首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Pine wilt disease (PWD), caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus, leads to serious losses to pine forestry around the world. Pinus massoniana, which is vulnerable to be attacked by the PWN, is the dominant species used in pine forestry in China. The objective of this study is to develop a direct PCR‐based method for detecting B. xylophilus in the wood of P. massoniana without a separate nematode extraction step. A simple procedure was first developed for isolating B. xylophilus DNA in 5 mg pine wood tissue samples harbouring PWN for detection by PCR amplification. A B. xylophilus‐specific amplicon of 403 bp (DQ855275) was generated by PCR from the infested wood tissue. The entire procedure can be completed within 5 h with one pair of primers. This assay can serve as a rapid, cheap and environmentally friendly method to detect B. xylophilus in samples of P. massoniana.  相似文献   

3.
4.
For reasons of unequal distribution of more than one nematode species in wood, and limited availability of wood samples required for the PCR‐based method for detecting pinewood nematodes in wood tissue of Pinus massoniana, a rapid staining‐assisted wood sampling method aiding PCR‐based detection of the pine wood nematode Bursaphelenchus xylophilus (Bx) in small wood samples of P. massoniana was developed in this study. This comprised a series of new techniques: sampling, mass estimations of nematodes using staining techniques, and lowest limit Bx nematode mass determination for PCR detection. The procedure was undertaken on three adjoining 5‐mg wood cross‐sections, of 0.5 × 0.5 × 0.015 cm dimension, that were cut from a wood sample of 0.5 × 0.5 × 0.5 cm initially, then the larger wood sample was stained by acid fuchsin, from which two 5‐mg wood cross‐sections (that adjoined the three 5‐mg wood cross‐sections, mentioned above) were cut. Nematode‐staining‐spots (NSSs) in each of the two stained sections were counted under a microscope at 100× magnification. If there were eight or more NSSs present, the adjoining three sections were used for PCR assays. The B. xylophilus– specific amplicon of 403 bp ( DQ855275 ) was generated by PCR assay from 100.00% of 5‐mg wood cross‐sections that contained more than eight Bx NSSs by the PCR assay. The entire sampling procedure took only 10 min indicating that it is suitable for the fast estimation of nematode numbers in the wood of P. massonina as the prelimary sample selections for other more expensive Bx‐detection methods such as PCR assay.  相似文献   

5.
The pinewood nematode (PWN), Bursaphelenchus xylophilus, is the causal agent of pine wilt disease (PWD), which is a major problem in East Asia and West Europe. Quick identification of PWN is needed to prevent the dispersal of PWD to healthy forests. Various detection methods of PWN have been developed using anatomical characters and molecular markers. These methods are not suitable for rapid diagnosis because it is difficult to distinguish B. xylophilus from the non‐pathogenic species Bursaphelenchus mucronatus based on morphological characters without expertise in nematode taxonomy and most PCR or isothermal amplification detection methods require time‐consuming processes. In this study, we developed an on‐site PWN detection method using a recombinase polymerase amplification (RPA) assay with a novel extraction buffer (DAP buffer). This new PWN detection method is able to extract genomic DNA from PWN in pinewood by simple buffer consisting of sodium hydrate, polyethylene glycol 200 and dimethyl sulfoxide in 10 min without using the experimental devices and able to distinguish between B. xylophilus and other Bursaphelenchus spp. by amplifying the species‐specific 5S rDNA fragment of B. xylophilus in 10 min. Taken together, our protocol can obtain the result for the detection of PWN in pine tree samples within 30 min. This result suggests that RPA/DAP assay is much faster, easier and cheaper than the conventional methods for detecting PWN.  相似文献   

6.
The pinewood nematode, Bursaphelenchus xylophilus, is the causal agent of pine wilt disease and is transmitted to new host trees by beetles of the genus Monochamus. The increasing interest in imported wood chips from North America for paper production and energy purposes and the corresponding phytosanitary risk of non‐vector transmission of B. xylophilus has been discussed since 1984, the year of the first interception of B. xylophilus in wood chips in the European Union. The long‐term survival of B. xylophilus in wood chips and its non‐vector spread from infested wood chips to non‐infested trees were studied. Pinus sylvestris logs were inoculated with a suspension of B. xylophilus to produce infested wood chips. During the long‐term storage test, B. xylophilus in P. sylvestris wood chips were examined. Four variants, including sealed and openly stored wood chips at both 15°C and 25°C, were studied. For the test of non‐vector spread, B. xylophilus ‐infested wood chips were placed on three‐ to four‐year‐old P. sylvestris saplings under different conditions. Bursaphelenchus xylophilus survived for more than 1 year at both temperatures in the sealed wood chips, which was significantly longer than for the openly stored variant at 25°C. Temperature, tree condition and wood chip location all influenced non‐vector spread through wood chips. Of the 480 trees that were in contact with infested wood chips and showed clear symptoms of pine wilt disease, B. xylophilus were extracted from 42 pines at 25°C and one pine at 15°C. The highest B. xylophilus infestation rates resulting in clear pine wilt disease symptoms (75%) were found in infested wood chips directly attached to stem‐wounded trees at 25°C. However, more variants exhibited B. xylophilus infestation at this temperature; trees with stem or root injuries plus direct contact with infested wood chips to the wounded part were primarily affected. Moreover, non‐vector spread was also detected in stem‐ and root‐injured pines without any direct contact with infested wood chips. Our results confirmed that B. xylophilus can survive for long periods in wood chips and can be transmitted from infested wood chips to damaged trees, but the likelihood of such PWN establishment should be low compared to spread through vectors. These findings must be considered in the pest risk analysis of B. xylophilus, and studies using outdoor trials should be carried out to complete this pest risk analysis.  相似文献   

7.
H. Zhao  C. Chen  S. Liu  P. Liu  Q. Liu  H. Jian 《Forest Pathology》2013,43(6):444-454
To assess the role of bacteria in pine wilt disease (PWD), aseptic M form (with a mucronated tail) and R form (with a round tail) of Bursaphelenchus xylophilus and B. mucronatus were obtained and compared, in terms of reproduction and pathogenicity, with non‐aseptic nematode. In addition, bacteria isolated from non‐aseptic nematodes and pine trees inoculated with non‐aseptic nematodes were identified. The results indicated that the bacteria associated with nematodes significantly lowered the reproduction of R form of B. xylophilus and B. mucronatus. Both the non‐aseptic and aseptic R forms of B. xylophilus induced death in all infected 7‐ to 8‐year‐old pine trees, while the non‐aseptic and aseptic M forms of B. xylophilus and B. mucronatus caused almost no plant mortality. High numbers of the non‐aseptic and aseptic R forms of B. xylophilus were distributed throughout the inoculated trees, while B. mucronatus and M form of B. xylophilus nematodes were lower in number and their distribution in stems limited within the inoculation site. Bacteria isolated from non‐aseptic nematodes were not recovered from the pine trees inoculated with these same kinds of nematodes. Two species of bacteria were both isolated from non‐aseptic B. mucronatus and from R form of B. xylophilus. Microbacterium trichotecenolyticum was common to both the control and inoculated pine trees. These results suggest that R form of B. xylophilus is the causal agent of PWD and that bacteria cannot increase the virulence of B. xylophilus and B. mucronatus.  相似文献   

8.
The pinewood nematode (PWN), Bursaphelenchus xylophilus, is a serious quarantine pest first detected in Portugal and Europe in 1999. It is the causal agent of pine wilt disease (PWD). A resistance breeding programme has been initiated to contribute to control the evolution of the disease. Five hundred and four adult maritime pine, Pinus pinaster, trees were phenotypically selected as candidate trees for this programme from an area affected by PWD. To identify tolerance to the nematode, the selected trees were monitored monthly. Over the course of 1 year, 57 candidate trees died and were tested for the presence/absence of the PWN. As accuracy of detection is of major importance, an ITS‐PCR‐based method applied directly to wood from adult maritime pine trees was tested and compared with a standard morphological identification method. The results showed that the use of PCR to detect the pathogen provided more rapid and accurate results in comparison with the standard morphological identification. Thus, this method is suitable to be used in the survey of the breeding population for resistance/tolerance to PWD.  相似文献   

9.
10.
The pinewood nematode, Bursaphelenchus xylophilus (Steiner and Buhrer, J. Agric Res. 48, 1934, 949), Nickle (J. Nematol. 2, 1970, 375), is the causative agent of the pine wilt disease and causes serious damage to pine forests around the world. During a survey for the pinewood nematode, four other Bursaphelenchus species (Bursaphelenchus mucronatus, B. sexdentati, B. anamurius and B. vallesianus) were isolated from wilted pine trees in Turkey. To understand the effects of these Bursaphelenchus species on wilting of pine trees, a study was conducted under greenhouse conditions. Two‐year‐old seedlings of three pine species (Pinus nigra, P. brutia and P. pinea) and one cedar species (Cedrus libani) were used. Fifteen seedlings of each species were inoculated with nematodes and 10 seedlings of each species served as controls. The inoculum densities used for each seedling contained approximately 1000 (±100) nematodes of all life stages in 0.25 ml of distilled water. The first wilting symptoms were observed in the fifth week in all pine species but not in the cedar seedlings. All seeding mortality occurred between the 5th and 13th weeks of the study; no mortality was observed outside of this period. The most pathogenic nematode species was B. mucronatus, closely followed by the other species. The most susceptible seedling species was P. nigra, and C. libani was the most resistant species.  相似文献   

11.
In February 2015, an unexpected windstorm downed five hectares of a European black pine Pinus nigra subsp. laricio forest formation located close to Vallombrosa, Florence (Central Italy). In the following spring, an extensive survey was conducted in the area. Felled trees, stumps and all the suitable plant material were screened for the presence of the pinewood nematode (PWN), Bursaphelenchus xylophilus, by sampling wood and bark. Bark beetles were then collected from the gallery systems on the inner side of bark samples and observed in the laboratory. The following bark beetles were morphologically identified: Ips sexdentatus, Orthotomicus erosus, O. laricis and Pityogenes bidentatusa. The dissection of Ips sexdentatus allowed the extraction of numerous nematodes that were morphologically and molecularly identified as Ektaphelenchoides pini. Conversely, only few nematode specimens were isolated from either pine bark or wood. These individuals could be only molecularly identified and belonged to an undescribed nematode taxon. Even though no PWN was recorded in the investigated sites, our survey allowed the detection of a new association between E. pini and I. sexdentatus on P. nigra.  相似文献   

12.
We examined the effectiveness of a new Bursaphelenchus xylophilus detection kit, based on loop‐mediated isothermal amplification (LAMP), in old discs taken from the stem base of B. xylophilus‐infested dead trees of Pinus armandii var. amamiana (PAAm) occurring in their natural habitats. LAMP products, representing a past B. xylophilus infection, were detected in two consecutive trials from 16 of 20 discs collected from PAAm trees that died between 2003 and 2006. Bursaphelenchus xylophilus were more frequently detected using LAMP in wood samples taken from sapwood than from heartwood. No significant differences in the detection of B. xylophilus using LAMP were observed in relation to the disc collection time (from 3 to 6 years before the analysis). Bursaphelenchus xylophilus were not detected using LAMP in four discs, although a B. xylophilus infection had been confirmed for the original PAAm trees at the time they were found dead. This may have resulted from the small amount of wood chips needed for the LAMP test or the reduced number and uneven distribution of the nematode in the old dead trees. The results indicate that the new B. xylophilus detection kit will be a very efficient tool for conducting retrospective analysis of PAAm mortality factors.  相似文献   

13.
To determine why pine wilt disease caused by the pinewood nematode (Bursaphelenchus xylophilus) recurs in the same pine stand even after thorough eradication of dead pine trees, the amount of oleoresin exudation from artificial wounds was measured from 72 Pinus koraiensis trees, highly susceptible to this disease, for 4 years. The amount of exuded oleoresin was rated from 0 to 4. All values obtained for each tree were summed at each measurement; thereby a cumulative curve was drawn to monitor the physiological condition of each test tree. Cumulative curves suggest that some pine trees that died had already been infected in the previous year or earlier and then had survived without any visible symptoms. If cessation of oleoresin exudation delays, and overlaps with activity of Monochamus alternatus, the vector beetle of pinewood nematodes, in the following season, such trees can be referred to as latent carriers or asymptomatic carriers. They could play a significant role as attractants for M. alternatus that could then transmit B. xylophilus to neighboring trees. Behavior of M. alternatus caged with several pine seedlings, only one of which acted as an asymptomatic carrier of B. xylophilus, confirmed this idea. The presence of asymptomatic pine trees, which harbored B. xylophilus nematodes or had reduced annual elongation, near stumps of newly dead trees in the study stand also substantiated this hypothesis.  相似文献   

14.
For diagnosis of pine wilt disease, a simple PCR‐RFLP method was developed to identify and to differentiate two similar nematode species, based on a living or preserved single specimen. Pinewood nematodes, Bursaphelenchus xylophilus, and Bursaphelenchus mucronatus were examined. A single nematode in 1 µl of distilled water was put on a glass slide. When the water had almost dried the nematode was crushed with a filter paper chip, 1.5 mm × 1.5 mm, with the aid of forceps. The filter paper chip containing nematode remains was immediately placed into PCR buffer as the DNA template. The primer set used was to amplify ribosomal DNA containing the inter‐transcribed spacer (ITS) 1, 5.8S and ITS2 regions. The PCR product was consistently obtained from a single nematode, and digesting the product with restriction endonuclease, Hinf I, enabled discrimination between B. xylophilus and B. mucronatus. This method was simple, convenient and definitive, and could successfully determine the pathogen in the diagnosis of pine wilt disease. This method was applicable also to nematode specimens preserved under various conditions except in the case of those preserved in aldehyde‐containing fixatives.  相似文献   

15.
16.
To clarify the pathogenicity of Bursaphelenchus nematodes to adult pine trees, inoculation experiments using six species of B. xylophilus group nematodes and ca. 10‐year‐old trees of Pinus thunbergii were conducted. Trees inoculated with an avirulent isolate (C14‐5) of B. xylophilus did not die during the survey, but showed a decline in oleoresin exudation compared with the controls. Fifteen months after the inoculation, a small number of B. xylophilus survived in a tree inoculated with B. xylophilus C14‐5. Trees inoculated with B. mucronatus, B. doui, B. luxuriosae, B. conicaudatus and Bursaphelenchus sp. NK224 (undescribed) showed no decline in oleoresin exudation and no external symptoms of wilt. However, 9 months after the inoculation, a small number of B. luxuriosae survived in a tree inoculated with the nematodes, although four other nematode species were not isolated from trees inoculated with them. These results were approximately consistent with our previous results (Kanzaki, N.; Aikawa, T.; Maehara, N.; Ichihara, Y., 2010, J. For. Res.; in press), in which an avirulent isolate (OKD‐1) of B. xylophilus and B. luxuriosae caused water flow inhibition without external symptoms in 3‐year‐old seedlings. Therefore, to examine the pathogenicity of the nematodes to pines, it is useful to use 3‐year‐old seedlings in inoculation experiments when adult trees cannot be used.  相似文献   

17.
As a result of the detection of the pinewood nematode Bursaphelenchus xylophilus in Portugal, and its subsequent spread to Spain, intense surveys were conducted to screen for the presence of Bursaphelenchus species in Romania. Herein, we report recent surveys of insects potentially vectoring Bursaphelenchus species collected using trap trees or pheromone‐baited traps placed in the forest. Trap felled spruce trees (Picea abies) and pheromone‐baited traps were installed in six different counties in Romania (Bra?ov, Sibiu, Suceava, Hunedoara, Timi? and Dâmbovi?a). Ten different species of insects distributed among Curculionidae and Cerambycidae were obtained. Nematodes were extracted from insects and observed to validate the presence of Bursaphelenchus specimens. One female identified as Monochamus sutor was the only specimen carrying nematodes in the genus Bursaphelenchus. Nematodes were identified as B. mucronatus based on morphological and molecular features. This is the first detection and report of natural spread of B. mucronatus in Romania. The absence of B. xylophilus was confirmed in the areas of Romania surveyed in this work.  相似文献   

18.
A study was performed to clarify the population structure of the pinewood nematode, Bursaphelenchus xylophilus, within single Pinus thunbergii trees after double infection of nematode populations using the polymerase chain reaction‐restriction fragment length polymorphism (PCR‐RFLP) method. Two nematode isolates, which had different levels or the same level of virulence, were inoculated into 6‐year‐old trees at the same or different times and then the propagated nematodes were collected from the trees after 1, 6 and 9 months. When a virulent and an avirulent isolate were inoculated into a single tree, an overwhelming propagation of the virulent isolate was observed there irrespective of the inoculation order of isolates or collection time of nematodes. However, when two virulent isolates were inoculated, propagation through the interbreeding between the two isolates was observed. In the case of the staggered inoculations with two virulent isolates, the frequency of nematodes with a PCR‐RFLP pattern of the primarily inoculated isolate increased with the time after nematode inoculations. This suggested that the population structure of B. xylophilus within a single tree varied by the virulence level of nematode populations transmitted and their transmission order.  相似文献   

19.
From January 2003 to June 2005, samples from 3416 batches of wooden packaging material were inspected for the presence of nematodes in the Ningbo Entry–Exit Inspection and Quarantine Bureau, China. Bursaphelenchus spp. were detected in 202 batches from 25 different countries. The following species were identified on the basis of their morphology and their intergenic transcribed spacer‐restriction fragment length polymorphism (ITS‐RFLP) patterns: B. xylophilus, B. fungivorus, B. rainulfi, B. hylobianum, B. thailandae, B. mucronatus, B. aberrans, B. lini, B. singaporensis, B. doui, B. conicaudatus, B. vallesianus, B. pinasteri, B. hofmanni and B. arthuri. The most frequently found species were B. mucronatus (57 batches), B. xylophilus (40 batches), B. fungivorus (21 batches), B. rainulfi (19 batches) and B. thailandae (nine batches). The pine wood nematode B. xylophilus was not only found in packaging wood imported from areas where it is known to occur (i.e. The United States of America, Japan, Korea, Hong Kong and Taiwan), but also from countries considered to be free of this dangerous pest (i.e. Brazil, Thailand, Belgium, The Netherlands, Italy and Spain). The occurrence of B. xylophilus in packaging wood from countries regarded as being free of the nematode can most likely be explained by the global circulation of wooden packaging material among infested and non‐infested countries. Our findings emphasize the need to fully implement international standards on phytosanitary treatment of packaging wood, in order to prevent further spread of the pine wood nematode, and the need for careful re‐examination of the current heat treatment measures.  相似文献   

20.
E. Asai  K. Futai 《Forest Pathology》2005,35(2):135-144
Six‐month‐old Japanese black pine seedlings (Pinus thunbergii) were exposed to simulated acid rain (SAR) at pH 3 and 2 three times a week. After treatment for 2 months, the seedlings were inoculated with a virulent isolate (S10) of the pinewood nematode (Bursaphelenchusxylophilus), at three inoculum levels (Pi = 50, 160 or 500 nematodes per seedling). In seedlings inoculated with 500 nematodes, both population growth of nematodes and disease development were accelerated by pretreatment with SAR at pH 3 or 2. In seedlings inoculated with 50 nematodes, population growth of the nematodes was suppressed and more time was needed for seedlings to die when pretreated with pH 3 SAR. This suggests that exposure to pH 3 SAR increased not only the progress of mortality, but also simultaneously enhanced the tolerance limit of the seedlings to the pinewood nematode – the critical value of physiological burden (represented as a product of time and initial nematode population) necessary to kill a seedling. Exposure to pH 2 SAR accelerated nematode reproduction in seedlings and increased seedling mortality irrespective of the number of nematodes inoculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号