首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Agricultural Systems》2007,92(1-3):115-139
Because of drought and nutrient stress, the yields of rainfed lowland rice in Central Java, Indonesia, are generally low and unstable. Variation in groundwater depth can contribute to experimental variability in results of yield-increasing interventions. To test this hypothesis, we used the crop growth simulation model ORYZA2000 to explore the impacts of groundwater depth on the effect of sowing date, tillage, fertiliser-N application and supplementary irrigation on the yield of lowland rice at Jakenan, Central Java, Indonesia. ORYZA2000 was first parameterized and evaluated using data from eight seasons of field experiments between 1995 and 2000. The model adequately simulated the soil water balance, crop growth and grain yield. With shallow to medium groundwater depth (less than 0.5 m deep), rainfed rice yields are close to potential yields with timely sowing in the wet season. With groundwater tables fluctuating mostly between 0.5 and 1.5 m, rainfed yields are 0.5–1 Mg ha−1 lower than potential yields with timely sowing. The decrease in yield with late sowing sets in earlier and proceeds faster with deeper groundwater depths. Deep tillage and supplementary irrigation increase yield more with deep groundwater tables than with shallow groundwater tables, but N fertilisation increases yield more with shallow than with deep groundwater tables. Groundwater depth should be taken into account in the selection of yield-increasing interventions.  相似文献   

2.
水-氮联合限制条件下对水稻生产模型ORYZA2000的验证与评价   总被引:10,自引:1,他引:9  
介绍了水稻生长模拟模型ORYZA2000,并应用2002年水肥耦合试验资料,在水氮联合限制条件下对水稻生产模型ORYZA2000进行了参数校正,对模拟效果进行了图解分析和回归分析,结果表明,在水分平衡和氮素平衡条件下,ORYZA2000模拟水稻生物量、产量、氮素平衡以及田间水分平衡是可行的。该模型在水稻节水灌溉领域有很大的应用价值,为我国水稻节水灌溉向数字化发展提供了有利工具。  相似文献   

3.
《Agricultural Systems》2007,92(1-3):91-114
Water-saving irrigation regimes are needed to deal with a reduced availability of water for rice production. Two important water-saving technologies at field scale are alternately submerged–nonsubmerged (SNS) and flush irrigated (FI) rice. SNS allows dry periods between submerged soil conditions, whereas FI resembles the irrigation regime of an upland crop. The effects of these regimes on the water balance and water savings were compared with continuously submerged (CS) and rainfed (RF) regimes.The crop growth model ORYZA2000 was used to calculate seasonal water balances of CS, SNS, FI, and RF regimes for two locations: Tuanlin in Hubei province in China from 1999 to 2002 during summer seasons and Los Baños in the Philippines in 2002–2003 during dry seasons. The model was first parameterized for site-specific soil conditions and cultivar traits and then evaluated using a combination of statistical and visual comparisons of observed and simulated variables. ORYZA2000 accurately simulated the crop variables leaf area index, biomass, and yield, and the soil water balance variables field water level and soil water tension in the root zone.Next, a scenario study was done to analyse the effect of water regime, soil permeability, and groundwater table depth on irrigation requirement and associated rice yield. For this study historical weather data for both sites were used.Within seasons, the amount of irrigation water application was higher for CS than for any of the water-saving regimes. It was found that groundwater table depth strongly affected the water-yield relationship for the water-saving regimes. Rainfed rice did not lead to significant yield reductions at Tuanlin as long as the groundwater table depth was less than 20 cm. Simulations at Los Baños with a more drought tolerant cultivar showed that FI resulted in higher yields than RF thereby requiring only 420 mm of irrigation.The soil type determined the irrigation water requirement in CS and SNS regimes. A more permeable soil requires around 2000 mm of irrigation water whereas less permeable, heavy soil types require less than half of this amount. We conclude that water savings can be considerable when water regimes are adapted to soil characteristics and rainfall dynamics. To further optimize water-saving regimes in lowland rice, groundwater table dynamics and soil permeability should be taken into account.  相似文献   

4.
基于ORYZA2000的水量平衡要素和   总被引:1,自引:0,他引:1  
在对水稻生产模型ORYZA2000充分验证的基础上,以2003年团林水肥耦合试验设计为背景,应用ORYZA2000模拟分析了不同施肥条件下传统淹灌和3种节水灌溉方式下的稻田田间水量平衡要素、产量以及水分生产率。结果表明,节水灌溉方式灌水量大大低于传统淹灌,其中无水层灌溉节水效果又明显优于沟灌,可靠性高,雨养灌溉虽然能最大限度的节约灌溉水量,但其应用取决于区域气候特点,应结合气候预测应用。水分胁迫可以增大不同施氮水平下稻田腾发量的差异,施氮可以减少株间蒸发,增加作物蒸腾,从而增加稻田腾发量和产量。  相似文献   

5.
Yield constraint analysis for rainfed rice at a research station gives insight into the relative role of occurring yield-limiting factors. However, soil nutrient status and water conditions along toposequences in rainfed farmers’ fields may differ from those at the research station. Therefore, yield constraints need to be analyzed in farmers’ fields in order to design management strategies to increase yield and yield stability.We applied production ecological concepts to analyze yield-limiting factors (water, N) on rice yields along toposequences in farmers’ fields using data from on-farm experiments conducted in 2000-2002 in Indonesia. Potential, water-limited, and N-limited yields were simulated using the ORYZA2000 crop growth model. Farmers’ fields showed large spatial and temporal variation in hydrology (354-1235 mm seasonal rainfall, −150 to 50 cm field-water depth) and fertilizer doses (76-166 N, 0-45 P, and 0-51 kg K ha−1). Farmers’ yields ranged from 0.32 to 5.88 Mg ha−1. The range in yield gap caused by water limitations was 0-28% and that caused by N limitations 35-63%, with large temporal and spatial variability.The relative limitations of water and N in farmers’ fields varied strongly among villages in rainfed rice areas and toposequence positions, with yield gaps due to water and N at the top and upper middle positions higher than at the lower middle and bottom toposequence positions, and yield gaps in late wet seasons higher than those in early wet seasons. Management options (e.g. crop establishment dates, shortening turnaround time, using varieties with shorter duration, supplemental irrigation) to help the late-season crop escape, or minimize the negative effects of, late-season droughts and supplying adequate N-fertilizer are important for increasing yield in rainfed lowland rice in Indonesia. More N-fertilizer should be given to upper toposequence positions than to lower positions because the former had a lower indigenous nutrient supply and hence a better response to N-fertilizer inputs. Systems approaches using production ecological concepts can be applied in yield constraint analysis for indentifying management strategies to increase yield and yield stability in farmers’ fields in other rainfed lowland areas.  相似文献   

6.
以苏南地区单季水稻为研究对象,基于1961—2010年气象数据,结合经田间试验资料验证后的水稻模型ORYZA2000,研究分析了50年来不同CO2质量分数下水稻产量、水分利用效率和灌溉水利用效率的变化趋势。结果表明,过去50年,水稻产量、水分利用效率呈现出显著下降趋势;灌溉水利用效率呈略微上升趋势,但不显著。在CO2质量分数增加0.5、1.0、1.5倍3种情况下,水稻产量、水分利用效率和灌溉水利用效率均有显著增加,且随着CO2质量分数的增加而逐渐增加。  相似文献   

7.
为揭示水炭运筹管理模式下水稻对不同阶段施用氮肥的吸收利用情况,采用田间小区试验与微区结合的方法,应用15N示踪技术分别标记施用的基肥、蘖肥和穗肥,以常规淹灌作为对比,研究两种灌溉模式不同水炭运筹下水稻对基肥、蘖肥、穗肥的吸收利用、积累和转运,以及水稻成熟期不同阶段施用的氮肥在植株各器官的分配情况。试验结果表明:合理的水炭运筹能够显著提高水稻成熟期地上部的氮素总积累量、氮肥吸收利用率和产量;不同水炭运筹下肥料对氮素总积累量的贡献率为17.81%~20.60%,两种灌溉模式之间的差异不显著(P>0.05);水稻对基肥、蘖肥和穗肥的吸收利用率分别为15.55%~23.31%、31.68%~44.91%、48.82%~71.18%,施加适量的生物炭能够显著提高基肥、蘖肥和穗肥的吸收利用率,浅湿干灌溉模式下水稻植株除对基肥的吸收利用率较低外,对蘖肥和穗肥的吸收利用率均优于常规淹灌;水稻蘖肥和穗肥吸收利用率与肥料总氮素吸收利用率呈极显著正相关(P<0.01),基肥、蘖肥和穗肥氮素转运对籽粒的贡献率与相应的吸收利用率呈极显著正相关(P<0.01)。合理的水炭运筹能够提高肥料氮素转运对籽粒的贡献率和氮肥吸收利用率,降低氮肥在土壤中的残留。  相似文献   

8.
气候变化对水稻生长影响的模拟分析   总被引:1,自引:0,他引:1  
运用大气环流模式(HadCM3)和统计降尺度模型(SDSM)模拟了漳河地区不同排放情景下(A2、B2)的未来气候变化规律,结合ORYZA2000模型分析了不同气候情景模式下水稻生长的差异,从水稻生产的角度探讨了不同水肥耦合调控方式对各种情景的适用性。结果表明,SDSM对温度、降雨、日照都有较好的模拟效果。在A2情景下,水稻产量减少,灌溉定额和氮肥吸收率增加;在B2情景下,水稻产量较高,水分和氮肥利用率较高,水稻生长状态较好;增加CO2质量分数可以提高产量,同时减少了不同水肥管理模式下产量的差异。间歇灌溉和3次追肥的水肥耦合调控方式对各种气候情景的适用性最好。  相似文献   

9.
Various crop growth simulation models exist for rice but thorough validation and evaluation reports are scarce. We present the model ORYZA2000, which simulates the growth and development of rice under conditions of potential production and water and nitrogen limitations. The model was evaluated against a data set of five field experiments with irrigated rice performed at IRRI between 1991 and 1993, with nitrogen levels varying from 0 to 400 kg ha−1 in different splits and timings of application. We compared simulated and measured leaf area index (LAI) and biomass of leaves, stems, panicles, and total aboveground biomass by graphics; by the slope, intercept, and adjusted coefficient of correlation; by Student’s t test of means; and by absolute and normalized root mean square errors (RMSE). On average, RMSE was 690–1280 kg ha−1 for total biomass, 350–380 kg ha−1 for leaf biomass, 460–790 kg ha−1 for stem biomass, and 380–580 kg ha−1 for panicle biomass. Yield was simulated with an RMSE of 840–850 kg ha−1 and a normalized RMSE of 11–13%. For these crop variables, normalized RMSE values were 65–84% higher than the typical coefficients of variation associated with their measurements. Simulated LAI generally exceeded measured values, especially at low levels of nitrogen application. We can use ORYZA2000 to support N field experiments and investigate optimum N application regimes with quantified errors of simulation. The developed database and quantitative goodness-of-fit parameters serve as references for future model improvements.  相似文献   

10.
鄂北地区水稻适宜灌溉模式研究   总被引:1,自引:1,他引:0  
针对鄂北地区干旱现状,采用长渠灌溉试验站水稻试验成果,对ORYZA模型进行了率定与验证。利用ORYZA模型模拟评价了中蓄、浅灌和湿润3种现行灌溉模式。针对现行灌溉模式存在问题,根据不同灌溉下限和灌水定额设置了不同方案,采用模型对不同方案进行了优化分析,提出了鄂北地区水稻适宜的灌溉模式:蓄水深度为60 mm;返青期和抽穗开花期灌溉下限为0,黄熟期自然落干,其他生育阶段灌溉下限设定为耕作层土壤饱和含水率的80%;灌水定额为30~40 mm/次。  相似文献   

11.
应用水稻生长模拟模型ORYZA2000分析了淹灌、间歇灌溉、雨养3种稻田水分管理模式下田间水量平衡和水分生产率,以及不同地下水埋深对相关指标的影响。结果表明,淹灌模式巨大耗水量主要是满足稻田深层渗漏损失,间歇灌溉可以减少田间渗漏量,从而达到节水的效果,雨养栽培不仅可以减少深层渗漏,并可以利用地下水,以维持水稻蒸发蒸腾需要;3种灌溉方式以雨养模式水分生产率最高,其次为间歇灌溉,淹灌最低;地下水埋深对雨养模式的产量、水分生产率和水量平衡影响最大,对间歇灌溉相关指标影响较小,而对淹灌模式则无影响。  相似文献   

12.
水稻水肥耦合效应研究   总被引:1,自引:0,他引:1  
研究寒地黑土区水稻水肥耦合效应对产量的影响规律,运用二次饱和D-416最优设计方案,以施氮量、施钾量、施磷量、分蘖末期土壤含水率占土壤饱和含水率的百分比为设计因子,以产量为目标因子,编制四因素二次饱和D-416设计表,结合基于实数编码的遗传算法与BP神经网络强大的函数拟合、寻优功能,以设计表中四因素为输入层,产量为输出层,建立基于RAGA-BP神经网络模型,并对该模型进行预测和优选。结果表明,当产量最高时水肥耦合的最优方案施氮量为1.01g/盆、施钾量为0.63g/盆、施磷量为0.46g/盆、分蘖末期土壤含水率占饱和含水率的75.2%,此时得到的产量为74.78g/盆,与模型预测的最优个体适应度值73.55g/盆误差仅为1.68%,说明该模型能较好的反映出水肥投入量与产量之间的复杂关系,对指导农业生产实践具有一定的意义。  相似文献   

13.
Rice (Oryza sativa L.) root systems play an important role in uptake of water and nutrients from soil. A 4-year field experiment was conducted to determine the effects of different nutrient and water regimes on root growth by measuring the root diameter, root density, and root activity. Three nutrient regimes were used: (i) combined application of chemical fertilizers with farmyard manure (CM), (ii) integrated use of chemical fertilizers and wheat straw (CS), (iii) chemical fertilizers only (CK). Two soil moisture regimes included continuous waterlogging (CWL) and alternate wetting and drying (AWD). Incorporation of organic sources into paddy soil markedly improved root morphological characteristics of rice plant. In the alternate wetting and drying (AWD), root length density (RLD), and root weight density (RWD) for organic fertilization treatments (CS and CM) increased by 30 and 40%, respectively, as compared with the sole chemical fertilization (CF). Relative to root activity, CWL had adverse effects on root active absorption area (AAA), root oxidation ability of alpha-naphthylamine (α-NA) (ROA), and root surface phosphatase (RSP) of rice plants treated by integrated application of organic and inorganic fertilizers. In particular for the CM treatment, the AAA, ROA, and RSP of rice plants by the continuous flooding decreased by 22, 28, and 35%, respectively, compared to the alternately flooded regime. In the water regime of AWD, incorporation of organic manure significantly increased N, P, and K uptake by rice plants and facilitated the allocation and transfer of nutrient elements, especially P to rice ears and grains. This resulted in significant increases in the filled grains panicle−1, 1000-grain weight and grain yield. The beneficial effects of integrated use of organic and mineral fertilizers on grain yield were significantly (P < 0.05) decreased by the water regime of CWL.  相似文献   

14.
Summary In rainfed rice, the nitrogen status of soil and plant is closely related to the moisture regime in the soil. The lower the soil moisture content, the lower the nitrogen use efficiency in the plants.In this study, the yield and growth responses of four rice cultivars to seven irrigation and three nitrogen levels were evaluated using the line source sprinkler system. Visual observations on the degree of drought reaction and measurement of leaf water potential (LWP) were also made.The effect of drought was least on the traditional variety Kinandang Patong and most on the modern variety IR 20. Increasing nitrogen levels from 0 (no nitrogen fertilizer) to 60 and 120 Kg N/ha increased the degree of water stress. This also resulted in decreased LWP especially when the total water applied was minimal. At all levels of nitrogen, Kinandang Patong had significantly higher LWP than IR 20. There was a curvilinear decrease in the number of days to heading and a linear increase in plant height and dry matter production with increase in total water applied.The yield-water-fertilizer relationships of the four cultivars revealed different production surfaces. The early-maturing IR 52 rice gave the highest grain yield at 120 kg N/ha and with maximum water application of 850 mm. Without nitrogen fertilizer application, Kinandang Patong gave the highest predicted yield with 550 mm of water applied. At 120 kg N/ha and 550 mm of water, IR 36 was superior in yield to other rices tested.Results suggest that in areas of uncertain moisture supply, nitrogen application rate should be reduced from that normally used for irrigated rice.  相似文献   

15.
为评估农业机械作业对大豆产量的影响,本文开展不同机型、不同压实次数的拖拉机压实试验,获取不同压实环境中的土壤物理性质和大豆产量数据,分别从影响大豆产量的机械因素、土壤因素和复合因素出发,使用多元线性回归(Multiple linear regression, MLR)、随机森林(Random forest, RF)、自适应增强模型(Adaptive boosting, AdaBoost)、人工神经网络(Artificial neural network, ANN)4种机器学习算法建立大豆产量影响预测模型,对模型性能及模型特征重要性进行综合分析。研究结果表明,机械作业与大豆产量间关系复杂,集成学习算法(AdaBoost和RF)所建立的模型具有更好的拟合效果,模型决定系数更高;利用复合因素对大豆产量建立的模型拟合度最高,其次为机械因素和土壤因素,其中基于AdaBoost的复合因素对大豆产量影响模型其拟合程度最优,其R2为0.92,MAE为1.33%,RMSE为1.86%;机械因素、土壤因素都会影响大豆产量,其中机械压实次数以及表层和亚表层的土壤坚实度为影响大豆产量的重...  相似文献   

16.
秸秆还田条件水肥耦合对水稻产量与品质的影响   总被引:1,自引:0,他引:1  
为了研究秸秆还田条件水肥耦合对水稻产量与品质的影响,采用盆栽试验对土壤水分、施氮量、秸秆还田量采用正交处理,同时设置重复3组,其中对照1组.试验结果表明:水分与肥料的投入量对水稻产量影响较大,在适宜的用量范围内,水稻产量与灌水量、氮肥施用量、秸秆还田量呈正相关关系;当超出适宜用量范围后,随着氮肥施用量及秸秆还田量的持续增加,水稻产量并没有提高,而是出现一定程度的降低;水稻产量在氮肥施用量270 kg/hm2、正常灌溉处理、秸秆还田量4 200 kg/hm2情况下达到最高.水稻籽粒蛋白质受氮肥施用量及灌溉水量影响也相对较大,在氮肥施用量324 kg/hm2、分蘖后期水分胁迫、秸秆还田量为4 200 kg/hm2情况下,水稻籽粒蛋白质含量达到最高.  相似文献   

17.
Summary Tolerance of crops to soil sodicity as represented by high exchangeable sodium has been examined utilizing data from field and greenhouse studies. A piecewise linear model has been utilized for describing the crop response curves. Salt tolerance indices including the threshold ESP, slope which represents yield decline per unit increase in ESP and the value of ESP at which yield is reduced by 50% are reported for 20 crops. In respect to threshold ESP, Sesbania is the most tolerant of the crops tested followed by rice (transplanted) and wheat. These are the only three crops in which threshold ESP exceeds 15. Genotypic differences for sodicity tolerance have been examined for rice and wheat, with CSR 3 — a natural selection among the rice genotypes — and Kharchia 65 among the wheat genotypes appear to be the most tolerant. The cumulative effect of ionic imbalance and water uptake are found to be the factors governing tolerance differences. The sodicity tolerance indices reported herein represent the relative sodicity tolerance of crops to high exchangeable sodium and could be used in management and crop planning in amended sodic soils and/or management of sodic waters.Principal Scientist (Soil and Water Conservation Engg.) and Senior Scientist (Plant Physiology) respectively  相似文献   

18.
水稻水肥调控是水稻获得高产的重要原因。为揭示间歇灌溉模式下不同缓释肥施肥水平对水稻生产影响,选取湖北省漳河灌区为研究区域,以水稻品种荃早优丝苗为试验材料,于2019年6-9月开展了淹水灌溉W1和间歇灌溉W2两种灌溉模式以及传统肥N1和缓释肥N2不同施肥水平[F(0.5)、F(0.75)、F(1)、F(1.25)、F(1.5)]互作条件下的水稻种植桶栽试验研究。结果表明,不同水肥处理对水稻株高、叶绿素SPAD终值的影响不显著,但在缓释肥条件下,植株株高、叶绿素SPAD值整体上在一定范围与施肥水平呈正相关,间歇灌溉模式下,N2F(1.5)处理与N2F(1)、N2F(0.75)处理差异显著,N2F(1.5)水平比N2F(1)、N2F(0.75)分别显著高出71%、91%。不同水肥处理对产量的影响显著,淹灌缓释肥W1N2F(1)处理产量最高可达18 170.29 kg/hm2,间歇灌溉传统肥W2N1F(1)处理次之,为17 826.86 kg/hm2。不同缓释肥施肥水平下淹灌模式产量比间歇灌溉平均高6.43%。传统肥条件下,间歇灌溉比淹灌产量高3.7%,缓释肥施肥水平对产量的影响最为显著。水稻种植施用缓释肥时,淹水灌溉模式更为适宜。  相似文献   

19.
The productivity of rice in rainfed upland soils of eastern India is very low (<1 t/ha) and unstable because of erratic monsoon, moisture deficit during dry spells, light textured with less fertile soils and several biological constraints (weeds, pests and diseases). Keeping the urgent need of augmenting the productivity of vast rainfed upland rice ecosystem of eastern India (4.3 million ha), crop diversification technology was generated through on-farm research trials in representative upland rice soils of eastern India after analyzing agro-climatic (rainfall variability, probability and onset of effective monsoon) and edaphic (soil water retention properties) constraints and prospects. Based on rainfall analysis, direct seeded, low water requiring, rice substituted alternative upland crops namely maize, groundnut, pigeonpea, greengram and blackgram (sole or intercropping) was sown in light textured upland rice soils on 24th meteorological weeks (11–17 June) in 3 years 2000–2002 with two to three summer ploughings during pre-monsoon shower (May). Study revealed that in deficit rainfall years (2000 and 2002), when rice yield was affected adversely in light textured upland, higher rice equivalent yield and rain water use efficiency were obtained from groundnut+pigeonpea intercropping followed by sole groundnut and sole pigeonpea. Study also revealed that productivity of rice substituted crops in the same upland did not fluctuate much between rainfall excess (2001) and rainfall deficit years (2002 and 2000). Double cropping in rainfed upland rice soils was also explored through maize–horsegram/sesamum rotation with increased productivity and rainwater use efficiency. The crop diversification technology was found to be very effective for drought mitigation.  相似文献   

20.
Broadbean, chickpea, lentil and soybean were grown in a tank experiment and irrigated with waters of three different levels of salinity. The nitrogen uptake of the crop was determined from the yield of aereal biomass and grain, and the corresponding nitrogen contents. The biological contribution of the soil from nitrogen fixation and transformation of organic nitrogen was calculated as difference between the plant uptake and the amount supplied by fertilizer and irrigation minus the loss by drainage.Soil salinity affected crop yield, crop total nitrogen uptake and the nitrogen contribution of the soil. The latter decreased in % of plant uptake at increasing salinity and also decreased stronger than the plant uptake, pointing to a salinity effect on the mineral nitrogen production by biological activity in the soil through nitrogen fixation and transformation of organic nitrogen. A salinity effect on nitrogen fixation could explain, at least partly, the salt sensitivity of grain legumes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号