不加水的土壤样品NO3^--N的转化量很少,且随时间的推移其总量无多大为变化,而饱和含水量的样品NO3^--N的转化量随时间的推迟其总量一直上升,说明水分对土壤中NO3^--N的转化起着非常重要的作用。  相似文献   

4.
Modes of action of nitrification inhibitors   总被引:18,自引:0,他引:18  
 In recent years, substantial progress has been made towards understanding the modes of action for the specific inhibition of autotrophic NH3 oxidation. This has included demonstrating that NH3 monooxygenase (AMO) has a broad substrate range for catalytic oxidation, and the inhibitory effects of many compounds are due to competition for the active site. Other compounds, such as acetylenes, are oxidized by the normal catalytic cycle of AMO to highly reactive products which covalently bind the enzyme causing irreversible inhibition. Substantial evidence has shown the important role of Cu in the activity of AMO, and indicated that a large class of compounds containing thiono-S inhibit AMO activity by binding with Cu within the active site. Heterocyclic N compounds form another important class of nitrification inhibitors with little known about their mode of action, although evidence suggests that their inhibitory influence is closely related to the presence of ring N. Received: 21 July 1998  相似文献   

5.
Three series of furfural derivatives, namely N-O-furfural oxime ethers, furfural Schiff bases (furfurylidene anilines), and furfural chalcones, have been synthesized and evaluated for nitrification inhibition activity in laboratory incubation studies in typic Ustocrept soil. Furfural oxime ethers and furfural Schiff bases showed potential activity, but furfural chalcones were only mildly active. N-O-ethyl furfural oxime among the oxime ethers, and furfurylidine-4-chloroaniline among the furfural Schiff bases, performed the best. These two compounds showed more than 50% nitrification inhibition on the 45th day at 5% dose as compared to 73% inhibition by nitrapyrin. Activity of furfural oxime ethers decreased with an increase in carbon atoms in the N-O-alkyl side chain. Introduction of a chlorine atom in the phenyl ring of furfurylidene anilines increased the persistence of their activity. N-O-Ethyl furfural oxime and furfurylidine-4-chloroaniline coated urea performed at par with their application in solution form. Ethyl and N-O-isopropyl oxime, as well as chloro- and nitro- substituted Schiff bases, did not reveal any phytotoxicity (adverse effect on germination) on chickpea seeds (Cicer arietinum) even at the highest dose (40 ppm, soil basis).  相似文献   

6.
The effects of phenmedipham, propham, carbetamide, lenacil and benzthiazuron on soil nitrification was studied in the laboratory using a perfusion technique. The nitrification process was markedly retarded at a phenmedipham concentration of 50–500μg g?1 soil, so that 55–150 days were required for complete oxidation of supplied NH+4-N as compared with 33 days for the untreated control. Phenmedipham caused a reduction in both the maximum population and the proliferation rate of nitrifying organisms, as evaluated from kinetic parameters. These inhibitory effects showed a low persistance probably due to herbicide breakdown. The effects of 100 μg g?1 soil of propham, carbetamide, lenacil or benzthiazuron on the nitrification process was very weak, although the kinetics of the nitrification process was affected by all these herbicides.  相似文献   

7.
Guo  Changqing  Wang  Hongmei  Zou  Dianbo  Wang  Yue  Han  Xiaori 《Journal of Soils and Sediments》2022,22(3):831-843
Journal of Soils and Sediments - Nitrification inhibitor plays an important regulatory role in inhibiting the nitrification of ammonium in soils. However, most of nitrification inhibitors lack the...  相似文献   

8.
9.
 A low efficiency of use of N fertilisers has been observed in mid-Wales on permanent pasture grazed intensively by cattle. Earlier laboratories studies have suggested that heterogeneity in redox conditions at shallow soil depths may allow nitrification and denitrification to occur concurrently resulting in gaseous losses of N from both NH4 + and NO3 . The objective of the investigation was to test the hypothesis that both nitrification and denitrification can occur simultaneously under simulated field capacity conditions (∼5 kPa matric potential). Intact soil cores were taken from grassland subjected to both grazing and amenity use. The fate of applied NH4 + was examined during incubation. 15N was used as a tracer. Nitrapyrin was used as a nitrification inhibitor and acetylene was used to block N2O reductase. More than 50% of N applied as NH4 + disappeared over a period of 42 days from the soil mineral-N pool. Some of this N was evolved as N2O. Accumulation of NO3 –N in the surface 0–2.5 cm indicated active nitrification. Addition of nitrapyrin increased N recovery by 26% and inhibited both the accumulation of NO3–N and emission of N2O. When intact field cores were incubated after addition of 15N-urea, all of the N2O evolved was derived from added urea-N. It was concluded that nitrification and denitrification do occur simultaneously in the top 7.5 cm or so, of the silty clay loam grassland topsoils of mid-Wales at moisture contents typical of field capacity. The quantitative importance of these concurrent processes to N loss from grassland systems has not yet been assessed. Received: 15 December 1998  相似文献   

10.
Active methanotrophs suppress nitrification in a humisol   总被引:3,自引:0,他引:3  
Summary The coexistence of chemoautotrophic nitrifiers and methanotrophs in a cultivated humisol was investigated. Under laboratory conditions which supported the growth and activity of methanotrophs, the nitrifiers were partially or completely inhibited. The inhibition was related to a competition for available oxygen and a high assimilatory requirement for inorganic nitrogen by the Methanotrophs. Dissolved methane concentrations as high as 250 M had no direct effect on the oxidation of ammonium. Simultaneous nitrification and methane oxidation was observed only if relatively high levels of ammonium and oxygen were maintained. Coupled nitrification-assimilatory/dissimilatory nitrate reduction resulted from the high oxygen demand of the actively growing methanotrophs. This study suggests that the potential competitive effects of methanotrophs may influence nitrification by chemoautotrophic nitrifiers in certain environmental systems.  相似文献   

11.
Abstract

Degradation of dicyandiamide (DCD) was assayed in laboratory studies at 8, 15, and 22 C in a Decatur silt loam and in a Norfolk loamy sand. Dicyandiamide was very short lived at 22 C, with half‐lives of 7.4 and 14.7 days in the Decatur and Norfolk soils, respectively. In the Norfolk soil at 8 C, half‐life increased to 52.2 days. In a nitrificaton study of both soils at 22 C, 80 mg (NH4)2SO4‐N kg‐1 of soil was applied with 20 mg DCD‐N kg‐1 of soil and 100 mg kg‐1 (NH4)2S04‐N was added with 5% nitrapyrin. Distinct lag phases preceded zero order nitrification with the inhibitor treatments. Lag periods were 2 and 2.6 times the half life of DCD in the degradation study for Decatur and Norfolk soils, respectively. Like most nitrification inhibitors, the effectiveness of DCD decreases with increasing temperature. In the Norfolk loamy sand, nitrification inhibition by DCD was equal to nitrapyrin for up to 42 days, but in Decatur silt loam, DCD was less potent to nitrapyrin as a nitrification inhibitor.  相似文献   

12.
Abstract

The effects of ammonium sulfate and urea nitrogen (150 kg N/ha) applied with three levels (5, 10 and 15% of N) of the nitrification inhibitors karanjin and nitrapyrin on grain protein of rice (Oryza sativa L. cv. Bala) were studied in pot experiment. Karanjin at the 10 and 15 per cent levels and nitrapyrin at the 10 per cent level significantly increased grain protein. Rice protein levels were highest at the 15 per cent karanjin level.  相似文献   

13.
Summary Three different nitrification assays (short-term nitrifier activity, assimilatory nitrate reductase activity of Lolium perenne, and nitrate accumulation in the absence of plants) were performed either on soil from a naturally acidic stagnohumic-gley or on leaves from L. perenne grown in this soil. Before the investigation the soil was limed and fertilised in a manner consistent with established agricultural pasture improvement strategies. Short-term nitrifier activity was only detected in soils above pH 5.6. However, nitrate reductase activity and nitrate accumulation both showed a near linear increase between soil pH 3.8 and 6.8. These findings are attributed to the nature of the assays, each of which considers a different component of the soil nitrifier population.  相似文献   

14.
Nitrification plays an important role in nitrogen transformation in soils. As a practical problem the fact is noteworthy that by nitrification, the loss of nitrogen from soils is caused at higher temperatures in the summer. On the contrary, it is quite slow at the lower temperatures of early spring. Recently much Work has been done on the effect of temperature on nitrification in soils. It was noticed that its effect is not the same according to the difference of soils. Soils which have high nitrifying activities at ordinary temperatures (around 25°C) show fairly good nitrification even at lower temperatures (1, 2, 5). However, in nitrification by usual experimental methods, the amount of nitrate produced can be only estimated while nitrifying organisms are increasing or decreasing in soil. As the growing Process of microbes is extremely influenced by both the properties of the soil and the cultural conditions, it is necessary to examine the effect of temperature on the growing process of microbes rather than biochemical nitrification by a unit cell. In usual methods nitrification can hardly be treated in these separate aspects. The author has succeeded in obtaining soils in which nitrifying organisms increase to the maximum limit, and no increase can be expected in number of these organisms. By using such samples, experiments were made concerning the effect of temperature on nitrification by a unit cell and its direct effect on the growth of organisms. Furthermore, the author prepared favorable cultural conditions for various kinds of soils by the “washing cultivation method” (6), and examined the effect of temperature on the increasing process of nitrifying ability.  相似文献   

15.
The physicochemical and microbiological changes occurring in a fine sandy loam soil following the application of ammonium chloride were followed experimentally and with a simulation model. Two levels of ammonium addition were used corresponding to application rates of 37 and 143 kg ha?1. The measured concentration profiles of ammonium nitrate and pH, which developed in soil columns as a result of the diffusion and simultaneous nitrification of the added NH4+, were measured at different incubation times. The measured profiles suggested that nitrification was inhibited at the site of application of the ammonium salt. This inhibition was attributed to an effect of increased osmotic pressure or chloride ion in the soil. A simulation model was developed to account for the inhibition by examining and testing two hypotheses about the response of nitrifiers to a fluctuating osmotic pressure. These were the irreversible inhibition model, which assumed that exposure to high osmotic pressures irreversibly inactivated a portion of the nitrifier population, and the reversible inhibition model, which assumed that the nitrifiers would recover after exposure to high osmotic pressures. The model included terms for the adsorption equilibria of NH4+ and soil acidity with the soil solid phase, and the influence of other ions on the rate of diffusion of each diffusing ion. The inputs to the model were based on parameters obtained independently of the diffusion experiments. Good agreement was found between experimental and predicted concentration profiles for both models although the reversible inhibition model gave the better simulation of the data.  相似文献   

16.
Nitrification occurs slowly in many acid Scots pine forest soils. We examined if bacterial community structure and interactions between members of the bacterial community in these forest soils prohibit growth of ammonia-oxidising microorganisms and their nitrifying activity. Native and gamma-irradiated Scots pine forest soils known to have low net nitrification rates were augmented with fresh soils or soil slurries from nitrifying Scots pine forest soil, and vice versa. Augmentation of native non-nitrifying soils with nitrifying soils induced net nitrification, although no significant changes in bacterial community structure, as measured by 16S rRNA gene-based denaturing gradient gel electrophoresis (DGGE), were observed. In sterilised soils, the inoculum, i.e. native nitrifying soil or non-nitrifying soil, determined the occurrence of net nitrification and bacterial community structure, and not the origin of the sterilised soils. Our results demonstrate that low net nitrification rates in acid Scots pine forest soils cannot be (solely) explained by unfavourable abiotic soil conditions, but that still uncaptured biotic factors contribute to suppression of nitrification.  相似文献   

17.
Examination of three forest soils from Malaysia using the soil incubation technique suggests that nitrification was not inhibited in these oligotrophic soils. Nitrification rates were between 40 and 750 ngN produced g?1 dry weight soil day?1 of incubation. Addition of phenolic metabolites (tannic acid) and leaf filtrates from hill and lowland forest litter did not significantly inhibit nitrification. Addition of sucrose (1% w/w carbon source) decreased nitrification but not ammonification.  相似文献   

18.
Nutrient solution containing (NH4)2SO4 was supplied at a constant rate to Nitrosomonas europaea and Nitrobacter agilis growing in a column packed with glass beads. Conversion of NH4+ to NO2? and NO3? was incomplete indicating that growth of the bacteria was not nutrient limited. After 7 months the column was dismantled and the arrangement of the bacteria on the beads examined using a scanning electron microscope. Nitrifying bacteria were found only in the upper regions of the column. They occurred most commonly in monolayers, less commonly in layers of about 20 cells and rarely in piles of about 100 cells in depth. Further down the column the glass beads were covered in a layer of slime and no bacteria were seen. This suggests that growth of the nitrifiers was neither controlled by diffusion of metabolites through a microbial film nor limited by competition between the bacteria for space on the surface of the glass beads.  相似文献   

19.
The effects of 10 urease inhibitors on nitrification in soils were studied by determining the effects of 10 and 50 parts/106 (soil basis) of each inhibitor on the amounts of nitrate and nitrite produced when soils treated with ammonium sulfate (200 μg of ammonium N/g of soil) were incubated (30°C) under aerobic conditions for 14 days. The urease inhibitors used (catechol. hydroquinone, p-benzoquinone, 2,3-dimethyl-p-benzoquinone, 2,5-dimethyl-p-benzoquinone. 2,6-dimethyl-p-benzoquinone. 2,5-dichloro-p-benzoquinone, 2,6-dichloro-p-benzoquinone. sodium p-chloromercuribenzoate, and phenylmercuric acetate) were those found most effective in previous work to evaluate more than 130 compounds as soil urease inhibitors. Their effects on nitrification were compared with those of three compounds patented as soil nitrification inhibitors (N-Serve. AM. and ST).Most of the urease inhibitors studied had little effect on nitrification when applied at the rate of 10 μg/g of soil. but had marked inhibitory effects when applied at the rate of 50 μg/g of soil. None inhibited nitrification as effectively as N-Serve. but phenylmercuric acetate inhibited nitrification more effectively than did AM or ST when applied at the rate of 10 μg/g of soil. Phenylmercuric acetate, 2,5-dimethyl-p-benzoquinone, and 2,6-dimethyl-p-benzoquinone had very marked effects on nitrification when applied at the rate of 50 μg/g of soil.  相似文献   

20.
Effect of urease inhibitors on nitrification in soil   总被引:1,自引:0,他引:1  
Abstract. This paper describes experiments on the inhibitory effects of hydroquinone (HQ), phenylphos-phorodiamidate (PPDA) and N-butyl phosphorothioic triamide (NBPT) on the nitrification in soil. Incubations were carried out at 2/3 field capacity at 25°C of soil samples to which either ammonium or nitrite was added together with inhibitors. Addition of PPDA or NBPT did not influence the oxidation of ammonium. HQ. however, retarded the process significantly, and also the accumulation of nitrite. This was confirmed in experiments whereby added nitrite was followed. Some of the differences could be explained by changes in the soil pH. During incubation the evolution of the total mineral nitrogen was not importantly altered by addition of the inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号