首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An experiment was conducted to investigate the physiological and biochemical responses of two hexaploids viz., C 306 (water stress tolerant) and Hira (water stress susceptible), and two tetraploids, HW 24 (Triticum dicoccum) and A 9‐30‐1 (Triticum durum) wheat genotypes to water stress under pot culture condition. Water stress was imposed for a uniform period of 10 days at 50, 60 and 70 days after sowing (DAS) and observations were recorded at 60, 70 and 80 DAS. Total dry matter and plant height were recorded at harvest. Water stress caused a decline in relative water content (RWC), chlorophyll and carotenoid content, membrane stability and nitrate reductase activity and increased accumulation of proline at all stages and abscisic acid (ABA) at 80 DAS in all the genotypes. Both the tetraploids showed a lower reduction in RWC and highest ABA accumulation under water stress. Among the hexaploids Hira showed the most decline in RWC and the lowest ABA accumulation. The tetraploids also showed comparatively higher carotenoid content and membrane stability, closely followed by C 306, while Hira showed the minimum response under water stress. Nitrate reductase activity and chlorophyll content under irrigated conditions were highest in Hira but under water stress the lowest per cent decline was observed in C 306, followed by HW 24, A 9‐30‐1, and Hira. Proline accumulation under water stress conditions was highest in hexaploids C 306 and Hira and lowest in tetraploids HW 24 and A 9‐30‐1. Tetraploids HW 24, followed by A 9‐30‐1 maintained higher plant height and total dry matter (TDM) under water stress and also showed a lower per cent decline under stress than hexaploids C 306 and Hira. From the results it is clear that proline accumulation did not contribute to better drought tolerance of tetraploids than hexaploids. It is also apparent that water stress tolerance is the result of the cumulative action of various physiological processes, and all the parameters/processes may not be positively associated with the drought tolerance of a particular tolerant genotype.  相似文献   

2.
Developing tolerant genotypes is crucial for stabilizing maize productivity under drought stress conditions as it is one of the most important abiotic stresses affecting crop yields. Twenty seven genotypes of maize (Zea mays L.) were evaluated for drought tolerance for three seasons under well watered and water stressed conditions to identify interactions amongst various tolerance traits and grain yield as well as their association with SSR markers. The study revealed considerable genetic diversity and significant variations for genotypes, environment and genotype × environment interactions for all the traits. The ranking of genotypes based on drought susceptibility index for morpho-physiological traits was similar to that based on grain yield and principal component analysis. Analysis of trait – trait and trait – yield associations indicated significant positive correlations amongst the water relations traits of relative water content (RWC), leaf water potential and osmotic potential as well as of RWC with grain yield under water stressed condition. Molecular analysis using 40 SSRs revealed 32 as polymorphic and 62 unique alleles were detected across 27 genotypes. Cluster analysis resulted in categorization of the genotypes into five distinct groups which was similar to that using principal component analysis. Based on overall performance across seasons tolerant and susceptible genotypes were identified for eventual utilization in breeding programs as well as for QTL identification. The marker-trait association analysis revealed significant associations between few SSR markers with water relations as well as yield contributing traits under water stressed conditions. These associations highlight the importance of functional mechanisms of intrinsic tolerance and cumulative traits for drought tolerance in maize.  相似文献   

3.
Drought stress is a major limiting factor for crop production in the arid and semi‐arid regions. Here, we screened eighty barley (Hordeum vulgare L.) genotypes collected from different geographical locations contrasting in drought stress tolerance and quantified a range of physiological and agronomical indices in glasshouse trails. The experiment was conducted in large soil tanks subjected to drought treatment of eighty barley genotypes at three‐leaf stage and gradually brought to severe drought by withholding irrigation for 30 days under glasshouse conditions. Also, root length of the same genotypes was measured from stress‐affected plants growing hydroponically. Drought tolerance was scored 30 days after the drought stress commenced based on the degree of the leaf wilting, fresh and dry biomass and relative water content. These characteristics were related to stomatal conductance, stomatal density, residual transpiration and leaf sap Na, K, Cl contents measured in control (irrigated) plants. Responses to drought stress differed significantly among the genotypes. The overall drought tolerance was significantly correlated with relative water content, stomatal conductance and leaf Na+ and K+ contents. No significant correlations between drought tolerance and root length of 6‐day‐old seedling, stomatal density, residual transpiration and leaf sap Cl? content were found. Taking together, these results suggest that drought‐tolerant genotypes have lower stomatal conductance, and lower water content, Na+, K+ and Cl? contents in their tissue under control conditions than the drought‐sensitive ones. These traits make them more resilient to the forthcoming drought stress.  相似文献   

4.
The physiological basis of genetic variation in drought response and its association with yield and related indices is not clear in tall fescue. In this study thirty genotypes of tall fescue (Festuca arundinacea Schreb.) were sampled from a polycross population and evaluated under two levels of irrigation in 2010 (normal and intense stress) and 2011 (normal and mild stress). Physiological traits including relative water content (RWC), total chlorophyll (TChl), chlorophyll a (Chla), chlorophyll b (Chlb), Chla/Chlb, carotenoids (Car), TChl/Car and proline content along with forage yield, agro-morpholgical traits and selection indices (stress tolerance index, STI and drought susceptibility index, DSI) were studied. Large variation and moderate to high heritability was estimated for most of the studied traits. Intense drought condition decreased chlorophyll content while mild stress significantly increased it. In the other hand intense drought stress increased Chla/b while mild stress didn’t change it. Under mild drought stress condition STI was positively correlated with RWC while under intense drought stress condition STI was positively correlated with chlorophyll content. Although proline content was significantly increased in both intense and mild drought stress conditions, no relationship was found between proline accumulation with forage yield and STI. Applications of principle component analysis for screening suitable genotypes are also discussed.  相似文献   

5.
The impact of the genotype‐specific leaf morphological and anatomical characteristics on the ability of wheat plants to preserve leaf water balance and cell membranes stability under drought stress was investigated. Seedlings of six modern semi‐dwarf (carriers of Rht, Reduced height genes) and six old tall bread wheat varieties were subjected to soil drought by withholding watering for 6 days. Morpho‐anatomical traits (leaf area, perimeter, thickness, stomata and trichome density) of daily watered (control) plants were characterized by light microscopy, scanning and image analyses. The leaf water status in both control and stressed plants was determined by measuring the relative water content (RWC). The leaf cell membranes stability in stressed plants was estimated by conductometric determination of the membranes injury index. On average, the modern semi‐dwarf varieties had less leaf area and leaf perimeter, and less dissection index, a parameter characterizing the leaf shape. Under drought stress, the modern genotypes maintained better water balance evidenced by significantly higher leaf RWC and better‐preserved the cell membranes stability supported by significantly lower Injury index. The correlations between morpho‐anatomical traits in control plants and drought tolerance‐related traits showed that the higher the leaf dissection index (i.e. more oblong leaves), the greater the water loss and the leaf membrane damages after desiccation were. The effect of shape of the evaporating surface on the water loss was modelled using wet filter paper. Similar to plant leaves, the evaporation and, respectively, water loss from paper pieces of more oblong shape (i.e. higher dissection index) was more intensive. The elucidation of the impact of the leaf shape on transpiration might contribute to better understanding of the mechanisms used by plants to maintain water reserves during drought stress and could be a basis for developing of simple and fast screening methods aiding the selection of drought tolerant genotypes.  相似文献   

6.
Drought stress is one of the most important environmental factors that limit plant growth and development, thus reducing yield. The objective of the present research was to correlate the genetic structure of different Fragaria genotypes, as assessed by Expressed Sequence Tag (EST) and Amplified Fragment Length Polymorphism (AFLP) markers, and plant responses to drought stress. Firstly, physiological parameters related to the plant response to drought stress such as leaf relative water content (RWC) and water losing rate (WLR) were measured. WLR and RWC were compared for 20 cultivars of the octaploid Fragaria × ananassa, two ecotypes of the diploid species F. vesca and one octaploid species F. chiloensis. These parameters could discriminate genotypes showing a contrasting response to water stress. Secondly, AFLP and ESTs were compared in terms of their information content and efficiency in the study of genetic diversity and relationships among these 23 Fragaria genotypes. To evaluate the genetic basis for the observed variation in the measured physiological parameter, the effect of specific AFLP/EST loci on WLR and RWC for the different Fragaria genotypes was quantified by Kruskal–Wallis analysis. By Mantel testing, the hierarchical clustering of the Fragaria genotypes based on associated EST or AFLP markers was compared to the observed eco-physiological relevant grouping. A better discriminating capacity for associated markers was noted, enabling a functional marker selection approach to screen the strawberry gene pool for drought tolerance. Correlation of EST markers to leaf RWC and WLR enforces them as potential candidate genes in control of plant responses to drought stress in Fragaria sp.  相似文献   

7.
Ten cowpea (Vigna unguiculata L. “Walp.”) genotypes were grown in a growth chamber under well-watered conditions up to early flowering and were then either subjected to water deficit or were continually well-watered. Water deficit was induced by withholding irrigation until the soil water potential was −75 kPa, which was then maintained for 10 days. Variation in water use efficiency (WUE), leaf area, specific leaf area (SLA), leaf area ratio (LAR) and leaf gas exchange (i.e. assimilation, transpiration, stomata conductance and internal CO2 concentration) in response to water deficit were investigated. Water deficit treatment reduced mean water use by 21%. This caused between 11 and more than 40% reduction of biomass across the genotypes. Reductions in biomass were due to decline in leaf gas exchange and leaf area during water deficit. Water deficit improved the WUE of two genotypes (IFH 27-8 and Lobia) by approximately 20%, but caused moderate to huge reductions in most genotypes. High relative water content (RWC) of leaves was maintained in some of the genotypes by stomata closure and a reduction of leaf area. Drought avoidance by maintaining high leaf water content was negatively associated with leaf area as well as SLA. High assimilation rate under water deficit was associated with high RWC. Decline in assimilation rate were due mainly to stomata closure, however, some evidence of non-stomatal regulation were also found. WUE and instantaneous water use efficiency (IWUE, a molar ratio of assimilation to transpiration) were not directly associated, but IWUE and leaf internal CO2 concentration (ci) were negatively related while ci was also moderately related with SLA. Overall, significant genotypic variations in leaf gas exchange parameters were found, which can give some indications of superiority when comparing cowpea genotypes for agronomic fitness under drought. The lack of relationship between WUE and IWUE was due to the instantaneous measurement of leaf gas exchange, which can be corrected by calculations to reflect the entire season.  相似文献   

8.
Summary This study analyzes the components of phenotypic variation for abscisic acid (ABA) content in maize (Zea mays L.) leaves and the correlations with drought sensitivity index (DSI) and silk delay (SD), involved in the reaction to water deficit. Eight early- and seven medium-maturity inbreds were examined in field trials: in 1990 with low irrigation volume and in 1991 with low and high irrigation volumes. ABA concentration and DSI were investigated at growth stages (S) corresponding to stem elongation (S3), appearance of the first husks (S4), and mid-end of silking (S5). The ABA concentration was significantly higher in conditions of water deficit and in the later growth stage. The genetic component for ABA concentration attained higher relative values than those shown by DSI in the same growth stages and by SD; moreover, it increased from growth stage 3 to stage 5. The genotype × year and genotype × irrigation volume interactions were smaller for ABA concentration than for DSI and SD. The broad sense heritability on a plant basis, estimated in drought conditions, for ABA concentration ranged from 21.4 to 55.1% according to maturity group and growth stage. A wide variation was observed among lines for ABA concentration: the medium-maturity group showed a three-fold range (from 219 to 605 ng ABA g–1 dry weight). No clear relationships between ABA concentration, DSI and SD were found. These results indicate the feasibility of a selection for ABA concentration within segregating populations derived from crosses between the inbred lines herein tested.Abbreviations ABA - abscisic acid - DSI - drought sensitivity index - DW - dry weight - SD - silk delay  相似文献   

9.
Screening for drought in soybean is often a bottleneck in plant breeding programmes. Sixteen genotypes were evaluated for drought tolerance during 2012, 2013 and 2014. The experiment was conducted in a split‐plot design, and the main plots consisted of irrigated and water stress treatments, and subplots consisted of 16 genotypes. The average seed yield was highest in 2012 (1708 kg/ha), followed by 2014 (1364 kg/ha) while very low yields (958 kg/ha) were observed during 2013. The per cent reduction in average soybean yield under water stress conditions was maximum (43%) during 2014 followed by 2012 (40%) and 2013 (31%), respectively. The average yields of soybean genotypes also differed significantly, which ranged from 892 (NRC 12) to 2008 kg/ha (JS 97‐52). The maximin–minimax approach was used to classify these genotypes, and only, one genotype was identified as drought resistant and high yielding (EC 538828), three as tolerant and high yielding (JS 97‐52, EC 456548 and EC 602288) and none as low yielding and resistant, while the remaining 12 genotypes were found to be low yielding and susceptible to drought.  相似文献   

10.
Identification and understanding the role of physio-morphological drought responsive mechanisms leading to grain yield enhancement under water stress is a critical insight for designing appropriate strategies to breed drought-tolerant cultivars for any drought prone ecology. In this study, three pairs of contrasting BILs with varied maturity were characterized for several agronomical, physiological and morphological traits across a wide range of moisture stress environments at reproductive stage during 2012–2014. Within each group, BILs differ significantly for grain yield, heading, biomass and harvest index under drought stress, but showed similar yield potential, phenology and other traits under control condition. The most tolerant BIL, S-15 out yielded all BILs and standard checks under both conditions. Apart from superior agronomic performance, drought tolerant BILs maintained significantly higher assimilation rate, transpiration rate and transpiration efficiency compared to susceptible BILs under stress in all three groups. In addition, most tolerant BIL (S-15) showed significantly higher stomatal conductance than susceptible BIL (S-55) in early group. Among root traits, significant differences under stress was observed for root dry weight between contrasting BILs in each group, even though tolerant BILs had higher root length and root volume compared to susceptible BILs, which is non-significant. Hence, consideration of root traits an important strategy for drought avoidance in case of rice may not always contributes to significant yield improvement under moisture stress condition. Further, tolerant BILs also recorded significantly higher shoot dry weight and drought recovery score at seedling stage under stress. Our findings suggest that genotypes with higher photosynthetic efficiency and better plant water status are able to produce higher grain yield under drought stress environments.  相似文献   

11.
The relationship between biomass production and N2 fixation under drought‐stress conditions in peanut genotypes with different levels of drought resistance is not well understood. The objective of this study was to determine the effect of drought on biomass production and N2 fixation by evaluating the relative values of these two traits under well watered and water‐stress conditions. Twelve peanut genotypes were tested under field conditions in the dry seasons of 2003/2004 and 2004/2005 in north‐east Thailand. A split‐plot design with four replications was used. Main‐plot treatments were three water regimes [field capacity (FC), 2/3 available soil water (AW) and 1/3 AW], and sub‐plot treatments were 12 peanut lines. Data were recorded on biomass production and N2 fixation under well watered and water‐stress conditions. Genotypic variations in biomass production and N2 fixation were found at all water regimes. Biomass production and N2 fixation decreased with increasing levels of drought stress. Genotypes did not significantly differ in reductions for biomass production, but did differ for reductions in N2 fixation. High biomass production under both mild and severe drought‐stress conditions was due largely to high potential biomass production under well‐watered conditions and, to a lesser extent, the ability to maintain high biomass production under drought‐stress conditions. High N2 fixation under drought stress also was due largely to high N2 fixation under well‐watered conditions with significant but lower contributions from the ability to maintain high nitrogen fixation under drought stress. N2 fixation at FC was not correlated with the reduction in N2 fixation at 2/3 AW and 1/3 AW. Positive relationships between N2 fixed and biomass production of the tested peanut genotypes were found at both levels of drought stress, and the relationship was stronger the more severe the drought stress. These results suggested that the ability to maintain high N2 fixation under drought stress could aid peanut genotypes in maintaining high yield under water‐limited conditions.  相似文献   

12.
This paper reports the influence of the osmotic adjustment capacity and turgor potential (TP) on tolerance to drought in 12 cultivated genotypes, six breeding lines and six cultivars of barley (Hordeum vulgare L.) under terminal water‐stress conditions. When the crops reached the flag leaf stage, half of the experimental plots in which they were grown were submitted to water stress treatment and the remainder maintained under optimal irrigation conditions. Differences were seen in the osmotic adjustment, relative water content (RWC) and water potential (WP) of the different genotypes. Two of the breeding lines showed the greatest osmotic adjustment capacities, maintaining their TPs better than the other genotypes studied. A positive, significant correlation was found between yield and osmotic adjustment capacity, RWC and WP under water‐stress conditions. Osmotic adjustment capacity and TP were linearly related, indicating that as water stress increases osmotic adjustment favours the maintenance of higher TPs. Significant correlations were found between osmotic adjustment capacity and grain filling rate and grain yield. Under conditions of terminal water stress, yield was negatively correlated with the number of days to ear emergence; no correlation was found between osmotic adjustment capacity and earliness. Early ear emergence, a good osmotic adjustment capacity and high RWC values all contributed to yield increases under terminal water‐stress conditions.  相似文献   

13.
Drought strongly influences potato (Solanum tuberosum) production and quality. Potato being a drought susceptible crop, the development of varieties with enhanced tolerance to water stress could highly improve productivity in drought prone areas. The objective of this study was to evaluate the ability of several yield based indices to be used in large scale screening for drought tolerance. The experiment included improved varieties, genetic stocks and landraces potatoes grown under drought and irrigated conditions. A group of accessions with high yield under both conditions was identified. Mean productivity (MP), geometric mean productivity (GMP), tolerance (TOL), drought tolerance index (DTI), drought susceptible index (DSI) and yield stability index (YSI) were calculated from tuber yield under drought and irrigated conditions. The relationships between these indices and yield were analyzed. The Fleiss’ Kappa concordance test was used to analyze the correspondence between accessions previously identified as highly productive under both drought and irrigated conditions and accessions with optimal values for the different indices. MP, GMP and DTI allowed identifying genotypes combining high yield potential and high yield under drought within the three subsets of genotypes. Conversely, DSI, YSI and TOL showed low and variable concordance values across subsets, suggesting that their efficiency in screening genotypes highly depends on the nature of the tested genetic material.  相似文献   

14.
This work assessed the responses of Jerusalem artichoke (JA) genotypes experienced to different durations of terminal drought for relative water content (RWC), SPAD chlorophyll meter reading (SCMR), stomatal conductance (SC), leaf area (LA) and specific leaf area (SLA), investigated the significant contributor of physiological traits to yield and yield reduction and diversity of physiological traits in terminal drought tolerance genotypes. Field research was conducted during the late-rainy season for 2 years using a split-plot design with four replications. The three irrigation treatments involved no-drought (SD0), short (SD1) and long (SD2) durations of terminal drought were arranged as main plots, and sub-plots were six genotypes of JA. The current study revealed that RWC, SC, LA, and SLA, were drastically reduced whilst SCMR values slightly increased under SD1 and SD2 compared to SD0. According to multiple linear regression indicated that SLA (SD0), and RWC (SD1 and SD2) had high contributions to tuber fresh weight (TFW), whereas SC had a high contribution to TFW reduction under terminal drought. Principal component analysis also confirmed that the diversity of LA, RWC, and SLA had maximized contributing traits, followed by HI, SCMR and SC in these breeding materials of JA under three irrigation treatments. Our finding emphasized that JA125 (low SLA), HEL256 and JA37 (high SLA) lead to the high performance of TFW under SD0, and they exhibited high TFW under SD1 by performing medium RWC. Likewise, JA4 and JA37 had high TFW under SD2 caused by medium RWC. HEL253 and JA60 were identified as terminal drought-tolerant genotypes because of performed medium SC, which contributed to a low reduction in TFW. Our promising results are the basis for further studies, SLA, RWC and SC are an important keys for screening drought tolerance (low economic yield reduction) and these genotypes studied could be used for parental lines to improved drought tolerance progenies through breeding programs under different durations of terminal drought-prone areas.  相似文献   

15.
The physiological responses of potato (Solanum tuberosum L) cultivars to soil drought at the tuberization phase and their impact on agronomically important traits were investigated in potted plants under semi‐controlled conditions. Genotype‐dependent responses of potato to water deficiency were evaluated on two pairs (tolerant/sensitive) of Polish cultivars. Each pair of cultivars had a similar genetic background but was extremely different in terms of drought tolerance evaluated on the basis of loss of tuber yield under field conditions. The results clearly indicate different mechanisms of tolerance to water deficiency and the ability to recover from soil drought in two tolerant but genetically unrelated cultivars. When subjected to soil drought, the cultivar Gwiazda had low rates of transpiration and photosynthesis and low levels of stomatal conductance due to hypersensitivity to ABA, but its maximal photochemistry efficiency and PSII performance index were unchanged. Another strategy was displayed by the dehydration‐avoidant cultivar Tajfun, which kept the stomata partially open. Thus, the plants were able to retain a relatively high rate of photosynthesis over transpiration. The parameters measured for cultivar Tajfun for photosynthesis and transpiration were the same after plant rewatering, similar to the control plants. This was not the case for the cultivar Gwiazda. The ability of plants to regenerate after soil drought relief appears to be a good indicator of potato susceptibility to soil drought and allows the yield of potato tubers to be predicted. The physiological traits identified in closely related potato cultivars but differed in their drought tolerance seem to be useful for genetic engineering and breeding programmes.  相似文献   

16.
17.
In a pot experiment under controlled condition, Leymus chinensis was grown at five soil water contents and two diurnal temperature variation levels. The leaf relative water content of L. chinensis decreased under soil drought conditions, and increased at high diurnal temperature variation (30/20 °C). Severe and very severe soil drought remarkably reduced photosynthetic rate, stomatal conductance, transpiration rate and water use efficiency (WUE), especially at the low temperature variation. Severe drought mainly increased the specific radioactivity of 14C of sheaths, roots and rhizomes, but significantly decreased that of fed leaves and the not fully expanded leaves. Root percentage of total radioactivity remaining in the whole plant increased from 15 % at 30/25 °C to 28 % at 30/20 °C. Leaf carbon stable isotope composition (δ13C) increased with soil drought, ranged from ?26 ‰ of the well‐watered to ?24 ‰ of severe drought treatments. High diurnal temperature variation improved leaf water status, and increased partitioning of carbon to root and δ13C values, especially under severe soil drought conditions. In conclusion, higher diurnal temperature variation enhanced the resistance of the plant to drought.  相似文献   

18.
A. González  L. Ayerbe 《Euphytica》2010,172(3):341-349
The effect of drought on barley leaf epicuticular wax load (EWL), residual transpiration rates (RTR) and grain yield was examined by subjecting 12 barley genotypes to controlled irrigation and terminal water stress conditions. The mean leaf epicuticular wax load was found to be 9% greater in the plants subjected to terminal water stress than in those provided irrigation, while the mean residual transpiration rate of the irrigated plants was 20% higher than in those subjected to water stress. Under these stress conditions, the correlation between grain yield and the epicuticular wax load was positive (P < 0.01), while that between the grain yield and the residual transpiration rate was negative (P < 0.05). Under the water stress conditions, the breeding lines studied showed a greater mean epicuticular wax load than the commercial varieties, while the residual transpiration rate was greater in these varieties than in the breeding lines. The greater epicuticular wax load of the breeding lines favoured their tolerance of drought, improving their yields over those of the commercial varieties.  相似文献   

19.
Drought is the most important limitation to summer mungbean production in the tropics and subtropics dependent on usually insufficient summer rainfall. As increased irrigation is not a viable answer to the problem, an economically and environmentally desirable solution is new varieties with drought tolerance. However, there is little genotypic information on drought tolerance in summer mungbean. The objectives of this study were to assess the genotypic differences in physiological traits and dry matter partitioning in mungbean and to measure the association of these traits with crop performance under drought conditions. Six mungbean genotypes were tested in drought micro plots at CCS Haryana Agricultural University, Hisar, India. A split plot design was used; two irrigation treatments (watered and droughted) in the main plots and six mungbean genotypes in the subplots with three replicate micro plots. Drought decreased leaf water status, rates of photosynthesis (Pn) and altered dry matter partitioning in different plant parts. Our results showed that Pn did not limit yield, but it was partitioning of dry matter governed by leaf water content (RWC) which influenced the final yield. RWC was positively correlated to the number of pods per plant and seed yield, genotypes maintaining high RWC produced higher seed yield. Therefore, the drought tolerance of summer mungbean was related to the maintenance of high RWC, which can be used as a physiological marker to identify and develop superior genotypes suited to drought-prone environments.  相似文献   

20.
IR64背景耐旱导入系“PD29”分蘖期的抗逆生理特征   总被引:1,自引:0,他引:1  
以轮回亲本IR64(籼稻)及旱稻材料IRAT109为对照, 系统分析了“PD29”在灌溉(对照)与干旱(胁迫)条件下的相关生理性状特征。研究发现, 遭遇干旱胁迫后, “PD29”植株能够维持较高的相对含水量(RWC)且胁迫后复水2 h该株系的RWC迅速恢复到饱和状态, 表明其具有较强的御旱能力。干旱条件下, “PD29”的PS II最大光化学效率(Fv/Fm)、渗透势(Y)、脯氨酸含量(Pro)、活性氧清除系统活性(AOA)均显著高于IR64, 且相对于灌溉处理, 其RWC, Fv/Fm的降低幅度显著低于IR64, 净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)的降幅, Pro及AOA的增幅均高于IR64。与IRAT109比较, 干旱逆境下“PD29”的Pro含量显著偏高且AOA平均增幅较高。因此认为, “PD29”的优良耐旱性表现与其在逆境下脯氨酸含量及活性氧清除系统活性的显著增强有关。另外, 干旱环境下的Pn、Gs及Tr的显著降低, 表明“PD29”的光合性能可塑性较强, 其光合性能在有利生长环境下能高效表达, 而在土壤水有限的环境下, 能够迅速降低以减少水分的进一步损失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号