首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了弄清外源5-氨基乙酰丙酸(ALA)提高亚适宜温光下黄瓜幼苗光合作用的效果,以‘津优1号’黄瓜为试材,用0.5mg·mL-1ALA喷洒幼苗,利用光照培养箱模拟亚适宜温光条件(昼/夜温度18℃/12℃,光量子通量密度300μmol.m-2.s-1),研究ALA对幼苗气体交换参数、叶绿素荧光参数及光合酶活性的影响。结果表明:亚适宜温光下,黄瓜幼苗叶片的净光合速率(Pn)和气孔导度(Gs)、羧化效率(CE)、表观量子效率(AQY)、光下实际光化学效率(ΦPSⅡ)、光化学猝灭系数(qP)、天线转化效率(Fv′/Fm′)及核酮糖-1,5-二磷酸羧化酶(RuBPCase)、果糖-1,6-二磷酸酶(FDPase)活性等均明显降低,胞间CO2浓度(Ci)升高,光补偿点(LCP)、CO2补偿点(CCP)显著下降。与水处理相比,ALA处理的Pn、Gs、CE、AQY、ΦPSⅡ、qP、Fv′/Fm′及RuBPCase和FDPase活性等有不同程度提高,Ci、LCP和CCP有所降低。亚适宜温光下,黄瓜幼苗光合速率下降的主要原因是非气孔限制,外源ALA能明显提高其光合作用。  相似文献   

2.
低温弱光对不同黄瓜品种幼苗光合作用的影响   总被引:41,自引:3,他引:38  
 在低温(15 ℃) 弱光(100μE·m-2·s-1) 的胁迫下, 供试黄瓜品种幼苗的光补偿点开始升高, 叶绿素a 荧光动力学的有关参数Fv/ Fm、qp 、ΦPS Ⅱ ( Y) 值和参与光合作用碳同化的关键酶RuBP 羧化酶活性明显下降。这一结果表明PS Ⅱ的原初光能转换效率和电子传递以及碳同化均受到抑制, 从而使幼苗对弱光的利用能力下降。然而在逆境的诱导下, 黄瓜幼苗的适应性逐渐增强, 上述各项指标恢复到处理前的水平。试验结果还表明, 保护地品种对低温弱光逆境的调节适应能力高于露地品种。  相似文献   

3.
为了探明钙和水杨酸对亚适温弱光下黄瓜幼苗光合作用的调控机理,以‘津优3号’黄瓜为试材,用10 mmol ? L-1氯化钙(CaCl2)和1 mmol ? L-1水杨酸(SA)喷施预处理幼苗,每天喷1次,连续3 d,之后置于光照培养箱内进行亚适温弱光处理(18 ℃/12 ℃,PFD 100 μmol ? m-2 ? s-1)。结果表明:亚适温弱光可使黄瓜幼苗生长量大幅度下降,光合速率(Pn)以及核酮糖–1,5–二磷酸羧化/加氧酶(Rubisco)、果糖–1,6–二磷酸酯酶(FBPase)、甘油醛–3–磷酸脱氢酶(GAPDH)、果糖1,6–二磷酸醛缩酶(FBA)、转酮醇酶(TK)的活性与其mRNA表达明显降低,但CaCl2和SA预处理的黄瓜幼苗的降低幅度明显较小,可见钙和水杨酸可以通过提高光合酶的活性及其基因表达,缓解亚适温弱光对黄瓜幼苗光合作用的影响,增强其对亚适温弱光的适应性。  相似文献   

4.
Pot culture experiments were conducted to assess the extent of growth, photosynthetic capacity, sennoside concentration and yield attributes of Senna plant under the individual as well as combined influence of NaCl and CaCl2. Six treatments, i.e. NaCl (80 and 160 mM), CaCl2 (5 and 10 mM) alone and a combination of NaCl + CaCl2 (80 + 10 and 160 + 10 mM) were given to the growing Senna plants at pre-flowering (45 DAS), flowering (75 DAS) and post-flowering (90 DAS) stages. Significant reductions were observed in pod biomass, leaf area, stomatal conductance, photosynthetic rate and sennoside concentration and yield, with each NaCl treatment. On the contrary, individual CaCl2 treatments had a favourable effect. Under the effect of combination treatments, although these parameters were reduced, the extent of reduction was much less than one caused by NaCl treatments. The combined treatments thus mitigated the adverse effects caused by NaCl.  相似文献   

5.
Summary

To increase resistance to environmental stress during the acclimatisation of mericlone seedlings of Cattleya and Phalaenopsis, seedlings were treated with CaCl2. The effectiveness of CaCl2 treatment on acclimatisation was determined by investigating the levels of anti-oxidative enzyme activity and reactive oxygen species (ROS), the amounts of chlorophyll and malondialdehyde (MDA), the net rate of photosynthesis (A), and the area of leaf-burn caused by high temperature injury. The activities of four anti-oxidative enzymes [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD)] in mericlone seedlings of Cattleya and Phalaenopsis increased with CaCl2 treatment. The highest increase was in the treatment with 4 mM CaCl2. Mericlone seedlings treated with 4 mM CaCl2 had increased SOD, CAT, APX, and POD activities compared with the controls after 35 d of acclimatisation in a greenhouse. The levels of superoxide anions (O2?–) and hydrogen peroxide (H2O2) were also low. In line with this, any decrease in chlorophyll content, increase in MDA content, drop in A, or injury due to high temperature stress were mitigated by CaCl2 treatment. These results show that CaCl2 treatment is effective for the acclimatisation of mericlone seedlings of Cattleya and Phalaenopsis by increasing their resistance to environmental stress.  相似文献   

6.
为探明外源氢气(H2)对低温下黄瓜幼苗光合碳同化及氮代谢的影响,以‘津优 35 号’黄瓜为试材,将种子分别用饱和富氢水(HRW,H2 供体)和去离子水(对照,Control)浸种 8 h,常温下育苗,幼苗长至 2 叶 1 心时移至光照培养箱中进行低温(昼/夜温度 8 ℃/5 ℃)处理。结果表明:低温抑制黄瓜幼苗的生长,造成叶片光合色素含量、光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、光下实际光化学效率(ΦPSⅡ)、PSⅡ。最大光化学效率(Fv/Fm)、光下最大天线转换效率(Fv′/Fm′)、核酮糖–1,5–二磷酸羧化酶(RuBPCase)活性和根系活力逐渐降低,而胞间 CO2 浓度(Ci)和初始荧光(F0)趋于升高。此外,低温胁迫诱导了黄瓜幼苗碳代谢关键酶蔗糖合成酶(SS)和蔗糖磷酸合成酶(SPS)活性,总糖、蔗糖含量有所升高,淀粉含量显著下降,同时发现,低温下叶片的硝酸还原酶(NR)、谷氨酰胺合成酶(GS)、谷氨酸合成酶(GOGAT)和谷氨酸脱氢酶(GDH)活性及总氮、铵态氮含量先升高后降低,硝态氮含量略有升高。富氢水浸种的黄瓜幼苗各指标的变化趋势与对照一致,但低温胁迫过程中除 Ci 和 F0显著低于对照外,其余指标多显著高于对照,说明外源 H2 可以通过提高黄瓜幼苗光合关键酶活性,减轻光抑制,维持较高的碳、氮代谢水平,进而增强对低温胁迫的耐性。  相似文献   

7.
Summary

Salicylic acid (SA) is a common, plant-produced signal molecule that is responsible for inducing tolerance to a number of biotic and abiotic stresses. An experiment was therefore conducted to test whether the application of SA at various concentrations (0, 0.25, 0.50, 0.75, or 1.00 mM) by seed soaking, or as a foliar spray would protect cucumber (Cucumis sativus L.) seedlings subjected to drought stress. Thirty-six-day-old seedlings (n = 12 seedlings per treatment) were exposed to drought stress for 14 d. Pretreatment with SA improved the majority of the physiological (e.g., relative chlorophyll content and chlorophyll fluorescence ratio) and morphological parameters (e.g., shoot and root fresh and dry weights) measured in cucumber seedlings subjected to drought stress. SA ameliorated the injuries caused by drought stress by increasing shoot tissue proline contents and preventing an increase in leaf electrolyte leakage. SA was more effective at increasing the drought tolerance of cucumber seedlings when applied using the seed-soaking method, rather than as a foliar spray. The best drought protection appeared to be obtained when seeds were soaked in 0.50 mM SA.  相似文献   

8.
9.
为了探讨外源硫化氢(H2S)对黄瓜耐冷性的调控机理,以‘津优3号’黄瓜为试材,叶面喷施H2S供体硫氢化钠(NaHS),以清水处理为对照,研究H2S对温度变化的响应,以及对黄瓜叶片光合作用和抗氧化系统的影响。结果表明:随着日光温室内气温降低和低温持续时间的延长,黄瓜叶片的H2S含量及D–/L–半胱氨酸脱巯基酶(CDes)活性先升高,后降低;光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)、核酮糖–1,5–二磷酸羧化酶(RuBPCase)活性,以及暗下光系统Ⅱ最大光化学效率(Fv/Fm)、光下实际光化学效率(ΦPSII)、电子传递效率(ETR)和光化学猝灭(qP)逐渐降低,胞间CO2浓度(Ci)、初始荧光(Fo)和非光化学猝灭(NPQ)趋于升高。低温胁迫可使MDA含量增加,超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性先升高后降低。与对照相比,NaHS处理叶片的H2S含量和CDes活性及Pn、Gs、Tr、RuBPCase活性、Fv/Fm、ΦPSII、ETR和qP明显升高,Ci、Fo和NPQ显著降低。低温下NaHS处理的MDA含量显著低于对照,而SOD、POD、CAT、APX和GR活性明显高于对照。NaHS处理的黄瓜产量比对照增加15.3%。可见CDes催化合成H2S受低温胁迫诱导,外源H2S可增强活性氧清除能力,减轻低温对黄瓜叶片光合机构的伤害。  相似文献   

10.
LED光质补光对黄瓜幼苗生长和光合特性的影响   总被引:2,自引:0,他引:2  
苏娜娜  邬奇  崔瑾 《中国蔬菜》2012,1(24):48-54
采用发光二极管(light emitting diode,LED)精确调制光谱能量分布,以单色光质(红光、蓝光、UV-B)和组合光质(红/蓝1∶1)进行每天4 h补光,以未补光组为对照,研究LED光质补光对黄瓜幼苗生长和光合特性的影响。结果表明:与未补光组相比,LED光质补光处理显著促进了黄瓜幼苗的生长;不同光质对黄瓜幼苗生长和光合特性的影响具有一定的差异性。其中,UV-B处理显著提高了黄瓜幼苗叶片单位鲜质量的叶绿素a、叶绿素b和类胡萝卜素含量,但显著降低了Fv/Fm;红光处理显著提高了黄瓜幼苗的真叶数、叶面积、株高、干鲜质量、壮苗指数、根系活力、SOD活性和可溶性蛋白含量。总体而言,红光有利于培育壮苗,较适合作为黄瓜育苗的补光光质。  相似文献   

11.
嫁接对低氧胁迫下黄瓜生长和生理代谢的影响   总被引:2,自引:0,他引:2  
 采用营养液水培, 以丝瓜为砧木, 研究了嫁接对黄瓜植株生长、生理代谢和低氧耐性的影响。结果表明, 以丝瓜嫁接黄瓜可明显提高黄瓜植株的低氧耐性, 在低氧胁迫8 d后, 嫁接苗的株高、茎粗、鲜样质量、干样质量、叶绿素含量、根系活力、超氧化物歧化酶( SOD) 、过氧化物酶( POD) 、过氧化氢酶(CAT) 、抗坏血酸过氧化物酶(APX) 、净光合速率( Pn) 、胞间CO2 浓度(Ci) 、气孔导度(Gs) 、蒸腾速率( Tr) 均显著高于自根苗, 而根系和叶片中超氧阴离子(O2· ) 产生速率显著低于自根苗。表明嫁接可明显提高黄瓜植株的低氧耐性, 耐低氧性的提高与嫁接苗植株较高的抗氧化能力和光合速率密切相关。  相似文献   

12.
内源水杨酸参与黄瓜叶片光合系统对低温胁迫的响应   总被引:5,自引:0,他引:5  
李亮  董春娟  尚庆茂 《园艺学报》2013,40(3):487-497
 为了探讨内源水杨酸(salicylic acid,SA)在黄瓜幼苗光合系统响应低温胁迫中的作用机制, 采用高效液相色谱法测定低温下黄瓜叶片中内源SA 含量的变化;通过SA 合成抑制剂Paclobutrazol(Pac, 100 μmol · L-1)喷施和外源SA(50 μmol · L-1)饲喂的方法调节内源SA 含量,并测定不同处理幼苗的叶 绿素荧光参数和光合碳同化关键酶基因的转录水平。结果显示:低温引起黄瓜幼苗内源SA 含量升高,Pac 预处理抑制SA 的积累。低温导致PSⅡ的最大光化学效率(F v/F m)、实际光化学效率(Φ PSII)、潜在光化 学活性(F v/F o)和光合电子传递效率(ETR)等降低,叶片光化学猝灭参数[(Y(NO)]升高;内源SA 含量降低使PSⅡ活性下降幅度增大,加重了叶片的光损伤程度。低温下PSⅡ吸收的光能分配于光反应的 部分减少,而以非光化学反应的过剩能量耗散Ex 为主要的光能分配途径,内源SA 含量降低会加剧光能 向Ex 的分配。低温时喷施Pac 的幼苗中Rubisco 小亚基基因(RbcS)和碳酸酐酶基因(CA)的表达水平 显著低于对照植株。对喷施Pac 的幼苗外源饲喂SA 后,内源SA 含量升高,低温下叶片光合活性得到有 效恢复,光损伤降低,光能分配趋于合理,RbcS 和CA 的表达水平升高。上述结果表明,低温下内源SA 的积累有助于维持黄瓜叶片中较高的光系统活性和碳同化能力,从而保护光合系统,降低低温胁迫对植 物的损伤。  相似文献   

13.
Laboratory and field experiments were carried out with apples (Malus x domestica Borkh.) cv. ‘Golden Reinders’, to assess the efficacy of sodium salt of carboxymethyl ether of cellulose (0.5%, CMC) as an adjuvant for Ca spray formulations containing either Ca-chloride or Ca-propionate as active ingredient (120 or 250 mM Ca). This additive significantly increased the retention of Ca-containing solutions by the apple skin and prolonged the process of drying of the solution at room temperature. Four days after immersion of apples in 0.5% CMC plus CaCl2 or Ca-propionate solutions (120 and 250 mM Ca) significant Ca increases were recorded in the peel and cortex of treated fruits. Application to apple trees of in-season sprays containing 250 mM CaCl2 plus 0.05% Tween 20, Ca-propionate (120 and 250 mM Ca) plus 0.5% CMC or 250 mM CaCl2 plus 0.5% CMC had no impact on fruit yield and quality, but significantly limited the rate of bitter pit incidence during the following 3-month cold-storage period. Evidence is provided that addition of appropriate adjuvants to Ca sprays can favour the distribution of Ca into the apple fruit and helps to reduce the incidence of Ca-related disorders over the postharvest cold-storage period.  相似文献   

14.
Photosynthetic characteristics, chlorophyll index and leaf area were examined in selected leaves of cucumber (Cucumis sativus L. cv. Euphorbia). In the first experiment, plants of cucumber were grown horizontally at a lighting period of 20 h day−1. Photosynthetic measurements in horizontally growing cucumbers showed that there was no decline in photosynthetic capacity when cucumber leaves are developing under good light conditions. In a second experiment, plants were grown in a traditional high-wire cultivation system under 20 h day−1 lighting period until they reached final height and then exposed to different lighting periods (20 and 24 h day−1) for 3 weeks. In stands of cucumber plants photosynthetic measurements showed that the lower leaves have a significant reduction in photosynthetic capacity due to reduced light conditions. Three weeks exposure to 24 h day−1 lighting period reduced leaf area by 20%. Plant grown under continuous light had also lower chlorophyll index compared to plants grown under 20 h day−1 lighting period.  相似文献   

15.
This experiment was conducted to study the effect of salicylic acid addition to nutrient solution and different postharvest treatments on fruit quality of strawberry cv. Camarosa after 7 days at 2 °C. Plants were irrigated with two complete nutrient solutions, with salicylic acid (0.03 mM) or without salicylic acid as the control. Fruits were then treated with eight different postharvest treatments (25 °C water, 45 °C water, 25 °C or 45 °C water containing CaCl2 (1%), 25 °C or 45 °C water containing salicylic acid (2 mM) and 25 °C or 45 °C water containing both CaCl2 (1%) and salicylic acid (2 mM)). Fruits which received SA in their nutrient solution had less weight loss and decay and higher firmness. All of the postharvest treatments improved fruit quality characteristics. Fruits dipped in salicylic acid solution had less weight loss, decay and a* (redness) and higher firmness and hue angle than control. Heat treated fruits had less decay and a* and higher hue angle than control. Fruits dipped in CaCl2 solution had less weight loss, decay and a* and higher firmness than control. Combination of the three postharvest treatments improved firmness, decay, weight loss and vitamin C.  相似文献   

16.
Bitter gourd (Momordica charantia L.) seedlings treated with elevated concentrations of dimethoate (100 and 200 ppm) and fixed ultraviolet-B (0.4 Wm−2/30 min) irradiation showed stunted growth and less photosynthetic pigments chlorophylls (Chl) content. The synergistic effects of both the stresses were more pronounced than the individual effect. However, dimethoate at low concentration (50 ppm) stimulated growth and pigmentation but with UV-B it showed slight inhibition. Reactive oxygen species (ROS) accumulated considerably in leaves due to UV-B and high concentrations of dimethoate. Combined exposure further increased the ROS leading to lipid peroxidation and electrolyte leakage. Both the stresses alone and together also caused the increase activity of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD). High concentration of dimethoate and UV-B accelerated the accumulation of ROS particularly H2O2 in leaves, causing heavy damage to photosynthetic pigments and growth of bitter gourd seedlings. Simultaneous exposure of UV-B and dimethoate inhibit the growth, photosynthetic pigment and enhanced the accumulation of ROS more severely than the individual exposure. Interestingly, low concentration (50 ppm) of dimethoate significantly reduced the effects of UV-B. The results suggested synergistic effect of dimethoate and UV-B on plant growth as a function of decreased photosynthetic pigments despite increase in the activities of the antioxidant enzyme.  相似文献   

17.
Summary

The purpose of this work was to estimate the effects of post-harvest calcium chloride or salicylic acid treatments on the physicochemical characteristics and shelf-life of apricot (Prunus armeniaca L.) ‘Asgar-Abad’ fruit stored at 1ºC in a normal atmosphere for 21 d after harvest. Fruit were dipped in deionised water (control), or in 40, 60, or 80 mM CaCl2, or in 1.0, 2.0, or 3.0 mM salicylic acid (SA) for 10 min.Total soluble solids (TSS) contents, titratable acidity (TA), ascorbic acid contents, total phenolics contents, and total anti-oxidant activity were determined 7, 14, or 21 d after each treatment. Fresh weight (FW) loss, titratable acidity, and TSS contents were improved by all treatments. Fruit treated with 3 mM SA exhibited the highest phenolics content during the storage period. At the end of the storage period, the highest values of TSS were observed in the 2.0 mM and 3.0 mM SA treatments. This experiment revealed that post-harvest treatment with SA or CaCl2 prolonged the storage-life and preserved the valuable marketing characteristics of apricot fruit, presumably because of their inhibitory effects on fruit softening, ripening, and senescence. Over 21 d in cold storage, 2.0 mM SA was found to be the best treatment to maintain fruit quality in terms of FW loss, while 60 mM CaCl2 was optimal for achieving high ascorbic acid concentrations and enhancing the anti-oxidant capacity of fruit.  相似文献   

18.
The role of Ca and Mg in the enzymatic browning of ‘Golden Delicious’ apples was explored. Enzymatic browning due to polyphenol oxidase (PPO) was stimulated with the addition of 0.8–10 mM MgCl2 to the reaction mixture, whereas 0.8–10 mM CaCl2 had little effect or decreased the rate of enzymatic browning. Within a week after vacuum infiltration with MgCl2, treated fruits exhibited browning symptoms that were similar to bitter pit. Six months after vacuum infiltration, when analyzed for enzyme activity, MgCl2-treated fruits exhibited higher rates of PPO activity, whereas CaCl2-treated fruits had lower activity than the MgCl2-treated fruits and the controls. A hypothesis is advanced that the initial visible symptoms of bitter pit, i.e. the localized browning, is caused by PPO, its activity being stimulated by the localized Mg/Ca imbalance present in the tissue. The results indicate that Ca is predominant in the prevention of this disorder, whereas a deficiency of Ca is involved in its induction.  相似文献   

19.
Salinity is one of the major environmental factors limiting crop productivity. The effect of increasing salinity levels (0, 50, 100 mM NaCl) on growth, photosynthetic traits, leaf water potential, oxidative stress, enzymatic and non-enzymatic antioxidants was studied in Pusa Jai Kisan and SS2 cultivars of mustard (Brassica juncea L. Czern & Coss.) differing in ATP-sulfurylase activity at 30 days after sowing (DAS). The cultivar SS2 (low ATP-sulfurylase activity) accumulated higher content of Na+ and Cl in leaf than root. SS2 also showed greater content of thiobarbituric acid reactive substances (TBARS) and H2O2 and higher decrease in growth, photosynthetic traits and leaf water potential than Pusa Jai Kisan with increasing salinity levels. Contrarily, Pusa Jai Kisan (high ATP-sulfurylase activity) exhibited higher Na+ and Cl content in root than leaf, lower TBARS and H2O2 content and higher activity of catalase, ascorbate peroxidase and glutathione reductase. However, the activity of superoxide dismutase was greater in SS2 than Pusa Jai Kisan. Higher activity of ATP-sulfurylase in Pusa Jai Kisan resulted in increased content of glutathione, a reduced form of inorganic sulfur and an essential component of cellular antioxidant defense system. The lesser decrease in growth and photosynthesis in Pusa Jai Kisan was the result of lesser Na+ and Cl in leaf, higher turgidity and increased activity of antioxidant enzymes and glutathione content.  相似文献   

20.
 研究了钙- 钙调素(Ca2+-CaM) 对水杨酸( SA) 诱导葡萄幼苗耐热性的影响, 以及抗氧化酶、MDA、CaM和Pro在这一过程中的变化。结果表明: (1) 外源SA可提高葡萄幼苗的耐热性, 而Ca2+可促进SA对耐热性的诱导。但是, Ca2+螯合剂EGTA、Ca2+通道抑制剂La3+以及CaM拮抗剂W7对SA诱导的耐热性产生抑制作用。高温热激后, SA或SA加Ca2+处理促进叶片内CaM的积累, EGTA、La3+或W7则抑制CaM的积累。(2) 高温下, SA通过维持高水平的SOD和CAT的活性, 降低MDA含量来抵抗高温造成的氧化胁迫; 外源Ca2+可促进SA对SOD和CAT的诱导, 而EGTA、La3+或W7则产生相反的作用。高温前后, 各处理叶片内的POD和APX的活性并没有明显的变化。(3) SA或SA加Ca2+处理可增加叶片中的Pro含量, 并在高温下维持较高的水平。高温后, 各抑制剂处理叶片中的Pro含量与对照无明显差异。结果表明, Ca2+可调控SA诱导的耐热性, 而且在此过程中, 要求细胞外的Ca2+穿过质膜进入胞内, 并有抗氧化酶和Pro的参与。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号