首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The outbreaks of upper respiratory tract infections in horses at Standardbred racetracks were investigated over a three year period. The most serious epidemics of respiratory disease occurred in the winter and spring seasons. Both influenza viruses and equine herpesvirus 1 were shown to be present in the horse population. The herpesvirus was associated with respiratory disease particularly in the winter but the equine influenza viruses apparently were responsible for the major epidemics of respiratory disease at these tracks. Younger horses, two or three years of age, were particularly susceptible to upper respiratory disease and showed the greatest rate of seroconversion to influenza viruses. Major outbreaks of respiratory disease occurred when the proportion of young horses which had not previously been exposed to epidemics of respiratory disease reached 30 to 40% of the population at the track. Most horses over four years of age appeared to develop resistance to the infections.  相似文献   

3.
OBJECTIVE: To evaluate efficacy of a commercial vaccine for prevention of infectious upper respiratory tract disease (IURD) caused by equine influenza virus. DESIGN: Double-masked, randomized, controlled field trial. ANIMALS: 462 horses stabled at a Thoroughbred racetrack. PROCEDURE: Vaccine or saline solution placebo was administered 4 times in the population at 6-week intervals. The vaccine contained 3 strains of inactivated influenza virus, and inactivated equine herpesvirus type 4. Horses received 1 or 2 doses of vaccine or placebo prior to onset of a natural influenza epidemic, and were examined 5 d/wk to identify and monitor horses with IURD. Serum antibody concentrations were determined, and virus isolation was performed. RESULTS: Vaccination of horses prior to the influenza epidemic did not result in significant decrease in risk of developing respiratory tract disease. Severity of clinical disease was not different between affected vaccinated horses with IURD and controls with IURD, but median duration of clinical disease was 3 days shorter in vaccinated horses. Serum concentrations of antibodies to H3N8 influenza viruses were lower prior to initial vaccination in horses that were sick during the epidemic, and did not increase in these horses in response to vaccination. On arrival at the racetrack, young horses had lower antibody concentrations than older horses, and did not respond to vaccination as well. CONCLUSIONS AND CLINICAL RELEVANCE: Vaccination was of questionable benefit. A greater degree of protection must be obtained for influenza vaccines to be effective in protecting horses from IURD. Objective field evaluations of commercial vaccines are needed to adequately document their efficacy.  相似文献   

4.
REASONS FOR PERFORMING STUDY: Horses vaccinated against common agents of infectious upper respiratory disease (IURD) may not have detectable serum antibody and may not be protected from clinical disease. OBJECTIVES: The objectives of this study were to 1) investigate the serological response of horses to vaccination against influenza virus (H3N8 and H7N7) and equine herpesviruses (EHV) in a field setting and 2) evaluate associations among vaccination status, serum antibody concentrations, and occurrences of IURD in monitored horses. METHODS: In this study, horses on 6 Colorado premises were vaccinated parenterally against influenza virus and EHV, and serological response evaluated. Horses were monitored, and biological samples collected from individuals with clinical IURD and control horses. RESULTS: Of 173 horses, 61 (35.3%), 21 (12.1%) and 4 (2.3%) seroconverted in response to vaccination against EHV, influenza virus H7N7 and influenza virus H3N8, respectively. CONCLUSIONS: Outbreaks of IURD in study horses were associated with influenza virus H3N8 and Streptococcus equi infection, and serological response to vaccination with conventional products was poor. POTENTIAL RELEVANCE: These results confirm that horses may not respond with detectable serological responses to conventional vaccination against common respiratory viruses and, therefore, suggest that alternate methods of protecting horses against common respiratory viruses should be sought.  相似文献   

5.
AIM: To identify viruses associated with respiratory disease in young horses in New Zealand.

METHODS: Nasal swabs and blood samples were collected from 45 foals or horses from five separate outbreaks of respiratory disease that occurred in New Zealand in 1996, and from 37 yearlings at the time of the annual yearling sales in January that same year. Virus isolation from nasal swabs and peripheral blood leukocytes (PBL) was undertaken and serum samples were tested for antibodies against equine herpesviruses (EHV-1, EHV-2, EHV-4 and EHV-5), equine rhinitis-A virus (ERAV), equine rhinitis-B virus (ERBV), equine adenovirus 1 (EAdV-1), equine arteritis virus (EAV), reovirus 3 and parainfluenza virus type 3 (PIV3).

RESULTS: Viruses were isolated from 24/94 (26%) nasal swab samples and from 77/80 (96%) PBL samples collected from both healthy horses and horses showing clinical signs of respiratory disease. All isolates were identified as EHV-2, EHV-4, EHV-5 or untyped EHV. Of the horses and foals tested, 59/82 (72%) were positive for EHV-1 and/or EHV-4 serum neutralising (SN) antibody on at least one sampling occasion, 52/82 (63%) for EHV-1-specific antibody tested by enzyme-linked immunosorbent assay (ELISA), 10/80 (13%) for ERAV SN antibody, 60/80 (75%) for ERBV SN antibody, and 42/80 (53%) for haemagglutination inhibition (HI) antibody to EAdV-1. None of the 64 serum samples tested were positive for antibodies to EAV, reovirus 3 or PIV3. Evidence of infection with all viruses tested was detected in both healthy horses and in horses showing clinical signs of respiratory disease. Recent EHV-2 infection was associated with the development of signs of respiratory disease among yearlings [relative risk (RR)=2.67, 95% CI=1.59-4.47, p=0.017].

CONCLUSIONS: Of the equine respiratory viruses detected in horses in New Zealand during this study, EHV-2 was most likely to be associated with respiratory disease. However, factors other than viral infection are probably important in the development of clinical signs of disease.  相似文献   

6.
OBJECTIVE: To compare exercise-induced immune modulation in young and older horses. ANIMALS: 6 young and 6 aged horses that were vaccinated against equine influenza virus. PROCEDURE: Venous blood samples were collected for immunologic assessment before and immediately after exercise at targeted heart rates and after exercise for determination of plasma lactate and cortisol concentrations. Mononuclear cells were assayed for lymphoproliferative responses and incubated with interleukin-2 (IL-2) to induce lymphokine-activated killer (LAK) cells. Antibodies to equine influenza virus were measured. RESULTS: Older horses had significantly lower proliferative responses to mitogens than younger horses prior to exercise. Exercise caused a significant decrease in lymphoproliferative response of younger horses, but not of older horses. Activity of LAK cells increased slightly with exercise intensity in younger horses. Cortisol concentrations increased in both groups after exercise; younger horses had higher concentrations after exercise at heart rates of 180 and 200 beats/min than those of older horses. Plasma lactate concentrations increased with exercise intensity but there were no differences between older and younger horses. Older horses had lower antibody titers to equine influenza virus than younger horses. Exercise did not affect antibody titers. CONCLUSION: Although lymphoproliferative responses and antibody titers of older horses were less than those of younger horses, older horses were more resistant to exercise-induced changes in immune function, possibly because of lower cortisol concentrations. CLINICAL RELEVANCE: Stress and aging are known to affect immune function. Older horses had reduced immune function, but were more resistant to exercise-induced immune suppression than younger horses.  相似文献   

7.
AIM: To identify viruses associated with respiratory disease in young horses in New Zealand. METHODS: Nasal swabs and blood samples were collected from 45 foals or horses from five separate outbreaks of respiratory disease that occurred in New Zealand in 1996, and from 37 yearlings at the time of the annual yearling sales in January that same year. Virus isolation from nasal swabs and peripheral blood leukocytes (PBL) was undertaken and serum samples were tested for antibodies against equine herpesviruses (EHV-1, EHV-2, EHV-4 and EHV-5), equine rhinitis-A virus (ERAV), equine rhinitis-B virus (ERBV), equine adenovirus 1 (EAdV-1), equine arteritis virus (EAV), reovirus 3 and parainfluenza virus type 3 (PIV3). RESULTS: Viruses were isolated from 24/94 (26%) nasal swab samples and from 77/80 (96%) PBL samples collected from both healthy horses and horses showing clinical signs of respiratory disease. All isolates were identified as EHV-2, EHV-4, EHV-5 or untyped EHV. Of the horses and foals tested, 59/82 (72%) were positive for EHV-1 and/or EHV-4 serum neutralising (SN) antibody on at least one sampling occasion, 52/82 (63%) for EHV-1-specific antibody tested by enzyme-linked immunosorbent assay (ELISA), 10/80 (13%) for ERAV SN antibody, 60/80 (75%) for ERBV SN antibody, and 42/80 (53%) for haemagglutination inhibition (HI) antibody to EAdV-1. None of the 64 serum samples tested were positive for antibodies to EAV, reovirus 3 or PIV3. Evidence of infection with all viruses tested was detected in both healthy horses and in horses showing clinical signs of respiratory disease. Recent EHV-2 infection was associated with the development of signs of respiratory disease among yearlings [relative risk (RR)=2.67, 95% CI=1.59-4.47, p=0.017]. CONCLUSIONS: Of the equine respiratory viruses detected in horses in New Zealand during this study, EHV-2 was most likely to be associated with respiratory disease. However, factors other than viral infection are probably important in the development of clinical signs of disease.  相似文献   

8.
The acute phase protein serum amyloid A (SAA) has been shown to be a useful inflammatory parameter in the horse, but studies showing SAA responses to specific respiratory disease etiologies are limited. The goal of this study was to evaluate SAA responses in horses with infectious and noninfectious respiratory diseases as well as healthy, control horses. Two hundred seven horses were grouped into the following categories: equine influenza virus (EIV), equine herpesvirus-4 (EHV-4), Streptococcus equi subspecies equi (S. equi ss equi), inflammatory airway disease (IAD), and healthy controls. Serum amyloid A concentrations were determined for all horses on serum using a stall-side lateral flow immunoassay test. Serum amyloid A levels were found to be significantly greater for infectious respiratory diseases (EIV, EHV-4, S. equi ss equi) and horses with IAD when compared to control horses. There was a significant difference between viral and bacterial infections and IAD. Although SAA values from horses with S. equi ss equi were significantly greater when compared to horses with viral infections (EIV/EHV-4), the wide range of SAA values precluded accurate classification of the infectious cases. In conclusion, SAA is more reliably elevated with infections of the respiratory tract rather than noninfectious airway conditions. This can facilitate early detection of respiratory infections, help track disease progression, and aid practitioners in making recommendations about proper biosecurity and isolation of potentially contagious horses.  相似文献   

9.
Equine respiratory viral infections cause significant worldwide disease and economic loss. Common causes include equine influenza virus (EIV) and equine herpesviruses-1 and -4 (EHV-1 and -4), and risk of exposure to these agents may be highest in young horses commingling at sales and competitive events. A surveillance study was conducted at two horse shows and two Thoroughbred sales to determine whether horses shed EHV-1, EHV-4, or EIV on arrival, or 2-4 days later, and whether shedding was associated with identifiable risk factors. Real-time polymerase chain reaction assays were used to detect EHV-1, EHV-4, and EIV nucleic acid in nasal swabs obtained from 369 horses at the four events. In response to evidence of clinical disease, 82 additional horses were sampled at two farms providing horses for one of the sales. On arrival at the events, shedding of EHV-1 was detected in 3.3%, EHV-4 in 1.1%, and EIV in 0.8% of horses. EHV-1 was detected at low levels, and EHV-1 and EHV-4 detection was not associated with clinical disease. EIV was detected only in horses at a Thoroughbred sale, in association with an outbreak of respiratory disease traced back to regional farms. On arrival at events, horses younger than 2 years had a significantly greater risk of shedding EHV-1 compared with older horses; no other significant risk factors associated with viral shedding were identified. Thus, there is a risk of exposure to EIV, EHV-1, and EHV-4 at equine events, and horses and events should be managed to mitigate this risk.  相似文献   

10.
The purpose of this investigation was to determine if naturally occurring acute infectious upper respiratory disease (IRD) caused by equine influenza virus is associated with ultrasonographically detectable pleural and pulmonary abnormalities in horses. Standardbred racehorses were evaluated for signs of IRD, defined as acute coughing or mucopurulent nasal discharge. For every horse with IRD (n = 16), 1 or 2 horses with no signs of IRD and the same owner or trainer (n = 30) were included. Thoracic ultrasonography was performed within 5-10 days of the onset of clinical disease in horses with IRD. Horses without IRD were examined at the same time as the horses with IRD with which they were enrolled. The rank of the ultrasound scores of horses with IRD was compared to that of horses without IRD. Equine influenza virus was identified as the primary etiologic agent associated with IRD in this study. Mild lung consolidation and peripheral pulmonary irregularities were found in 11 (69%) of 16 of the horses with IRD and 11 (37%) of 30 of control horses. Lung consolidation (median score = 1) and peripheral irregularities scores (median score = 1) were greater in horses with IRD compared to horses without IRD (median score = 0; P < .05). Pleural effusion was not observed. Equine influenza virus infection can result in abnormalities of the equine lower respiratory tract. Despite the mild nature of IRD observed in this study, lung consolidation and peripheral pulmonary irregularities were more commonly observed in horses with clinical signs of IRD. Further work is needed to determine the clinical significance of these ultrasonographic abnormalities.  相似文献   

11.
Related to its potential vulnerability the respiratory tract has a very complex and effective defence apparatus. The interaction between these defence mechanisms and certain characteristics of aetiological agents results in a pattern in which initial infections by these agents tend to occur at specific sites in the tract. Infections in which the primary portal of entry is in the upper respiratory tract include Bordetella bronchiseptica and Haemophilus spp in pigs; Pasteurella spp in cattle, sheep, pigs; Mycoplasma spp in cattle, sheep, pigs and poultry; equine herpesvirus 1 in horses; infectious bovine rhinotracheitis in cattle; parainfluenza 3 in cattle and sheep; infectious laryngo-tracheitis and infectious bronchitis in poultry; feline viral rhinotracheitis and calicivirus in cats; Aujeszky's disease virus and swine influenza in pigs; and equine influenza in horses. Infections in which the primary portal of entry is in the lower respiratory tract include Aspergillus fumigatus in poultry and mammals, respiratory syncytial virus in cattle, distemper virus in dogs and adenovirus in cattle and dogs. A fuller understanding of the interactions between an agent and the host at the point of entry would make it much easier to develop effective vaccines and therapeutic agents.  相似文献   

12.
13.
During the equine influenza (EI) outbreak, respiratory disease was observed in dogs that were in close proximity to infected horses. Investigations were undertaken to exclude influenza virus infection. Of the 23 dogs that were seropositive in tests using the influenza A/Sydney/2007 virus as the test antigen, 10 showed clinical signs. EI virus appeared to be readily transmitted to dogs that were held in close proximity to infected horses, but there was no evidence of lateral transmission of the virus to other dogs that did not have contact with or were not held in close proximity to horses.  相似文献   

14.
The commercial vaccine "Resequin F Konz." devised against viral respiratory infections of horses contains the abortigenic Equine Herpesvirus-1 (EHV-1). Therefore we had used it in our protection project of the Austrian Lipizzaners+ primarily to prevent abortions. Taking into account the recent perception that for young horses the respiratory-pathogenic EHV-4 type is essential Behringwerke Marburg added this particular virus to their market product to produce a multicomponent experimental vaccine. We examined this vaccine for its antibody induction as well as their persistence against each of its viral components. On groups of foals we did this regarding its prophylactic effect against respiratory infections. Furthermore, we investigated its immunogenicity in adult horses, hoping for a potentiating effect of EHV-4 against EHV-1, mediating enhanced protection against abortion caused by the latter virus. This experimental vaccine proved excellently tolerable, its immunogenicity against either equine herpesvirus type was considerable, was very good against both equine influenza subtypes, was low, however, against retroviruses types 1 and 3. Recommendations are made for seasonal optimal spacing of vaccinations, taking into account the prevalent dissemination phases of the viruses involved, the different age groups of horses and their respective use.  相似文献   

15.
The objective of this project was to develop and implement an active surveillance program for the early and rapid detection of equine influenza viruses in Ontario. For this purpose, from October 2003 to October 2005, nasopharyngeal swabs and acute and convalescent serum samples were collected from 115 client-owned horses in 23 outbreaks of respiratory disease in Ontario. Sera were paired and tested for antibody to equine influenza 1 (AE1-H7N7), equine influenza 2 (AE2-H3N8), equine herpesvirus 1 and 4 (EHV1 and EHV4), and equine rhinitis A and B (ERAV and ERBV). Overall, the cause-specific morbidity rate of equine influenza virus in the respiratory outbreaks was 56.5% as determined by the single radial hemolysis (SRH) test. The AE2-H3N8 was isolated from 15 horses in 5 outbreaks. A 4-fold increase in antibody levels or the presence of a high titer against ERAV or ERBV was observed in 10 out of 13 outbreaks in which AE2-H3N8 was diagnosed as the primary cause of disease. In conclusion, AE2-H3N8 was found to be an important contributor to equine respiratory viral disease. Equine rhinitis A and B (ERAV and ERBV) represented an important component in the equine respiratory disease of performing horses.  相似文献   

16.
The diagnosis of any viral respiratory disease relies on laboratory procedures to isolate the virus and demonstrate a significant rise in serum antibody titers. To isolate viruses from the upper respiratory tract, it is imperative that nasopharyngeal swabs are obtained from animals in the early acute stage of illness, i.e., during the pyrexic phase when the virus is replicating. Nasopharyngeal swabs must be placed in a virus transport medium and forwarded immediately to the laboratory at refrigerated temperature. Equine influenza, rhinopneumonitis, and equine viral arteritis are the three viral infections causing outbreaks of respiratory disease in North America. African horse sickness, although foreign to North America, could be introduced despite stringent horse importation regulations. Specific antiviral therapy is not available to treat viral respiratory disease in the horse. A variety of inactivated and modified live vaccines, however, are available to prevent clinical disease and the spread of infection caused by the common viral respiratory pathogens. A considerable amount of research is underway to enhance the potency and duration of immunity of the present vaccines against influenza and rhinopneumonitis. This research is directed at defining and characterizing the importance of specific glycoprotein antigens on the surface of the virus, which trigger the various host immune responses, and determining whether they are stimulatory or suppressive.  相似文献   

17.
Feline leukemia virus status and antibody titer to feline oncornavirus-associated cell membrane antigen (FOCMA) were determined on plasma from 183 outpatient cats and 61 cats from 2 closed, FeLV-positive, multiple-cat households. Cats with FOCMA antibody titer had a significantly (P less than 0.02) higher prevalence of history of disease than did cats without FOCMA antibody. Diseases included upper respiratory tract infections, abscesses, ear infections, lower urinary tract infections, gastrointestinal disease, pneumonia, uterine infection, lymphadenopathy, fever of unknown origin, and bacterial infections. The FOCMA antibody titer was determined by use of an indirect fluorescent antibody test; titer greater than or equal to 1:16 was considered to be positive results. Lower mean FOCMA antibody titer was observed in young cats with history of disease (P less than 0.05) than in young cats without history of disease or in older cats with or without history of disease. Prevalence of FOCMA antibody titer was identical (38%) in young and adult cats, indicating cats likely were exposed to FeLV as kittens because a higher prevalence of FOCMA antibody titer in older cats would otherwise be expected.  相似文献   

18.
Influenza A viruses of the H3N8 subtype are a major cause of respiratory disease in horses. Subclinical infection with virus shedding can occur in vaccinated horses, particularly where there is a mismatch between the vaccine strains and the virus strains circulating in the field. Such infections contribute to the spread of the disease. Rapid diagnostic techniques are available for detection of virus antigen and can be used as an aid in control programmes. Improvements have been made to methods of standardising inactivated virus vaccines, and a direct relationship between vaccine potency measured by single radial diffusion and vaccine-induced antibody measured by single radial haemolysis has been demonstrated. Improved adjuvants and antigenic presentation systems extend the duration of immunity induced by inactivated virus vaccines, but high levels of antibody are required for protection against field infection. In addition to circulating antibody, infection with influenza virus stimulates mucosal and cellular immunity; unlike immunity to inactivated virus vaccines, infection-induced immunity is not dependent on the presence of circulating antibody to HA. Live attenuated or vectored equine influenza vaccines, which may better mimic the immunity generated by influenza infection than inactivated virus vaccines, are now available. Mathematical modelling based upon experimental and field data has been applied to examine issues relating to vaccine efficacy at the population level. A vaccine strain selection system has been implemented and a more global approach to the surveillance of equine influenza is being developed.  相似文献   

19.
Examination of nasopharyngeal secretion and organ material from clinical cases of respiratory diseases in horses, using inoculation of embryonated hen eggs and rabbit and horse kidney cell cultures, resulted in the isolation of influenza virus and herpes virus. In 2 cases, both viruses were present in the same specimen.On the basis of the physio-chemical, cytological and serological criteria, the viruses were found to be identical with influenza virus type A equi 2 and herpes virus equi type 1.The methods for serological diagnosis and characterization of the influenza and herpes viruses are discussed. Detailed serological examinations of blood specimens from the clinical cases confirmed the aetiological significance of the isolates and the presence of mixed infections.Further characterization of a strain of influenza virus was carried out by inoculation experiments on horses. These included reproduction of clinical influenza, reisolation of the strain in casu and a study of the antibody formation.  相似文献   

20.
REASONS FOR PERFORMING STUDY: West Nile virus (WNV) infection is endemic in southern Africa. With the recent emergence of WNV infection of horses in Europe and the USA the present study was performed to estimate the risk of seroconversion to WNV in a cohort of 488 young Thoroughbred (TB) horses. OBJECTIVES: To estimate the risk of seroconversion to WNV among a cohort of South African TB yearlings sold at the 2001 National Yearling Sales (NYS) and to determine whether the risk varied geographically. Two horses were also infected with a recent South African isolate of WNV to evaluate its virulence in horses. METHODS: Serum samples were collected from the cohort of 488 TB yearlings at the 2001 NYS. Serum samples that were collected from the same horses at the time that they were identified were sourced from our serum bank. Sera from 243 of the dams that were collected at the time that the foals were identified were also sourced from our serum bank. These sera were subjected to serum neutralisation (SN) tests for antibody to WNV. RESULTS: Approximately 11% of yearlings seroconverted to WNV on paired serum samples collected from each animal approximately 12 months apart. Studfarms with WNV-seropositive yearlings were widely distributed throughout South Africa and SN tests on sera from their dams indicated that exposure to WNV was even more prevalent (75%) in this population. Neurological disease was not described in any of the horses included in this study and 2 horses inoculated with a recent lineage 2 South African isolate of WNV showed no clinical signs of disease after infection and virus was not detected in their blood. CONCLUSIONS: Infection of horses with WNV is common in South Africa, but infection is not associated with neurological disease. POTENTIAL RELEVANCE: In contrast to recent reports from Europe, North Africa, Asia and North America, the results of our field and experimental studies indicated that exposure of horses to the endemic southern African strains of WNV was not associated with neurological disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号