首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The aim of this randomised, observer-blinded, crossover study was to compare the effects of four treatments, administered intravenously to six horses: saline and saline; 10 μg/kg detomidine and 7.5 μg/kg buprenorphine; 20 μg/kg detomidine and 7.5 μg/kg buprenorphine; and 20 μg/kg detomidine and 10 μg/kg buprenorphine. Sedation was subjectively assessed and recorded on a visual analogue scale. Peak sedation and duration of sedation were investigated using a univariate general linear model with post-hoc Tukey tests (P<0.05). Increasing the dose of detomidine from 10 to 20 μg/kg increased the degree of sedation when administered with the same dose of buprenorphine (7.5 μg/kg). When administered with 20 μg/kg detomidine, increasing the dose of buprenorphine from 7.5 to 10 μg/kg did not influence the degree of sedation achieved.  相似文献   

3.
The aim of this randomised, observer-blinded, crossover study was to compare the effects of six treatments, administered intravenously to six horses: saline and saline (S/S); detomidine and saline (D/S); detomidine and 5 μg/kg buprenorphine (D/B5); detomidine and 7.5 μg/kg buprenorphine (D/B7.5); detomidine and 10 μg/kg buprenorphine (D/B10); and detomidine and 25 μg/kg butorphanol (D/BUT). The detomidine dose was 10 μg/kg for all treatments in which it was included. Sedation was subjectively assessed and recorded on a visual analogue scale. Peak sedation, duration of sedation and the area under the curve (AUC) for sedation scores were investigated using a univariate general linear model with post-hoc Tukey tests (P<0.05). Peak sedation and duration of sedation were statistically significantly different between treatments (P<0.001). No sedation was apparent after administration of S/S. The AUC was significantly different between treatments (P=0.010), with S/S being significantly different from D/S, D/BUT, D/B5 and D/B7.5, but not D/B10 (P=0.051).  相似文献   

4.
ABSTRACT

Aim: To evaluate the sedative and clinical effects of I/V xylazine, detomidine, medetomidine and dexmedetomidine in miniature donkeys.

Methods: Seven clinically healthy, male adult miniature donkeys with a mean age of 6 years and weight of 105?kg, were assigned to five I/V treatments in a randomised, cross-over design. They received either 1.1?mg/kg xylazine, 20?μg/kg detomidine, 10?μg/kg medetomidine, 5?μg/kg dexmedetomidine or saline, with a washout period of ≥7 days. The degree of sedation was scored using a 4-point scale by three observers, and heart rate (HR), respiration rate (RR), rectal temperature and capillary refill time (CRT) were recorded immediately before and 5, 10, 15, 30, 60, 90 and 120 minutes after drug administration.

Results: All saline-treated donkeys showed no sedation at any time, whereas the donkeys treated with xylazine, detomidine, medetomidine and dexmedetomidine had mild or moderate sedation between 5 and 60 minutes after treatment, and no sedation after 90 minutes. All animals recovered from sedation without complication within 2 hours. The mean HR and RR of saline-treated donkeys did not change between 0 and 120 minutes after administration, but the mean HR and RR of donkeys treated with xylazine, detomidine, medetomidine and dexmedetomidine declined between 5 and 60 minutes after drug administration. The mean rectal temperature of all treated donkeys did not change between 0 and 120 minutes after administration. The CRT for all donkeys was ≤2 seconds at all times following each treatment.

Conclusions and clinical relevance: Administration of xylazine at 1.1?mg/kg, detomidine at 20?μg/kg, medetomidine at 10?μg/kg and dexmedetomidine at 5?μg/kg resulted in similar sedation in miniature donkeys. Therefore any of the studied drugs could be used for sedation in healthy miniature donkeys.  相似文献   

5.
ObjectiveTo study the effects of oromucosal detomidine gel administered sublingually to calves prior to disbudding, and to compare its efficacy with intravenously (IV) administered detomidine.Study designRandomised, prospective clinical study.AnimalsTwenty dairy calves aged 12.4 ± 4.4days (mean ± SD), weight 50.5 ± 9.0 kg.MethodsDetomidine at 80 μg kg?1 was administered to ten calves sublingually (GEL) and at 30 μg kg?1 to ten control calves IV (V. jugularis). Meloxicam (0.5 mg kg?1) and local anaesthetic (lidocaine 3 mg kg?1) were administered before heat cauterization of horn buds. Heart rate (HR), body temperature and clinical sedation were monitored over 240 minutes. Blood was collected from the V. cephalica during the same period for drug concentration analysis. Pharmacokinetic variables were calculated from the plasma detomidine concentration-time data using non-compartmental methods. Statistical analyses compared routes of administration by Student’s t-test and linear mixed models as relevant.ResultsThe maximum plasma detomidine concentration after GEL was 2.1 ± 1.2 ng mL?1 (mean ±SD) and the time of maximum concentration was 66.0 ± 36.9 minutes. The bioavailability of detomidine was approximately 34% with GEL. Similar sedation scores were reached in both groups after administration of detomidine, but maximal sedation was reached earlier in the IV group (10 minutes) than in the GEL group (40 minutes). HR was lower after IV than GEL from 5 to 10 minutes after administration. All animals were adequately sedated, and we were able to administer local anaesthetic without resistance to all of the calves before disbudding.Conclusions and clinical relevanceOromucosally administered detomidine is an effective sedative agent for calves prior to disbudding.  相似文献   

6.
30 warmblood horses were examined before and after sedation with 20 micrograms/kg BW detomidine, to determine changes of cardiac function parameters, using B-mode, M-mode and Doppler echocardiography. 15 horses showed a heart murmur, but no clinical signs of cardiac heart failure, 15 horses had neither a heart murmur nor other signs of cardiac disease. After sedation with detomidine we could recognise a significant increase of end-diastolic left atrium diameter, an increase of end-systolic left ventricular diameter and aortic root diameter. The end-systolic thickness of papillary muscle and interventricular septum showed a decrease. Fractional shortening and amplitude of left ventricular wall motion was decreased after sedation. The mitral valve echogram revealed a presystolic valve closure and an inflection in the Ac slope (B-notch) in xy horses before sedation. Both increased after sedation with detomidine. Doppler echocardiography showed a decrease of blood flow velocity and velocity time integral (VTI) in the left and right ventricular outflow tract after sedation. Regurgitant flow signals were intensified following sedation in xy horses, especially at the mitral valve.  相似文献   

7.
The sedative effect induced by administering xylazine hydrochloride or detomidine hydrochloride with or without butorphanol tartrate to standing dairy cattle was compared in two groups of six adult, healthy Holstein cows. One group received xylazine (0.02 mg/kg i.v.) followed by xylazine (0.02 mg/kg) and butorphanol (0.05 mg/kg i.v.) 1 week later. Cows in Group B received detomidine (0.01 mg/kg i.v.) followed by detomidine (0.01 mg/kg i.v.) and butorphanol (0.05 mg/kg i.v.) 1 week later. Heart rate, respiratory rate, and arterial blood pressure were monitored and recorded before drugs were administered and every 10 minutes for 1 hour after drug administration. The degree of sedation was evaluated and graded. Cows in each treatment group had significant decreases in heart rate and respiratory rate after test drugs were given. Durations of sedation were 49.0 +/- 12.7 minutes (xylazine), 36.0 +/- 14.1 (xylazine with butorphanol), 47.0 +/- 8.1 minutes (detomidine), and 43.0 +/- 14.0 minutes (detomidine with butorphanol). Ptosis and salivation were observed in cows of all groups following drug administration. Slow horizontal nystagmus was observed from three cows following administration of detomidine and butorphanol. All cows remained standing while sedated. The degree of sedation seemed to be most profound in cows receiving detomidine and least profound in cows receiving xylazine.  相似文献   

8.
Clinically, the use of detomidine and butorphanol is suitable for sedation and deepening of analgosedation. The aim of our study was to establish the influence of detomidine used alone and a butorphanol-detomidine combination on brain activity and to evaluate and compare brain responses (using electroencephalography, EEG) by recording SEF90 (spectral edge frequency 90%), individual brain wave fractions (beta, alpha, theta and delta) and electromyographic (EMG) changes in the left temporal muscle in standing horses. Ten clinically healthy cold-blooded horses were divided into two groups of five animals each. Group I received detomidine and Group II received detomidine followed by butorphanol 10 min later. SEF90, individual brain wave fractions and EMG were recorded with a pEEG (processed EEG) monitor using computerised processed electroencephalography and electromyography. The present study found that detomidine alone and the detomidine-butorphanol combination significantly reduced SEF90 and EMG, and they caused changes in individual brain wave fractions during sedation and particularly during analgosedation. The EMG results showed that the detomidine-butorphanol combination provided greater and longer muscle relaxation. Our EEG and EMG results confirmed that the detomidine-butorphanol combination is safer and more appropriate for painless and non-painless procedures on standing horses compared to detomidine alone.  相似文献   

9.
The reversal of detomidine-induced sedation with iv atipamezole was studied in 6 horses. All horses were injected iv with 10 μg and 20 μg/kg bwt detomidine and 15 min later this was followed by 6-, 8- and 10-fold doses of iv atipamezole. Atipamezole caused a quick arousal in all horses with minor side effects. Bradycardia, rhythm disturbances and head ptosis caused by detomidine were not abolished completely at the end of the 15 min observation period, even with the highest atipamezole doses. All horses remained slightly sedated but without ataxia. There were no significant differences in head height, heart rate and sedation score between the different doses of atipamezole for either dose of detomidine. According to the degree of sedation, doses of 100 μg to 160 μg/kg bwt atipamezole are adequate to antagonise detomidine-induced sedation in the horse.  相似文献   

10.
In this study, heart and respiratory rates, cloacal temperature, and quality of sedation were evaluated before (0 min) and after (10, 20, and 30 min) i.m. administration of xylazine (10 mg/kg; n = 7), medetomidine (75 li; n = 6), detcmidine (0.3 mg/kg; n = 6), or diazepam (6 mg/kg; n = 7) in rock partridges (Alectoris graeca). All partridges recovered from sedation without any disturbance. Xylazine and diazepam administration did not induce significant changes in heart rate, which did decrease significantly after medetomidine and detomidine administration (P < 0.001). Mean respiratory rate was decreased dramatically at 20 and 30 min after xylazine (P < 0.001) and medetomidine (P < 0.005) administration, and at all stages of sedation after detomidine injection (P < 0.001), whereas there was not any significant change after diazepam injection. In all groups, cloacal temperature measured at 10, 20, and 30 min tended to decrease compared with baseline values. Sedative effects of the drugs started within 2.1+/-0.2 min for detomidine, 2.6 +/- 0.4 min for diazepam, 3.1 -+/-.4 min for xylazine, and 4.8+/-0.8 min for medetomidine application. There was an extreme variability in time to recovery for each drug: 205 +/-22.2 min for xylazine, 95 -12.2 min for medetomidine, 260+/-17.6 min for detomidine, and 149 + 8.3 min for diazepam. In conclusion, xylazine, medetomidine, detomidine, and diazepam produced sedation, which could permit some clinical procedures such as handling and radiographic examination of partridges to occur. Of the four drugs, xylazine produced stronger and more efficient sedation compared to the others, which could permit only minor procedures to be performed. However, depending on the drug used, monitoring of heart and respiratory rates and cloacal temperature might be required.  相似文献   

11.
The effect of combinations of nalbuphine (0.3 mg/kg) with either detomidine (10 μg/kg) or acepromazine (50 μg/kg) was investigated in ponies. Nalbuphine enhanced the degree of sedation produced by both sedatives; sedation with detomidine and nalbuphine was profound. Cardiovascular and respiratory effects were mild and could usually be attributed to the effect of the sedative itself. Side effects were minimal and gave no cause for concern. It was concluded that nalbuphine, in combination with acepromazine or detomidine, is a safe and effective sedative for use in ponies.  相似文献   

12.
The present study aimed to investigate and evaluate the reversal of sedation, analgesia, ataxia, clinicophysiological findings, and hematobiochemical effects of detomidine by subsequent IV administration of tolazoline or atipamezole to improve safety and utility of detomidine in donkeys. Six mature donkeys weighing 250–300 kg and aged 4–6 years were used on three separate occasions. Each donkey received the following three treatments at the rate of one treatment per week in a randomized crossover study. The first group received 0.04 mg/kg bwt detomidine. The second group received 0.04 mg/kg bwt detomidine followed by 4.0 mg/kg bwt tolazoline. The third group received 0.04 mg/kg bwt detomidine followed by 0.4 mg/kg bwt atipamezole. Sedation, analgesia, ataxia, pulse rate, respiratory rate, and rectal temperature were recorded at 5 minutes before, then at 5, 15, 30, 60, and 90 minutes after injections. Red blood cell and white blood cell counts, Packed cell volume (%), hemoglobin, total protein, cholesterol, glucose, urea, aspartate amino transferase, alanine amino transferase, and gamma glutamyl transferase values were determined. Detomidine induced deep sedation, complete analgesia, and significant ataxia. Pulse and respiratory rates were decreased from the base line values, although rectal temperature was within the baseline value. The alterations in hematological and hematobiochemical parameters were mild and transient.  相似文献   

13.
Butorphanol and detomidine constitute an effective combination for sedation and analgesia in horses. This trial was undertaken to assess the effectiveness of this combination in donkeys. The detomidine and butorphanol were given intravenously one after the other. A dose of 10 microg/kg of detomidine and 25 microg/kg of butorphanol was used. Sedation is easily extended by additional doses of butorphanol. The average dose of detomidine was 11.24 microg/kg and that of butorphanol was 28.0 microg/kg. Four donkeys in the detomidine group required additional sedation and analgesia. Detomidine alone did not totally eliminate coronary band pain. Heart rates dropped significantly in the first minute after the injection of the combination. One donkey developed an atrioventricular block, while another developed a sino-atrial block. Four donkeys developed a Cheyne-Stokes respiratory pattern. The combination of detomidine and butorphanol is an effective combination for sedation and analgesia of donkeys for standing procedures.  相似文献   

14.
Objective: To compare the presence or absence of pain, pain‐related behavioral responses, and hormonal responses to noxious stimuli during standing laparoscopic ovariectomy in mares sedated with continuous intravenous (IV) detomidine infusion and caudal epidural detomidine. Study Design: A double blind prospective study. Animals: Mares (n=12) Methods: Mares were divided into 2 treatment groups; 6 were sedated using continuous IV detomidine infusion and 6 were sedated with caudal epidural detomidine. All mares received IV xylazine (0.33 mg/kg) and butorphanol tartrate (5 mg) premedication before detomidine administration. Venous blood samples were taken to assess serum cortisol levels in each mare at 4 time points: a baseline cortisol measurement after the mares' arrival to the clinic, 10 minutes before surgery, at the removal of the 2nd ovary, and 10 minutes postsurgery. Two surgeons performed bilateral ovariectomy and at 8 time points involving surgical manipulations, noted the presence or absence of pain (yes/no) and scored the patient's response on a 10 cm visual analogue scale (VAS) for pain assessment with 0 indicating no pain responses and 10 cm indicating pain so severe that the mare required additional sedation or analgesia to complete the procedure. Each mare was also assigned a VAS score by each surgeon for the overall satisfaction of analgesia during the entire procedure. Results: Serum cortisol levels between the 2 detomidine administration groups differed significantly at the baseline (precortisol) measurement but not at the 3 remaining time points. Seven of the procedures within the surgeries did not differ significantly in VAS scores between the 2 groups. The initial grasp of the left ovary (the 1st ovary) in the continuous infusion group had a significantly higher (P=.05) median VAS score compared with the caudal epidural group. Conclusions: Mares sedated with a continuous IV infusion of detomidine have similar hormonal and behavioral responses to painful stimuli during standing laparoscopic ovariectomy as mares sedated with caudal epidural detomidine. Clinical Relevance: Sedation using a continuous IV infusion of detomidine can be used for laparoscopic ovariectomy in mares.  相似文献   

15.
Eight buffalo calves (8-12 months, 70-100 kg) were randomly assigned to two groups of four animals each. Animals of group I were given detomidine (100 micrograms/kg), whereas animals of group II received a mixture of detomidine (100 micrograms/kg), diazepam (100 micrograms/kg) and ketamine (3 mg/kg) (DDK) intravenously. Various clinical parameters, such as weak time, down time, pedal and pinprick reflexes, muscle relaxation and extent of sedation, as well as heart and respiratory rates and electrocardiograms were measured before (time 0) and 15, 30, 45, 60, 75 and 90 min after treatment. In all the animals of group II (DDK), the pedal reflex was completely abolished (score: 3.00 +/- 0.00) within 5 min, the pinprick response was either very weak or it was completely abolished at this interval. Muscle relaxation and sedation were excellent within 5 min of DDK administration. The depth of sedation and analgesia was maximum from 5 to 15 min postinjection. Detomidine alone, however, failed to produce appropriate depression of the pedal and pinprick reflexes, sedation was mild and muscle relaxation was inadequate. Heart rate showed a significant (P < 0.05) decrease in group I, but the decrease was non-significant in group II. A more pronounced increase in respiratory rate was observed in group I as compared to group II. Animals of both groups recovered within 90 min without any complication. Minimal changes in the cardiovascular system in the group given the DDK combination were an advantage over the group given detomidine. The results indicated that DDK combination is safe and suitable for 15 min of anaesthesia with excellent muscle relaxation and has only limited cardiorespiratory effects in buffaloes.  相似文献   

16.
Detomidine administered intramuscularly at a dose of 10, 20 or 40 micrograms/kg body mass was evaluated for its sedative effects in 15 unfasted infant calves (age: 15-20 days; body mass: 18-33 kg). The drug produced dose-dependent sedation. At a dose of 10 micrograms/kg detomidine produced effective sedation for 30 to 45 min without any observable analgesia. At doses of 20 or 40 micrograms/kg it caused deep sedation, sternal recumbency, and moderate analgesia of the trunk. Hyperglycaemia was recorded at all dose levels. The changes in respiratory rate, rectal temperature, haemoglobin, packed cell volume, total erythrocyte count and plasma concentration of total protein were not significant.  相似文献   

17.
Background: Signs of tachypnea after sedation of febrile horses with α2‐agonists have been noted previously but have not been further investigated. Objectives: To examine the effects of xylazine and detomidine on respiratory rate and rectal temperature in febrile horses and to investigate if either drug would be less likely than the other to cause changes in these variables. Animals: Nine febrile horses and 9 healthy horses were included in the study. Methods: Horses were randomly assigned to sedation with xylazine 0.5 mg/kg or detomidine 0.01 mg/kg. Heart rate and respiratory rate were recorded before sedation and at 1, 3, and 5 minutes after injection. Hourly measurements of rectal temperature were performed starting before sedation. Results: All febrile horses experienced an episode of tachypnea and antipyresis after sedation. Rectal temperature in the febrile group was significantly lower at 1, 2, and 3 hours after sedation. In several measurements, the decrease was >1°C. Respiratory rate in the febrile group was significantly increased after sedation. All febrile horses were breathing >40 breaths/min and 3 horses >100 breaths/min 5 minutes after sedation. No differences were noted between the 2 treatments. No significant changes in respiratory rate or temperature were noted in the reference group. Conclusions and Clinical Importance: Febrile horses can become tachypneic after sedation with detomidine or xylazine. The antipyretic properties of α2‐agonists need consideration when evaluating patients that have been sedated several hours before examination.  相似文献   

18.
OBJECTIVE: To evaluate the effects of intranasal administration of midazolam and xylazine (with or without ketamine) and detomidine and their specific antagonists in parakeets. DESIGN: Prospective study. ANIMALS: 17 healthy adult Ring-necked Parakeets (Psittacula krameri) of both sexes (mean weight, 128.83+/-10.46 g [0.28+/-0.02 lb]). PROCEDURE: The dose of each drug or ketamine-drug combination administered intranasally that resulted in adequate sedation (ie, unrestrained dorsal recumbency maintained for >or=5 minutes) was determined; the onset of action, duration of dorsal recumbency, and duration of sedation associated with these treatments were evaluated. The efficacy of the reversal agents flumazenil, yohimbine, and atipamezole was also evaluated. RESULTS: In parakeets, intranasal administration of midazolam (7.3 mg/kg [3.32 mg/lb]) or detomidine (12 mg/kg [5.45 mg/lb]) caused adequate sedation within 2.7 and 3.5 minutes, respectively. Combinations of midazolam (3.65 mg/kg [1.66 mg/lb]) and xylazine (10 mg/kg [4.55 mg/lb]) with ketamine (40 to 50 mg/kg [18.2 to 22.7 mg/lb]) also achieved adequate sedation. Compared with detomidine, duration of dorsal recumbency was significantly longer with midazolam. Intranasal administration of flumazenil (0.13 mg/kg [0.06 mg/lb]) significantly decreased midazolam-associated recumbency time. Compared with the xylazineketamine combination, duration of dorsal recumbency was longer after midazolam-ketamine administration. Intranasal administration of flumazenil, yohimbine, or atipamezole significantly decreased the duration of sedation induced by midazolam, xylazine, or detomidine, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Intranasal administration of sedative drugs appears to be an acceptable method of drug delivery in Ring-necked Parakeets. Reversal agents are also effective when administered via this route.  相似文献   

19.
ObjectivesTo evaluate the sedative effects and pharmacokinetics of detomidine gel administered intravaginally to alpacas in comparison with intravenously (IV) administered detomidine.Study designRandomized, crossover, blinded experiment.AnimalsA group of six healthy adult female Huacaya alpacas (70.3 ± 7.9 kg).MethodsAlpacas were studied on two occasions separated by ≥5 days. Treatments were IV detomidine hydrochloride (70 μg kg−1; treatment DET–IV) or detomidine gel (200 μg kg−1; treatment DET–VAG) administered intravaginally. Sedation and heart rate (HR) were evaluated at intervals for 240 minutes. Venous blood was collected at intervals for 360 minutes after treatment for analysis of detomidine, carboxydetomidine and hydroxydetomidine using liquid chromatography–tandem mass spectrometry. Measured variables were compared between treatments and over time using mixed model analysis. Data are presented as the mean ± standard error of the mean, and a p value of <0.05 was considered significant.ResultsOnset of sedation was faster in treatment DET–IV (1.6 ± 0.2 minutes) than in treatment DET–VAG (13.0 ± 2.5 minutes). Time to maximum sedation was shorter in treatment DET–IV (8.3 ± 1.3 minutes) than in treatment DET–VAG (25 ± 4 minutes). Duration of sedation was not different between treatments. There was a significant linear relationship between sedation score and plasma detomidine concentration. HR was less than baseline for 60 and 125 minutes for treatments DET–IV and DET–VAG, respectively. The maximal decrease in HR occurred at 15 minutes for both treatments. The mean maximum plasma concentration of detomidine, time to maximum concentration and bioavailability for treatment DET–VAG were 39.6 ng mL−1, 19.9 minutes and 20%, respectively.Conclusions and clinical relevanceDetomidine administration at the doses studied resulted in moderate sedation when administered IV or intravaginally to alpacas.  相似文献   

20.
Preliminary trials established that, whilst detomidine is ineffective if given by stomach tube and is of variable efficacy in food, it can give effective sedation when administered by the sublingual route. A comparison was made in four ponies of the behavioural effects, and the effects on heart rate of detomidine at three dose rates (20, 40 and 80 μg/kg) given either by intramuscular injection or sublingually by squirting the drug under the tongue. Sedation was assessed by measuring the lowering of the ponies' heads and by scoring their responses to a variety of imposed stimuli. Ponies became sedated following detomidine administration at all doses and by all routes. The lowering of the head induced by detomidine was significantly influenced by the dose of drug and by the route of administration. For either route, higher doses produced the greatest effect. There was a significant correlation between the effects produced by the two routes of administration, the lowering of the head following sublingual administration being approximately threequarters of that after the same dose given intramuscularly. Onset of sedation was achieved more rapidly following intramuscular dosing than after sublingual administration. Falls in heart rate were similar after all drug administrations, but bradycardia was never profound. Subsequent clinical experience has proved that, providing adequate time (45 minutes) is allowed for maximal effects, sublingual administration of detomidine (40 μg/kg) can give a useful degree of sedation in horses which are difficult to inject.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号