首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we implemented a potted water supply experiment for 100 days by a completely random sole-factored design with five treatments: 100% (W100), 80% (W80), 60% (W60), 40% (W40) and 20% (W20) of water holding capacity (WHC), corresponding to the soil volumetric water content (SVWC) maintained at 38.8 ± 0.3%, 31.6 ± 1.7%, 25.6 ± 1.3%, 16.5 ± 0.7%, and 8.1 ± 1.1%, respectively. The objective was to evaluate the ability of the 2-month-old Campylotropis polyantha (Franch.) Schindl. seedlings to tolerate drought and to explore the mechanism resisting drought. We monitored the growth process of seedling height and leaf number monthly and further investigated those changes in plant growth, dry mass accumulation and allocation, water-use efficiency (WUE), leaf functional traits, chlorophyll a fluorescence and pigment contents across the water deficit gradient. We found that the seedlings presented optimal growth, dry mass production, and physiological activity only at the W100 and W80 treatments and afterwards significantly decreased with progressive water deficit; the WUE was improved under moderate water stress (W60 and W40) but reduced under severe stress (W20). The serious leaf shedding, growth stopping and seedling death under the W20 condition revealed that the current-year shrub seedlings could not withstand severe drought. Water stress-induced decrease in total plant leaf area due to a combination of limited expansion of younger leaves and shedding of old leaves caused the leaf area ratio reduction under drought. The reduced mesophyll cell was a major anatomical response of leaves along the water stress gradient. The progressive water stress significantly damaged light harvesting complex and reduced photochemical processes and PSII activity. Our results clearly showed that the current-year shrub seedlings took the avoidance and tolerance mechanisms to withstand progressive drought stress and around 25.6% SVWC and around 12.3% SVWC separately are thresholds to limit the optimal growth and dry mass production and to last growing and surviving for the current-year shrub seedlings.  相似文献   

2.
蓝莓叶片与抗旱性相关的解剖结构指标研究   总被引:10,自引:0,他引:10  
为用叶片解剖结构指标评价蓝莓(Vaccinium spp.)的抗旱性提供科学依据,并为蓝莓抗旱性品种的选育提供便捷有效的方法,测定分析了蓝莓8个品种的7项与抗旱性相关的叶片解剖结构指标,分别为叶片主脉直径、叶片厚度、上表皮厚度、上表皮角质层厚度、栅栏组织厚度、叶片组织结构紧密度和气孔密度。方差分析结果显示,8个品种在每项叶片解剖结构指标上总体差异均为极显著。对各品种进行了两两之间的单因素多重比较,筛选出叶片厚度、上表皮厚度和上表皮角质层厚度3项主要指标,并用隶属函数值法对8个品种的抗旱性大小排序为:园蓝>阳光蓝>梯芙蓝>灿烂>密斯黛>南月>布里吉塔>蓝鸟。  相似文献   

3.
The importance of root size system has long been recognized as crucial to cope with drought conditions. This investigation was conducted to: (i) evaluate the variability in root size system of hot pepper at maturity; (ii) estimate the effect of root size system on yield under drought conditions; and (iii) effect of water stress on xylem vessel development and total xylem cross-sectional area in roots of hot pepper cultivars. Twelve diverse hot pepper cultivars were grown in wooden boxes with two different water treatments, normal and in 50% water application as water deficit condition. Mean primary root length (PRL) showed a significant positive correlation with final fruit yield at normal as well as stressed condition. Total dry mass of fruit was reduced by 34.7% in drought treatments (DI) compared to full watered treatment (FI). At harvest, water-stressed plants had 21% lower root dry weight mass but higher root:shoot ratio other than FI. PRL, lateral root density, total xylem area per root cross-section showed a significant positive relationship with fruit yield. Also, lateral root density was higher in cultivars with higher xylem density, particularly in tolerant cultivars. Lateral root density (r = 0.847, P < 0.001) and total xylem cross-sectional area in root (r = 0.926, P < 0.001) were tightly related with total biomass production. The importance of root traits contributing to withstand drought in hot pepper is discussed.  相似文献   

4.
袖叶片与抗旱性相关的解剖结构指标研究   总被引:3,自引:0,他引:3  
以柚为试材,测定了10个品种柚的叶片厚度、上表皮厚度、下表皮厚度、栅栏组织厚度、海绵组织厚度、叶片组织结构紧密度、气孔纵径、气孔横径、气孔大小、气孔密度和气孔相对面积,采用隶属函数分析法进行柚不同品种的抗旱性分析。结果表明:10个品种在各项叶片解剖结构指标上差异极显著。对11个抗旱指标进行了主成分分析和隶属函数分析,10个品种的抗旱性大小排序为:左氏柚>矮文柚>东风早柚>虎蜜柚>脐柚>华蓥山柚>通贤柚>梁平柚>早熟柚>强德勒。  相似文献   

5.
In order to screen almond genotypes for drought tolerance, three different irrigation levels including moderate and severe stress (Ψs = −1.2 and −1.8 MPa respectively) and a control treatment (Ψs = −0.33 MPa) were applied for five weeks to six different cultivated almond seedlings. A factorial experiment was conducted with a RCBD which included 3 irrigations factors, 6 genotype factors and 3 replications. Seeds were prepared from controlled pollination of the bagged trees (after emasculation and flower isolation using isolator packets in the previous year). Genotypes included: homozygote sweet (Butte), heterozygote sweet (SH12, SH18, SH21 and White) and homozygote Bitter (Bitter Genotype). Leaf and root morphological and physiological traits including; midday relative water content, midday leaf (xylem) water potential, shoot dry weight and growth, total leaf area, leaf size, total leaf dry weight, specific leaf area, leaf greenness (SPAD), stomatal size and density, root and leaf nitrogen content and chlorophyll fluorescence were measured throughout the study. Results showed the six genotypes had different reactions to water stress but all genotypes showed an ability to tolerate the moderate and severe stresses and they showed different degrees of response time to drought stress. Almond seedling leaves could tolerate Ψw between −3 and −4 MPa in short periods. Water availability did not significantly affect stomatal density and size of young almond plants. The analysis of leaf anatomical traits and water relations showed the different strategies for almond genotypes under water stress conditions. Although almond seedlings even in severe stress kept their leaves, they showed a reduction in size to compensate for the stress effects. All genotypes managed to recover from moderate stress so Ψw = −1.2 could be tolerated well by almond seedlings but Ψw = −1.8 limited young plant growth. Leaf greenness, leaf size, shoot growth, shoot DW, TLDW and stomatal density were not good markers for drought resistance in almond seedlings. Root DW/LA, lower stomatal size and lower SLA might be related to drought resistance in cultivated almonds. Butte had the least resistance and White showed better performance during water stress while other genotypes were intermediate. Bitter seedlings showed no superiority in comparison with other genotypes under water stress conditions except for better germination and greater root DW which might make them suitable as rootstocks under irrigation conditions.  相似文献   

6.
Leaf structural adaptations for the reduction of water loss were examined in two olive (Olea europaea L.) cultivars (Chemlali and Chétoui) growing under water stress conditions. Leaf measurements included leaf tissue thickness, stomatal density, trichome density, specific leaf area, leaf density, water relations, and gas exchange. We found considerable genotypic differences between the two cultivars. Chemlali exhibited more tolerance to water stress, with a thicker palisade parenchyma, and a higher stomatal and trichome density. Chemlali leaves also revealed lower specific leaf area and had higher density of foliar tissue and lower reduction in net CO2 assimilation rate. The mechanisms employed by these two cultivars to cope with water deficit are discussed at the morpho-structural level. The morphological and structural characteristics of the leaves are in accordance with physiological observations and contribute to the interpretation of why the olive cv. Chemlali is more drought-tolerant than cv. Chetoui. Furthermore, from the behaviour of Chemlali plants we consider this cultivar very promising for cultivation in semi-arid areas.  相似文献   

7.
Pistachio cultivation requires the use of rootstock because grafting is the only form of vegetative propagation. The main commercial rootstocks are Pistacia integerrima L., Pistacia atlantica Desf., Pistacia terebinthus L. and Pistacia vera L. Pistachio is considered to be a drought and saline-resistant crop; however, there is little information describing varietal responses of rootstocks to water stress. Some studies have suggested that P. terebinthus L. is the most drought and cold resistant rootstock. The effect of the rootstock on the water relations of the grafted plant is crucial for improving crop performance under water stress conditions and for developing the best irrigation strategy. This work studied the physiological response to water stress of pistachio plants (P. vera L. cv. Kerman) grafted onto three different rootstocks P. terebinthus L., P. atlantica Desf. and a hybrid from crossbreeding P. atlantica Desf. × P. vera L. Plant physiological responses were evaluated during a cycle of drought and subsequent recovery in potted plants. Parameters measured were soil moisture, trunk diameter, leaf area, leaf number, leaf and stem dry weight, stem water potential, leaf stomatal conductance. The results showed different responses of cv. Kerman depending on the rootstock onto which it had been grafted. The hybrid rootstock was associated with a higher degree of stomatal control and reduced leaf senescence compared to P. atlantica and P. terebinthus, despite being associated with the most vigorous shoot growth. P. terebinthus enabled very effective stomatal control but was also associated with the most rapid leaf senescence. P. atlantica was associated with less vigorous shoot growth and similar levels of water stress as occurred with the others rootstocks under conditions of high evaporative demand, which was associated with lower stomatal control. The selection of the most effective rootstock choice for different environmental conditions is discussed.  相似文献   

8.
In a long term experiment on salt tolerance, ber (Zizyphus mauritiana Lamk.) (cv. Umran) was grown in lysimeters artificially salinized with NaCl, CaCl2, MgCl2 and MgS02. No plants survived the highest salinity of 20 dSm-1 electrical conductivity. Pruning weight and tree canopy area were reduced significantly at 5 dSm-1 but trunk diameter did not decrease until above 5 dSm-1 soil ECe. The concentration of Na, Ca, Mg and Cl in leaf tissues increased substantially with increasing salinity whereas that of K decreased. Higher salinity reduced the yield and fruit set but had no adverse effect on fruit quality. The 50% yield decrement was found to be associated with a soil ECe value of 11.30 dSm“'.  相似文献   

9.
Summary

Leaf silvering is a physiological disorder of marrows, Cucurbita pepo, exacerbated by drought. Silvered leaves had spaces between the upper epidermis and the mesophyll cells and within the mesophyll. The palisade cells were smaller and spongy mesophyll cells fewer. Completely silvered leaves contained 14% less chlorophyll per unit leaf blade area than green leaves. The rate of photosynthesis decreased as severity of silvering increased. The rate of photosynthesis was about 30% lower in the completely silvered than in the green leaves at saturating and above-saturating light and CO2. The results suggest that in silvered plants the CO2 absorption mechanism has been affected.  相似文献   

10.
Callistemon is an Australian species used as ornamental plant in Mediterranean regions. The objective of this research was to analyse the ability of Callistemon to overcome water deficit in terms of adjusting its physiology and morphology. Potted Callistemon laevis Anon plants were grown in controlled environment and subjected to drought stress by reducing irrigation water by 40% compared to the control (irrigated to container capacity). The drought stress produced the smallest plants throughout the experiment. After three months of drought, the leaf area, number of leaves and root volume decreased, while root/shoot ratio and root density increased. The higher root hydraulic resistance in stressed plants caused decreases in leaf and stem water potentials resulting in lower stomatal conductance and indicating that water flow through the roots is a factor that strongly influences shoot water relations. The water stress affected transpiration (63% reduction compared with the control). The consistent decrease in gs suggested an adaptative efficient stomatal control of transpiration by this species, resulting in a higher intrinsic water use efficiency (Pn/gs) in drought conditions, increasing as the experimental time progressed. This was accompanied by an improvement in water use efficiency of production to maintain the leaf water status. In addition, water stress induced an active osmotic adjustment and led to decreases in leaf tissue elasticity in order to maintain turgor. Therefore, the water deficit produced changes in plant water relations, gas exchange and growth in an adaptation process which could promote the faster establishment of this species in gardens or landscaping projects in Mediterranean conditions.  相似文献   

11.
Grapevine cultivars are known to differ in their drought adaptation mechanisms, but there is little knowledge on how they behave when recovering after a drought event. The effects of increasing water deficit and recovery after rewatering were evaluated on four widely grown red grapevine cultivars native from different climates (Cabernet Sauvignon, Cs; Garnacha, syn. Grenache, Ga; Merlot, Me; and Tempranillo, Te) through the study of gas exchange (GE) measurements and transpiration decline curves (TDC). As a whole, Ga has proved to be the cultivar best adapted to water deficit, since it showed the highest water use efficiency (WUE) and the greatest water saving ability after leaf excision. Te, on the contrary showed the lowest values for those parameters under increasing stress, although when rewatered showed greater acclimation ability than Cs and Me, remarkably improving its behaviour. The two methodological approaches (GE and TDC) used at different water deficit levels and after rewatering, have complemented each other, allowing a better cultivar characterization than each method would had allowed itself.  相似文献   

12.
Citrus rootstock responses to water stress   总被引:1,自引:0,他引:1  
Tolerance to drought-stress (DS) of the citrus rootstock Forner–Alcaide no. 5 (FA-5) was tested and compared with that of its parents, Cleopatra mandarin (CM) and Poncirus trifoliata (PT). Nine-month-old seedlings of CM, PT and FA-5 and 15-month-old grafted trees of ‘Valencia’ orange scions on these three rootstocks were cultivated in sand under glasshouse conditions and irrigated with a nutrient solution. Plants were drought-stressed by withholding irrigation until leaves were fully wilted. Survival time of both seedlings and grafted trees under DS was linked to the water extraction rate from the soil, which depended mainly on leaf biomass and on transpiration rate. Seedling responses to DS affecting leaf water relationships and gas exchange parameters varied among genotypes. FA-5 seedlings survived longer than the other seedlings, maintaining the highest levels of water potential, stomatal conductance, transpiration rate and net CO2 assimilation towards the end of the experiment, when water stress was most severe. Thus, FA-5 was more resistant to DS than its parents (CM and PT). Moreover, rootstock affected the performance of grafted trees under water stress conditions. The higher drought tolerance induced by FA-5 rootstock could be related to the greater osmotic adjustment (OA), which was reflected by smaller reductions in leaf relative water content (RWC) and in higher turgor potentials and leaf gas exchange than the other rootstocks.  相似文献   

13.
The tetraploid of Dendranthema nankingense (Nakai) Tzvel. was induced by the colchicine treatment using nodal segments. Ploidy level was determined by an analysis of flow cytometry and chromosome counting. The morphological characteristics such as the stomata, leaves, flowers and pollen grains of the tetraploid were significantly larger than those of the diploid. The tolerance responses of the diploid and tetraploid were compared under the imposition of heat, cold, drought and salinity stress. Semi-lethal temperatures suggest that cold tolerance is improved by polyploidization, but the heat tolerance is reduced. Under drought and salt stress, the activity of peroxidase (POD) and relative water content (RWC) in the tetraploid were higher than those in the diploid. Accordingly its malondialdehyde (MDA) content maintained a lower level. The content of chlorophyll (a + b) in the tetraploid was higher, and decrease of its content was postponed in tetraploid compared with the diploid under salt stress. It suggested that polyploidization could alleviate oxidative stress, maintain good water balance and higher chlorophyll (a + b) content, thereby enhanced the drought and salt tolerance in colchicine induced tetraploid.  相似文献   

14.
七种藤本绿化植物叶解剖结构与抗旱性研究   总被引:1,自引:0,他引:1  
通过石蜡切片和指甲油印迹法,对北京地区常见的小叶扶芳藤、金银花、紫藤、美国凌霄、五叶地锦、南蛇藤、山荞麦等7种藤本绿化植物叶片的解剖结构和气孔特征进行研究。结果表明:7种藤本植物叶结构属于中生植物范畴,叶片为异面叶,叶解剖结构和气孔特征等19个间指标差异均达到极显著水平,其中表皮厚度、角质层厚度和海绵组织细胞宽度、气孔密度和气孔长径是对干旱较为灵敏的解剖性状,种间差异可以达到4~9倍。利用主成分分析发现根据抗旱能力可将7种藤本植物分为4类:小叶扶芳藤单独为抗旱性最强的1类,其次是由金银花、紫藤和美国凌霄组成的第2类,五叶地锦和南蛇藤为第3类,抗旱能力稍弱,抗旱能力最差是山荞麦。  相似文献   

15.
以樱桃番茄为试材,采用基质培养的方法,使用不同浓度PEG 6000(0、5%、10%、15%)模拟干旱胁迫,研究了樱桃番茄叶片气孔特征、气体交换过程和叶绿素素含量对干旱胁迫的响应,以期为提升樱桃番茄在干旱地区土壤种植效率以及耐干旱品种的选育提供参考依据。结果表明:不同干旱处理对气孔长度、气孔周长、气孔面积、气孔宽度和气孔形状指数均产生显著的影响(P<0.05),除了气孔宽度外,均随着干旱胁迫的加剧而减少。随着干旱胁迫的加剧净光合反应速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)均呈现明显下降趋势(P<0.05)。但是,樱桃番茄叶片的细胞间CO_2浓度(Ci)随着干旱胁迫的加剧而升高,且与对照存在显著差异(P<0.05)。另外,干旱胁迫导致樱桃番茄叶片的水分利用效率(WUE)呈先减少后增加的趋势,但均小于对照。此外,樱桃番茄叶片的叶绿素含量随着干旱胁迫加剧呈现先上升后下降的趋势。表明干旱胁迫条件下樱桃番茄叶片主要通过调整单个气孔结构(气孔开度大小)及气孔分布特征(气孔密度和空间分布格局)及叶绿素含量来进一步优化气体交换效率。该研究结果不仅有助于深入理解干旱胁迫对樱桃番茄气孔特征、气体交换过程和叶绿素含量之间关系的影响机理,而且还将为提升樱桃番茄在干旱地区土壤种植效率以及耐干旱品种的选育提供参考依据。  相似文献   

16.
亮叶忍冬与蔓生紫薇叶片解剖结构与抗旱性的关系   总被引:2,自引:0,他引:2  
通过石蜡切片法对亮叶忍冬,蔓生紫薇叶片的解剖结构进行了观察,并对叶片厚度、主脉厚度、栅栏组织厚度、海绵组织厚度、第1层栅栏组织细胞密集度、栅栏组织厚/海绵组织厚、栅栏组织/叶肉组织、上下表皮厚度等抗旱性结构指标上进行检验比较,方差分析。结果表明:亮叶忍冬,蔓生紫薇在水分胁迫下,叶片的解剖结构与对照在叶片厚度、主脉的厚度等抗旱性指标上均极显著变薄,而栅栏组织与叶肉组织比、栅栏组织与海绵组织比、第1层栅栏组织密集度上,2种处理及与对照均没有显著差异;亮叶忍冬、蔓生紫薇2种植物间叶片的解剖结构在各抗旱指标上表现出极显著的差异,其抗旱性为亮叶忍冬蔓生紫薇。  相似文献   

17.
Rational irrigation scheduling based on sensing drought stress directly in plants is becoming more important due to increasing worldwide scarcity of fresh water supplies. In order to evaluate a set of potential biochemical and physiological stress indicators and select the best drought stress markers in apple trees, two experiments with potted trees and an experiment with intensive orchard grown apple trees ‘Elstar’ and ‘Jonagold Wilmuta’ were conducted in early summer in tree following years. Biochemical parameters: ascorbic acid, glutathione, tocopherols, chlorophylls, carotenoids, free amino acids, soluble carbohydrates, and physiological parameters already known as stress indicators in apple trees: predawn and midday leaf water potential, net photosynthesis (Pn), stomatal conductance (gs), transpiration (Tr) and intercellular CO2 concentration (Ci) were measured in leaves of apple trees subjected to different intensities of slowly progressing drought or no drought. Our study pointed out zeaxanthin and glutathione as the best drought stress markers in apple trees. Ascorbate and sorbitol appeared to be reliable indicators of moderate drought only. Responses of other tested biochemical parameters were not consistent enough to prove their role as drought stress markers in apple trees. Relative air humidity should be taken in consideration when physiological parameters gs, Pn, Tr and Ci are used as drought stress markers in apple trees. Our study revealed that in situations where low relative air humidity affects gs and with gs connected physiological parameters, biochemical markers may be better tool for determination of drought stress intensities in apple trees.  相似文献   

18.
Chinese kale (Brassica oleracea var. alboglabra) and Caisin (Brassica rapa subsp. parachinensis) are leafy vegetable crops grown in south-east Asian countries where rainfall varies dramatically from excess to deficit within and between seasons. We investigated the physiological and growth responses of these plants to waterlogging and water deficit in a controlled experiment in a glasshouse. Juvenile plants were subjected to waterlogging or water deficit for 19 days in case of Chinese kale and 14 days in case of Caisin and compared with well-watered controls. Caisin tolerated waterlogging better than Chinese kale because it produced hypocotyl roots and gas spaces developed at the stem base. In Chinese kale, waterlogging reduced plant fresh weight (90%), leaf area (86%), dry weight (80%) and leaf number (38%). In contrast, waterlogging had no impact on leaf number in Caisin and reduced plant fresh and dry weights and leaf area by 60–70%. Water deficit reduced leaf area, fresh weight and dry weight of both species by more than half. Leaf number in Chinese kale was reduced by 38% but no effect occurred in Caisin. Water deficit increased the concentration of nitrogen in the leaf dry matter by more than 60% in both species and the leaf colour of water deficient plants was dark green compared with the leaf colour of well-watered plants. Soil water deficit delayed flowering of Caisin while waterlogging accelerated it. Thickening and whitening of the cuticle on the leaves of Chinese kale probably increased its ability to retain water under drought while Caisin adjusted osmotically and Chinese kale did not. Waterlogging and water deficit had strong effects on leaf gas exchange of both Brassica species. Water deficit closed the stomata in both species and this was associated with a leaf water content of 9 g g−1 DW. In contrast, waterlogging reduced conductance from 1.0 to 0.1 mol H2O m−2 s−1 in direct proportion to changes in leaf water content, which fell from 11 to 5 g g−1 DW. This separation of the effects of water deficit and waterlogging on conductance was reflected in transpiration, internal CO2 concentration and net photosynthesis. In conclusion, Chinese kale and Caisin showed rather different adaptations in response to waterlogging and water deficit. Caisin was more tolerant of waterlogging than Chinese kale and also showed evidence of tolerance of drought. There is genetic variation to waterlogging within the Brassica genus among the leafy vegetables that could be used for cultivar improvement.  相似文献   

19.
猕猴桃叶片耐旱性指标研究   总被引:2,自引:0,他引:2  
选择中华猕猴桃与美味猕猴桃共7个品种,对耐旱性的形态与生理指标进行了分析测定。结果表明:与耐旱性较弱的品种相比,耐旱性较强的品种有较大的叶片厚度、上表皮细胞厚度、栅栏组织厚度;栅栏组织/海绵组织比较高,气孔密度较大,束缚水/自由水比例较高,表明品种耐旱性较强;干旱条件下,耐旱性较强的品种叶片游离脯氨酸累积率较高。  相似文献   

20.
为了研究干旱及复水处理对野生苦瓜幼苗生长和生理特性的影响,探讨野生苦瓜的抗旱机制,为其栽培育种提供理论依据。以野生苦瓜‘JH01’为试验材料,对干旱胁迫4、8、12、16 d和复水处理2、5 d野生苦瓜幼苗部分生理指标的变化进行研究。结果显示,随着干旱胁迫时间的延长,植株长势变弱,叶片萎蔫程度加重,叶片相对电导率、丙二醛含量、超氧阴离子含量、过氧化氢含量和脯氨酸含量逐渐上升,叶绿素含量呈先升高后降低的变化趋势;复水后,各指标得到了不同程度的恢复,复水5 d时叶绿素含量、相对电导率、过氧化氢含量均恢复到接近对照水平;此外,脯氨酸的可塑性指数达0.98,明显大于其他生理指标,叶绿素含量的可塑性指数最小为0.29。综上表明,野生苦瓜幼苗具有一定的耐旱能力,复水对干旱胁迫具有缓解作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号