首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 252 毫秒
1.

Weeds are a major biotic constraint; compete with crop for the same resources and ultimately reduce productivity. This study evaluated the impact of irrigation intervals and weed management treatments on chlorophyll content and morphological growth of tomato to find an appropriate integrated weed management strategy. Two-year field experiments (2018/2019) were conducted at district Mardan (34°15′38″ N and 72°6′36″ E). Tomato F1 hybrid (Taj?3592) was transplanted during March. The experiments were laid out in a randomized complete-block design in split-plot arrangement with three replications. The main block comprised three irrigation intervals (3, 6, and 9 days) and the sub-block included weed management treatments: transparent polythene, black polythene, weeding except Orobanche, sole weeding of Orobanche, weeding of all weeds, copper oxychloride 1.5?kg a.i ha?1 (single dose), copper oxychloride 1.5?kg a.i ha?1 (split doses), copper oxychloride?+?humic acid 25?kg ha?1 (single dose), copper oxychloride?+?humic acid 25?kg ha?1 (split doses), copper sulphate 2?kg ha?1 (single dose), copper sulphate 2?kg ha?1 (split doses), ammonium sulphate 200?kg ha?1 (single dose), ammonium sulphate 200?kg ha?1 (split doses), pendimethalin 33 EC 1.44?kg a.i ha?1, glyphosate 48 SL 1.5?kg a.i ha?1, and weedy check. Lowest relative weed density (RWD) of O. cernua (2.23%) and highest RWD of O. cernua (38.01%) were recorded in the 3? and 9?day irrigation intervals, respectively. However, 3?day irrigation interval resulted in highest fresh weed biomass (5794?kg ha?1). Moreover, the 6?day irrigation interval significantly increased chlorophyll content by 11 and 5%, leaf area by 23 and 6%, and number of branches plant?1 by 30 and 22% compared to 9? and 3?day irrigation intervals, respectively. Among the weed management treatments, black polythene resulted in the highest weed control efficiency (96%), increasing chlorophyll content by 16%, leaf area by 33%, and number of branches plant?1 by 64% vs. weedy check. Consequently, 6?day irrigation intervals?×?black polythene could be the best weed management strategy, followed by transparent polythene, weeding of all weeds, pendimethalin, glyphosate, and ammonium sulphate.

  相似文献   

2.
Soil column studies were undertaken to investigate the influence of soil water content and irrigation on leaching, distribution and persistence of methyl isothiocyanate (MITC) in a sandy soil chemigated with the soil fumigant metam-sodium. No leaching was obtained from columns at low water content (0·042 or 0·074 cm3 cm−3). However, 8·4 (±2·8), 34·2 (±7·4) and 119·4 (±8·3) μg of MITC leached from columns at 0·105, 0·137 and 0·168 cm3 cm−3 water content, respectively. Increased leaching resulted from sprinkler application of 25-mm of water to columns at 0·137 cm3 cm−3 water content. Leaching of MITC constituted only a small fraction of the amount applied even in the worst case. Methyl isothiocyanate persisted in soil for 15 days at 2°C in varying amounts under the different water regimes. Relatively high amounts of MITC residues (8–12 mg kg−1 soil) were detected in the top 25-cm layer of all the soil columns. Degradation was the major pathway of dissipation for the chemical despite the soil water regime.  相似文献   

3.
Weed infestations are a major cause of yield reduction in rice (Oryza sativa) cultivation, particularly with direct‐seeding methods, but the relationship between weed dynamics and water availability in Cambodian paddy fields has not been documented previously. We surveyed the weed abundance and weed seed banks in the soil of paddy fields with inferred differences in their water regime in 22 farm fields in three provinces of Cambodia in the 2005 and 2006 rainy seasons. We studied rain‐fed lowland fields in upslope and downslope topographic positions and fields at different distances from the irrigation water source inside an irrigation rehabilitation area. The weed seed banks were estimated by seedling emergence in small containers and weed abundance and vigor were estimated by a simple scoring system. The estimated weed seed bank in the top 5 cm of soil ranged from 52.1 to 167 × 103 seeds m?2 (overall mean of 8.5 × 103 seeds m?2) and contained a high proportion (86%) of sedge species, such as Fimbristylis miliacea L. and Cyperus difformis. Several fields had particularly large seed banks, including one near the reservoir. No clear difference was found in the weed seed banks between the irrigated fields that were located close to (upstream) and distant from (downstream) the water source or between the irrigated and rain‐fed lowland fields, but the weed scores were larger in the rain‐fed fields and the downstream fields within the irrigated area. A water shortage during the late growing season in 2005 led to a proliferation of weeds in some fields and an associated increase in weed seedbank size in 2006. However, the weed scores in 2006 were more strongly associated with that year's water conditions than with the weed seedbank size.  相似文献   

4.
Opuntia stricta is an invasive species in the Dom António Xavier Pereira Coutinho Nature Reserve (Portugal). Different chemical approaches were assessed to simultaneously manage it and preserve the natural flora of the Botanical Reserve. Glyphosate was applied at different concentrations (2.8–180 g a.e. L−1) and times of application (April, July and October) by injection into cladophyll and direct application onto areas in which the cladophyll had been cut (90 and 180 g a.e. L−1). The efficacy of the herbicide applied on the cut areas was good, but the pieces of the cladophyll that had been cut were difficult to remove and destroy. Herbicide injection of a 2 mL of solution containing 45 g a.e. L−1 glyphosate in the summer proved to be the easiest and most effective way of controlling the weed. Germination studies were carried out in order to understand the importance of seeds in the dissemination of O. stricta. The optimum constant temperature for germination was generally 20–25°C, there was a tendency towards increased germination following leaching in water for 24 h (7% germination at 20°C 12-h light) and 60-min scarification in sulphuric acid (15% at 20°C 12-h light). Although germination rates may be considered low, they do indicate that the emergence of O. stricta seedlings is possible.  相似文献   

5.
Soil weed seed bank is an important factor determining above-ground floristic composition and weed density in agricultural systems. The quantitative and qualitative measures of weed seed bank can help growers to predict the extent to which they are facing weed problems. Along with tillage, crop residues can affect the fate of weeds in the upcoming crops. To investigate such effects, we compared the effects of tillage systems [conventional tillage (CT), reduced tillage (RT), and no tillage (NT)], wheat residue retention, and nitrogen (N) rates (0, 69, 138, and 207 kg N ha−1) on depth-related characteristics of the weed seed bank under a sweet corn-wheat sequence during 2014–2015 growing seasons in Shiraz, Iran. Soil bank was not affected by tillage systems but tended to be slightly higher under RT. The highest (898 seeds m−2) and lowest (322 seeds m−2) weed population at 0–10 cm depth were found when 138 kg N ha−1 in 2015 and 207 kg N ha−1 in 2014 were applied. Species richness and diversity were higher under NT and RT practices at the top layer, but CT system was more diversified at deeper depths. They were higher when crop residues were retained as well. Barnyard grass (Echinochloa crus-galli [L.] Beauv), common lambsquarter (Chenopodium album L.), common purslane (Portulaca oleracea L.), field bindweed (Convolvulus arvensis L.), flixweed (Descoreinia sofia [L.] Webb. & Berth.), henbit (Lamium amplexicaule L.), pigweeds (Amaranthus spp.), and stinking goosefoot (Chenopodium vulvaria L.) were the most common weeds found in all tillage systems and soil depths. Grasses were relatively lower than broadleaves regardless of treatments. Weed seed bank was mostly affected by weather conditions than treatments in this short-term experiment.  相似文献   

6.
RH‐1965 is a new bleaching herbicide which causes newly developing leaf tissue to emerge devoid of photosynthetic pigments. Mode‐of‐action studies revealed that RH‐1965 inhibited the accumulation of both total chlorophyll and β‐carotene. Concomitantly, it induced the accumulation of the β‐carotene precursors, phytoene, phytofluene and, in particular, ξ‐carotene. Inhibition of chlorophyll accumulation by RH‐1965 is attributed to the photo‐oxidative destruction of chlorophyll in the absence of β‐carotene because RH‐1965 blocked chlorophyll accumulation to a greater extent under high light (50–330 µE m−2 s−1) than under low light (0.8 µE m−2 s−1) conditions. Radish (Raphanus sativus L) and barnyardgrass (Echinochloa crus‐galli (L) Beauv) were very senstive to RH‐1965. Under high light (330 µE m−2 s−1), the I50 values for inhibition of chlorophyll accumulation were 0.10 and 0.15 µM , respectively. Wheat (Triticum aestivus L), on the other hand, was much less sensitive to RH‐1965 (I50 = 1.4 µM ). It is concluded that the mode of action of RH‐1965 involves the inhibition of ξ‐carotene desaturation. © 2000 Society of Chemical Industry  相似文献   

7.
It is important to understand the likely response of plant pathogens to increased temperatures due to anthropogenic climate change. This includes evolutionary change due to selection on genetically based variation in growth rate with temperature. We attempted to quantify this in two ways. First, radial mycelial growth rates in agar culture were determined for a collection of 44 English isolates of Leptosphaeria maculans and 17 isolates of L. biglobosa, at 14 temperatures. For L. maculans the genotypic variances in four parameters were measured: minimum temperature allowing growth, optimum temperature, growth rate at the optimum temperature, and growth rate at the highest usable temperature, 31.8°C. The standard deviations were 0.068°C, 1.28°C, 0.21 mm/day, and 0.31 mm⋅day−1⋅°C−1, respectively. For L. biglobosa, these figures were, respectively: immeasurably small, 1.31°C, 0.053 mm/day, and 0.53 mm⋅day−1⋅°C−1. In addition, the incidence and severity of phoma stem canker in planta over a natural growing cycle at four temperatures (16, 20, 24, and 28°C) around the average culture optimum were determined. There was no correlation between in vitro and in planta growth, and the decrease in pathogen measures either side of the optimum temperature was much less for in planta growth than for in vitro growth. We conclude that both pathogens have the capacity to evolve to adapt to changes in environmental conditions, but that predictions of the effect of this adaptation, or estimates of heritability in natural conditions, cannot be made from measurements in vitro.  相似文献   

8.
Since 2015, chemical weed control on public pavements in Flanders has been banned. This necessitates alternative weed control strategies. In this study, growth chamber experiments evaluated the weed suppressive ability of different joint filling materials under various water regimes. The tested materials comprised five unbound standard fillers (white quartz sand, sea sand, limestone 0/2 mm, limestone 2/6.3 mm and porphyry 2/6.3 mm) and two innovative materials (Dansand® and Eco Fugensand®). Their weed suppressiveness was tested in pure and organically polluted states. Germination and biomass accumulation of two weed species that are abundantly found on public pavements (Lolium perenne and Taraxacum officinale) were investigated. Germination and biomass accumulation were lowest in both innovative materials, irrespective of organic contamination level, plant species and water regime. Weed growth in the standard materials was affected by plant species and water regime. Monthly biomass accumulation increased with increasing monthly water supply and number of irrigation days. Furthermore, the materials best capable of reducing weed growth, under all water regimes, even when organically polluted, were the innovative materials and sea sand. The results of this study show that the implemented water regime can influence weed suppressiveness (absolute as well as relative) of a joint filler. Hence, to fully assess weed suppressive ability, commercially launched joint fillers should be tested under diverging water regimes.  相似文献   

9.
In ideal conditions (static assay with long exposure time) several species of submerged weeds (Myriophyllum propinquum A. Cunn, Potamogeton tricarinatus F. Muell and A. Benn, and Vallisneria gigantea Graebner) were controlled by terbutryne at initial concentrations of <0·2 g m?3. However, since water management practices in irrigation systems limit the contact time which can be imposed, the availance (concentration-time integral required for effectiveness) was further investigated, using Elodea canadensis Rich., which is dominant and widespread in the irrigation systems of south-eastern Australia. In many experiments in irrigation channels, where control was poor, contact times were probably inadequate. Other factors may also contribute to inefficiency, including poor penetration of the weed beds after surface application, protection by high loadings of aufwuchs (periphyton, bacteria, detritus and associated particulate matter) on the leaves in the autumn, and inhibition of photosynthesis in an unfavourable light climate. Weed control was improved by injecting the herbicide into Mowing water, before ponding the treated water in the channels in spring or summer for at least 11 days. Terbutryne residues in the water decreased with a first order half-life of about 9–20 days. Therefore, terbutryne is unsuitable for pulse injection treatment of flowing water in summer. Instead, effective control might be achieved by ponding the treated water in the channels in spring before the period of great water demand for summer crops. Contaminated water would be discarded onto tolerant crops or fallow land or retained in the system for about 7 weeks to ensure degradation of terbutryne before reuse.  相似文献   

10.
Methyl bromide fumigations are used to treat apples, Malus domestica Borkh, and sweet cherries, Prunus avium (L), before export to Japan. In order to expand existing markets, additional cultivars are being prepared for export to Japan. As part of the approval process, residue analyses must be conducted and residues must be at acceptable levels. Five apple cultivars (‘Braeburn,’ ‘Fuji,’ ‘Gala,’ ‘Jonagold,’ and ‘Granny Smith’) were fumigated at 40 g m−3 for 2 h at 10 °C, and six sweet cherry cultivars (‘Brooks,’ ‘Garnet,’ ‘Lapin,’ ‘Rainier,’ ‘Sweetheart,’ and ‘Tulare’) were fumigated for 2 h with 64 g m−3 at 6 °C, 48 g m−3 at 12 °C, 40 g m−3 at 17 °C, and 32 g m−3 at 22 °C. Three replicates of fruit from each fumigation were analyzed for methyl bromide and bromide ion residues periodically with time. Methyl bromide residues for both apples and cherries were the highest immediately after fumigation, but rapidly declined so that only ‘Braeburn’ had residues >8 µg kg−1 after 13 days and, except for ‘Lapin,’ all cherries were <1 µg kg−1 after seven days. Average bromide ion residues were between 3.3 and 4.9 mg kg−1 among apple cultivars, and between 3.7 and 8.0 µg kg−1 among cherry cultivars. Published in 2000 for SCI by John Wiley & Sons, Ltd  相似文献   

11.
A study of the aquatic fate of the triethylamine salt of triclopyr (3,5,6‐trichloro‐2‐pyridinyloxyacetic acid) was conducted in three bays of Lake Minnetonka, Minnesota. Triclopyr is under review by the US Environmental Protection Agency as a selective aquatic herbicide. The primary purpose of this study was to determine dissipation rates of the parent active ingredient, triclopyr, and its major metabolites, 3,5,6‐trichloropyridinol (TCP) and 3,5,6‐trichloro‐2‐methoxypyridine (TMP) in selected matrices including water, sediment, plants, finfish and shellfish. Two 6.5‐ha plots dominated by the weedy species Eurasian watermilfoil (Myriophyllum spicatum L) were treated with triclopyr‐triethylammonum at a rate of 2.5 mg AE liter−1 (2.5 ppm) on 21–23 June 1994. A third 6.5‐ha plot was established as an untreated reference. Water and sediment samples were collected from within the plots and at selected locations up to 1600 m outside of the plots through six weeks post‐treatment for chemical residue analysis. In addition, residue samples were collected from the target and non‐target plants and other non‐target matrices, including game and rough fish, clams and crayfish. All test animals were sequestered in cages located in the center of each plot and samples were collected through four weeks post‐treatment. Half‐lives for dissipation of triclopyr and TCP in water ranged from 3.7 to 4.7 days and from 4.2 to 7.9 days, respectively, with trace amounts of TMP found. Peak triclopyr sediment values ranged from 257 to 335 ng gram−1, with a mean half‐life of 5.4 days, while peak TCP sediment levels ranged from 27 to 65 ng gram−1 (mean half−life = 11.0 days). Trace levels of TMP were detected at one treatment site at one sampling event. Triclopyr and TCP accumulated and cleared from animal tissues proportionately to concentrations in the water (triclopyr dissipation half‐lives <11 days, TCP < 14 days). TMP levels were two to three times higher than those of the other compounds, particularly in visceral tissue. In all cases, residues of these compounds were higher in the inedible portions of the animals, and were usually higher in bottom‐feeding fish species. © 2000 Society of Chemical Industry  相似文献   

12.
BACKGROUND: Spray volume can influence the amount of free water on the leaf surface and subsequently the ability of entomopathogenic nematodes (EPNs) to move. In this study, an investigation was made of the effect of spray volume (548, 730 and 1095 L ha−1) on the deposition, viability and infectivity of EPNs against Galleria mellonella on savoy cabbage, cauliflower and leek. RESULTS: Increasing spray volume decreased nematode deposition on 7.1 cm2 leek leaf discs at a 15° angle with the spray nozzle. Although the number of living nematodes observed on leek after 240 min of exposure was not significantly different between the low-volume application (548 L ha−1) and the high-volume application (1095 L ha−1), a greater infectivity was obtained in the latter application. The higher number of droplets deposited on the leek discs in the high-volume application may have stimulated nematode movement. No significant effect of spray volume was observed on the relative deposition of Steinernema carpocapsae on the bottom side of cauliflower and savoy cabbage leaf discs. In spite of the low S. carpocapsae deposition on the bottom side of the savoy cabbage discs, high infectivity was obtained against G. mellonella. Using the lowest spray volume on savoy cabbage, infectivity decreased with increasing exposure time, while infectivity was not affected by exposure time when a spray volume of 730 L ha−1 or more was used. CONCLUSION: Spray volume is an important application parameter, as it affects nematode infectivity. Future research should investigate the effect of spray volume in the field and its influence on the effect of adjuvants. Copyright © 2012 Society of Chemical Industry  相似文献   

13.
为明确灌溉方式对土壤水分和灌水量的影响,采用土壤水分概率模型分析了传统灌溉和连续灌溉的土壤水分概率分布特征与土壤平均水分变化规律,研究了灌溉方式对灌水量的影响效应。结果表明:不同灌溉方式的土壤水分概率分布特征差异明显,连续灌溉的土壤水分概率密度极大值出现在s=s*处,传统灌溉的土壤水分概率密度极大值出现在s=sfc处;与传统灌溉方式相比,连续灌溉使土壤平均水分含量保持在相对较低的水平,当降雨发生时,其土壤能够容纳更多的入渗水量。连续灌溉明显减少了土壤水分深层渗漏和地表径流损失水量,显著提高了降雨利用率并降低了灌溉水量,从而提高了农业水资源利用率。  相似文献   

14.
Weed competition and nutrient scarcity often restrict organic cereal production, especially where the availability of livestock manure is limited. While harrowing of annual weeds and legume cover crops can be used, these methods are both executed in early spring and may hinder each other. Two cycles of a 2‐year crop rotation were carried out in south‐east Norway (60°42′N, 10°51′E, altitude 250 m) with weed harrowing and undersown cover crops (WHCC) at two fertiliser rates (40 and 100 kg nitrogen ha?1). The effect of the WHCC treatments was measured by weed density and species, weed biomass, changes in weed seedbank and grain yield. The weed density depended on the interaction between WHCC, fertiliser and year. On average, pre‐emergence weed harrowing reduced weed density by 32% and weed biomass by 49%, while pre‐ and post‐emergence weed harrowing reduced weed density by 59% and weed biomass by 67% compared with the untreated control. Spergula arvensis became more abundant at low rather than at high fertiliser rates. On average, white clover cover crop sown after pre‐emergence weed harrowing resulted in the highest yields for both oat (+12.1%) and wheat (+16.4%) compared with the untreated control. Despite differences in weed population density and biomass among WHCC treatments within years, the weed biomass, weed density and seedbank increased for all WHCC treatments over the 4‐year period. More research is required into improving the efficacy of mechanical and cultural weed suppression methods that organic systems rely on.  相似文献   

15.
Cinidon-ethyl (BAS 615H) is a new herbicide of isoindoldione structure which selectively controls a wide spectrum of broadleaf weeds in cereals. The uptake, translocation, metabolism and mode of action of cinidon-ethyl were investigated in Galium aparine L, Solanum nigrum L and the tolerant crop species wheat (Triticum aestivum L). When plants at the second-leaf stage were foliarly treated with cinidon-ethyl equivalent to a field rate of 50 g ha−1 for 48 h, the light requirement for phytotoxicity and the symptoms of plant damage in the weed species, including rapid chlorophyll bleaching, desiccation and necrosis of the green tissues, were identical to those of inhibitors of porphyrin synthesis, such as acifluorfen-methyl. The selectivity of cinidon-ethyl between wheat and the weed species has been quantified as approximately 500-fold. Cinidon-ethyl strongly inhibited protoporphyrinogen oxidase (Protox) activity in vitro, with I50 values of approximately 1 nM for the enzyme isolated from the weed species and from wheat. However, subsequent effects of herbicide action, with accumulation of protoporphyrin IX, light-dependent formation of 1-aminocyclopropane-1-carboxylic acid-derived ethylene, ethane evolution and desiccation of the green tissue, were induced by cinidon-ethyl only in the weed species. After foliar application of [14C] cinidon-ethyl, the herbicide, due to its lipophilic nature, was rapidly adsorbed by the epicuticular wax layer of the leaf surface before it penetrated into the leaf tissue more slowly. No significant differences between foliar and root absorption and translocation of the herbicide by S nigrum, G aparine and wheat were found. After foliar or root application of [14C]- cinidon-ethyl, translocation of 14C into untreated plant parts was minimal, as demonstrated by combustion analysis and autoradiography. Metabolism of [14C]cinidon-ethyl via its E-isomer and acid to further metabolites was more rapid in wheat than in S nigrum and G aparine. After 32 h of foliar treatment with 50 g ha−1 of the [14C]-herbicide, approximately 47%, 36%, and 12% of the absorbed radioactivity, respectively, were found as unchanged parent or its biologically low active E-isomer and acid in the leaf tissue of G aparine, S nigrum and wheat. In conclusion, cinidon-ethyl is a Protox-inhibiting, peroxidizing herbicide which is effective through contact action in the green tissue of sensitive weed species. It is suggested that a more rapid metabolism, coupled with moderate leaf absorption, contribute to the tolerance of wheat to cinidon-ethyl. © 1999 Society of Chemical Industry  相似文献   

16.
DPX-A7881, methyl 2-[(4-ethoxy-6-methyl-amino-1, 3, 5-triazin-2-yl)carbamoylsulphanoyl] benzoate, is a sulfonylurea herbicide being developed in Canada and Europe for post-emergence broadleaf weed control in spring and winter rapeseed. Growth room studies were conducted to determine the environmental factors affecting the herbicidal activity of DPX-A7881 applied post-emergence on winter rapeseed (Brassica napusu L. ‘Tandem’) and on a closely related weed species, Sinapis arvensis L. (wild mustard). Laboratory tests were carried out at tempera tures ranging from 2–26°C, at relative humidities from near 40% to >95%, with rain-free periods from 0.25–8 h after herbicide application, at soil moisture contents from 50–200% of field capacity, and with irradiances from 23–450 μEm?2s?1 Significant control of S. arvensis was demonstrated for all treatments except under poor growing conditions at the lowest temperatures and irradiances tested. After two weeks' exposure to each of the tem perature treatments, the herbicide maintained control of S. arvensis during a subsequent week of favourable growing conditions. Relative humidity, soil moisture or simulated rainfall did not significantly alter the herbicidal activity of DPX-A7881 on S. arvensis. DPX-A7881 showed a high degree of crop safety on B. napus. The herbicide did not significantly reduce the dry weights of B. napus grown under any of the environmental conditions tested.  相似文献   

17.
Abstract

In northern Queensland, the addition of 2,4,5‐T butyl ester was found to be unnecessary to maintain the control of Echinochloa colona (L.) Link and Cyperus Iria L. In dry seeded rice when propanil rates were reduced below the registered rate of 4 kg a.i. ha?1. Adequate weed control was obtained with 1.3 kg a.i. ha?1 propanil alone. No adverse effects on rice yield were found with any of the propanil × 2,4,5‐T treatments. Low rates of propanil, 1.3 and 0.72 kg a.i. ha?1, compared favourably with pre‐emergence treatments of thiobencarb, butachlor, oxyfluorfen and pretilachlor (plus a safener) when weed yields were low. Where water management was poor and Ischaemum rugosum Salisb. was the dominant weed, oxyfluorfen applied pre‐emergence at 0.96 kg a.i. ha?1 produced a higher rice and a lower weed yield than the low rates of propanil. In three of the five experiments, weed growth was insufficient to depress rice yields significantly.  相似文献   

18.
Effect of air temperature, rain and drought on hot water weed control   总被引:1,自引:1,他引:1  
The influence of rain and drought before, and air temperature during, weed control with hot water was studied in laboratory experiments on the test weed Sinapis alba (white mustard). The plants were grown in a greenhouse and treated outdoors. There was no difference in weed control effect when S. alba plants at the four‐leaf stage were treated at the air temperatures 7°C and 18°C. The effective energy dose for a 90% fresh weight reduction was 465 kJ m?2 for both air temperatures. Weed control of S. alba at the four‐ to six‐leaf stage in rainfall above the rainwater run‐off level increased the required effective energy dose by 20% (i.e. 120 kJ m?2) compared with dry plants. A short period of drought just before treatment on S. alba at the two‐ to four‐leaf stage increased the plant fresh weight reduction, which was 22% at low energy dose (190 kJ m?2) and 44% at high energy dose (360 kJ m?2). Hot water weed control should thus be carried out when the plants are drought stressed and avoided when the plants are wet. The air temperature seems to be of little importance in the range 7–18°C.  相似文献   

19.
Broomrapes (Orobanche spp.) are parasitic weeds that cause significant losses of crop yield. Experiments were conducted to investigate the seed response to the artificial germination stimulant GR24 in three species of Orobanche subjected to preconditioning under various temperatures, water potentials and with plant growth regulators. The highest germination percentages were observed in Orobanche ramosa, Orobanche aegyptiaca and Orobanche minor seeds conditioned at 18°C for 7 days followed by germination stimulation at 18°C. With the increase of the conditioning period (7, 14, 21 and 28 days), the germination percentage of O. ramosa and O. aegyptiaca progressively decreased. When conditioned at −2 MPa, the germination percentage was lower than at 0 and −1 MPa, especially at 13 and 28°C. Orobanche minor seeds could retain relatively high germination if conditioned at 18, 23 or 28°C, even after significantly extended conditioning periods (up to 84 days). GA3 (30–100 mg L−1), norflurazon and fluridone (10–100 mg L−1), and brassinolide (0.5–1.0 mg L−1) increased seed germination, while 0.01 mg L−1 uniconazole significantly reduced germination rates of all three Orobanche spp. The promotional effects of GA3 and norflurazon and the inhibitory effect of uniconazole were evident, even when they were treated for 3 days. Germination of Orobanche seeds was much lower when the unconditioned seeds were directly exposed to GR24 at 10−6 m . This early GR24-induced inhibition was however alleviated or even eliminated by the inclusion of GA3 or norflurazon (10–50 mg L−1) in the conditioning medium. On the contrary, the inclusion of uniconazole increased the inhibitory effect of GR24, particularly in the case of O. ramosa.  相似文献   

20.
The aim of this experiment was to compare the growth strategies of Rumex obtusifolius L. and Lolium perenne L. at the seedling stage under different constant photon flux densities. Both species were grown simultaneously in growth chambers (20/15°C) at 50, 150 and 500 μmol m?2 s?1 and sampled on six occasions between the 14th and 34th day after seedling emergence. The relative growth rate of R. obtusifolius always exceeded that of L. perenne. R. obtusifolius allocated more dry matter to the leaves, thus resulting in an increase in specific leaf area and, consequently, leaf area ratio. The decrease in the relative growth rate that resulted from reducing the photon flux density from 500 to 50 μmol m?2 s?1 was lower for R. obtusifolius (?38%) than for L. perenne (?53%). The weed was less sensitive that the grass to the reduction in light intensity, mainly because its specific leaf area increased more and because its net assimilation rate decreased less. The results show that seedlings of R. obtusifolius are able to maximize dry matter production at a low photon flux density. This suggests that the establishment of R. obtusifolius seedlings cannot be prevented by the shade of an established sward. Comparaison de la croissance de R. obtusifolius L. et de L. perenne L. sous différentes densités de flux de photons Le but de cet essai était de comparer la stratégie de croissance de plantules de R. obtusifolius et de L. perenne sous différentes densités de flux de photons. Les deux espèces ont été cultivées simultanément en chambres de croissance (20/15°C) à 50, 150 et 500 μmol m?2 s?1 et récoltées à six reprises entre le 14e et le 34e jour après la levee. Le taux de croissance relatif de R. obtusifolius a toujours été supérieur à celui de L. perenne. Nous avons observé chez R. obtusifolius un investissement plus important en matière sèche dans les feuilles ainsi qu'une surface foliaire spécifique et, par conséquent, un rapport surface foliaire/poids sec total plus élevés. La diminution du taux de croissance relatif consécutive à la réduction de la densité du flux de photons de 500 à 50 μmol m?2 s?1 fut plus faible chez R. obtusifolius (?38%) que chez L. perenne (?53%). La dicotylédone a été moins sensible à la réduction de l'intensité lumineuse que la graminée principalement parce que sa surface foliaire spécifique a davantage augmenté et également parce que son taux net d'assimilation a moins diminué. Nos résultats montrent que les plantules de R. obtusifolius sont capables de produire un maximum de matière sèche sous une faible densité du flux de photons. Ils suggèrent que l'implantation de plantules de R. obtusifolius ne peut pas être empêchée par l'effet d'ombrage d'un couvert en place. Vergleich des Wachstums von Rumex obtusifolius L. mit Lolium perenne L. bei verschiedenen Photonen-Bestrahlungsstärken Ziel dieses Versuches war der Vergleich der Wachstumsstrategie der Keimpflanzen von Rumex obtusifolius L. und Lolium perenne L. bei verschiedenen konstanten Photonen-Bestrahlungsstärken. Beide Arten wurden gleichzeitig in Klimakammern (20/15 °C) bei 50, 150 und 500 pimol m?2 s?1 kultiviert, und zwischen dem 14 und 34. Tag nach dem Auflaufen wurden 6 Teilernten genommen. Die relative Wachstumsrate von R. obtusifolius war jener von L. perenne immer überlegen. R. obtusifolius transportierte mehr Trockensubstanz in die Blätter; die spezifische Blattfläche stieg an, und der Anteil Blattfläche an der gesamten Trockensubstanz nahm zu. Wurde die Photonen-Bestrahlungsstärke von 500 auf 50 μmol m?2 s?1 gesenkt, nahm die relative Wachstumsrate bei R. obtusifolius um 38% und bei L. perenne um 53% ab. Der Ampfer reagierte auf die Reduktion der Lichtintensität weniger empfindlich als das Gras, hauptsächlich weil sie ihre spezifische Blattfläche stärker erhöhte und die Nettoassimüationsrate weniger reduzierte. Die Ergebnisse zeigen, daß Keimpflanzen von R. obtusifolius in der Lage sind, auch bei niedrigen Photonen-Bestrahlungsstärken die Trockensubstanzproduktion zu maximieren. Es wird daher vermutet, daß unter dem Schatten eines Pflanzenbestandes das Etablieren der Keimpflanzen von R. obtusifolius nicht verhindert werden kann.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号