首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
O bjective : Evaluation of efficacy and safety of a novel controlled-release formulation of carbimazole in feline hyperthyroidism.
M ethods : A multicentre, self-controlled study in 44 client-owned cats with history and clinical signs of hyperthyroidism, and total thyroxine concentration greater than or equal to 50 nmol/l. Treatment was started at 15 mg once daily, response assessed after 10 days, and 3, 5, 8, 26 and 53 weeks and dose adjusted as required.
R esults : The median dose of carbimazole was 10 mg (range 10 to 15 mg) and 15 mg (5 to 25 mg) once daily after 3 and 53 weeks, respectively. Median total thyroxine concentration dropped significantly from 118 nmol/l (50 to 320 nmol/l) at presentation to 33 nmol/l (n=40) after 10 days, 31 nmol/l (n=34) at 3 weeks and 21 nmol/l (n=18) at 53 weeks. Clinical signs improved or resolved in almost all cats within three weeks after starting treatment. Twenty-one adverse reactions possibly (20) or probably (1) related to treatment were reported. During treatment, increased blood urea nitrogen concentration was observed in 25 per cent of the cats, eosinophilia in 20 per cent and lymphopenia in 16 per cent, while liver enzymes tended to improve.
C linical S ignificance : Once daily administration of controlled-release carbimazole tablets was effective and had expected tolerance in hyperthyroid cats during short- and long-term treatment.  相似文献   

2.
Orally administered antithyroid drugs are frequently used to treat hyperthyroidism in cats; however, the non-cooperative behaviour of some cats may make it difficult to administer tablets. The aim of this study was to develop a carbimazole ointment for application to the inner pinna of the ear and to test its effectiveness in 13 cats with hyperthyroidism. Laboratory investigations were performed before, and 4, 8, and 12 weeks after start of the treatment. Laboratory data for 9 cats were available at the end of the observation period. The starting dose of carbimazole ointment was 5 mg once daily. If no complications occurred, the dose was increased to 5 mg twice daily from the 6th day onwards. Further dose adjustments were mainly based on the plasma thyroxine (T4) concentration. The median plasma T4 concentration at the end of the observation period (24 nmol/l) was significantly lower than that before treatment (152 nmol/l). The dosage of carbimazole needed to achieve euthyroidism ranged from 4 to 17 mg twice daily. Treatment with carbimazole ointment resulted in disappearance of signs of hyperthyroidism; plasma concentrations of urea and creatinine increased significantly. The results of this study indicate that twice daily administration of carbimazole ointment to the inner pinna of the ear is an effective treatment for hyperthyroidism in cats. This provides the veterinarian with a new and promising treatment option. Because carbimazole ointment has not been registered, according to European law it can only be used for the treatment of hyperthyroidism in cats if other licensed medications have been tried and if there is a therapeutic need.  相似文献   

3.
Carbimazole, a prodrug of methimazole, is used in the treatment of hyperthyroidism in cats. The pharmacokinetics of methimazole was investigated in healthy cats following oral administration of 15 mg of carbimazole as a controlled-release tablet (Vidalta®, Intervet). The controlled-release tablet did not produce a pronounced concentration peak and methimazole was present in the circulation for a sustained period, compared with a conventional tablet formulation. The time to reach peak concentrations after carbimazole administration was quite long (tmax 6 h). The absolute bioavailability of carbimazole was around 88 ± 11%. Repeated oral administration daily for 13 consecutive days did not lead to accumulation of methimazole in plasma. The extent of absorption of carbimazole was about 40% higher when administered to cats that had been fed compared to fasted cats. The relative oral bioavailability of methimazole following administration of the controlled-release tablets was similar to that of a conventional release formulation (83 ± 21%). The pharmacokinetics of this controlled-release formulation of carbimazole supports its use as a once daily treatment (both as a starting dose and for maintenance therapy) for cats with hyperthyroidism.  相似文献   

4.
Nineteen cats with abnormally high serum T4 concentrations underwent thyroid scintigraphy using technetium-99m pertechnetate (99mTcO4) before and after 36 +/- 6 days of methimazole administration (approximately 2.5mg PO q 12 h). Thyroid-to-salivary gland ratios (T:S ratios) and percentage thyroidal uptake of injected radioactivity at 20 and 60min after injection of 99mTcO4 were compared before and after methimazole treatment. Serum thyroid stimulating hormone (TSH) concentration was measured before and after methimazole treatment. Quantitatively, there was a positive association between the thyroid uptake of 99mTcO4 and the serum T4 before treatment (r = 0.74-0.83). TSH suppression was present when cats were first evaluated for hyperthyroidism. Methimazole treatment did not relieve TSH suppression in 17 cats. Two cats with unilateral thyroid uptake developed bilateral, asymmetric thyroid uptake of 99mTcO4 after treatment and had the greatest increase in TSH concentration after treatment. Quantitatively, thyroid scintigraphy did not significantly change after methimazole treatment (P>0.1). Evaluation of serum TSH concentration may be helpful in identifying methimazole-induced changes in the scintigraphic features of hyperthyroidism in mildly hyperthyroid cats.  相似文献   

5.

Background

Transdermal methimazole is an acceptable alternative to oral treatment for hyperthyroid cats. There are, however, no studies evaluating the duration of T4 suppression after transdermal methimazole application. Such information would be valuable for therapeutic monitoring.

Objective

To assess variation in serum T4 concentration in hyperthyroid cats after once‐ and twice‐daily transdermal methimazole administration.

Animals

Twenty client‐owned cats with newly diagnosed hyperthyroidism.

Methods

Methimazole was formulated in a pluronic lecithin organogel‐based vehicle and applied to the pinna of the inner ear at a starting dose of 2.5 mg/cat q12h (BID group, 10 cats) and 5 mg/cat q24h (SID group, 10 cats). One and 3 weeks after starting treatment, T4 concentrations were measured immediately before and every 2 hours after gel application over a period of up to 10 hours.

Results

Significantly decreased T4 concentrations were observed in week 1 and 3 compared with pretreatment concentrations in both groups. All cats showed sustained suppression of T4 concentration during the 10‐hour period, and T4 concentrations immediately before the next methimazole treatment were not significantly different compared with any time point after application, either in the BID or SID groups.

Conclusions

Because transdermal methimazole application led to prolonged T4 suppression in both the BID and SID groups, timing of blood sampling does not seem to be critical when assessing treatment response.  相似文献   

6.
The purpose of this study was to investigate the effects of methimazole on renal function in cats with hyperthyroidism. Twelve cats with naturally occurring hyperthyroidism and 10 clinically normal (i.e., control) cats were included in this study. All cats initially were evaluated with a history, physical examination, complete blood count, serum biochemistry profile, basal serum total thyroxine concentration, complete urinalysis, and urine bacterial culture. Glomerular filtration rate (GFR) was estimated by a plasma iohexol clearance (PIC) test. After initial evaluation, hyperthyroid cats were treated with methimazole until euthyroidism was achieved. Both groups of cats were then reevaluated by repeating the initial tests four to six weeks later. The mean (+/-standard deviation) pretreatment estimated GFR for the hyperthyroid cats was significantly higher (3.83+/-1.82 ml/kg per min) than that of the control cats (1.83+/-0.56 ml/kg per min). Control of the hyperthyroidism resulted in a significantly decreased mean GFR of 2.02+/-0.81 ml/kg per minute when compared to pretreatment values. In the hyperthyroid group, the mean increases in serum urea nitrogen (SUN) and creatinine concentrations and the mean decrease in the urine specific gravity after treatment were not statistically significant when compared to pretreatment values. Two of the 12 hyperthyroid cats developed abnormally high serum creatinine concentrations following treatment. These results provide evidence that cats with hyperthyroidism have increased GFR compared to normal cats, and that treatment of feline hyperthyroidism with methimazole results in decreased GFR.  相似文献   

7.
Methimazole Treatment of 262 Cats With Hyperthyroidism   总被引:4,自引:0,他引:4  
The efficacy and safety of the antithyroid drug methimazole were evaluated over a 3-year period in 262 cats with hyperthyroidism. In 181 of the cats, methimazole was administered for 7 to 130 days (mean, 27.7 days) as a preoperative preparation for thyroidectomy. The remaining 81 cats were given methimazole for 30 to 1,000 days (mean, 228 days) as sole treatment for the hyperthyroid state. After 2 to 3 weeks of methimazole therapy (10 to 15 mg/d), the mean serum thyroxine (T4) concentration decreased significantly (P less than 0.001) from a pretreatment value of 12.1 micrograms/dl to 2.1 micrograms/dl. The final maintenance dose needed to maintain euthyroidism in the 81 cats that were given methimazole as sole treatment for hyperthyroidism ranged from 2.5 to 20 mg/d (mean, 11.9 mg/d). Clinical side effects developed in 48 (18.3%) cats (usually within the first month of therapy), which included anorexia, vomiting, lethargy, self-induced excoriation of the face and neck, bleeding diathesis, and icterus caused by hepatopathy. Mild hematologic abnormalities developed in 43 (16.4%) cats (usually within the first 2 months of treatment), which included eosinophilia, lymphocytosis, and slight leukopenia. In ten (3.8%) cats, more serious hematologic reactions developed including agranulocytosis and thrombocytopenia (associated with bleeding). These hematologic abnormalities resolved within 1 week after cessation of methimazole treatment. Immunologic abnormalities associated with methimazole treatment included the development of antinuclear antibodies in 52 of 238 (21.8%) cats tested and red cell autoantibodies (as evidenced by positive direct antiglobulin tests) in three of 160 (1.9%) cats tested.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
OBJECTIVE: To compare survival times for cats with hyperthyroidism treated with iodine 131, methimazole, or both and identify factors associated with survival time. DESIGN: Retrospective case series. ANIMALS: 167 cats. PROCEDURE: Medical records of cats in which hyperthyroidism had been confirmed on the basis of high serum thyroxine concentration, results of thyroid scintigraphy, or both were reviewed. RESULTS: 55 (33%) cats were treated with 131I alone, 65 (39%) were treated with methimazole followed by 131I, and 47 (28%) were treated with methimazole alone. Twenty-four of 166 (14%) cats had preexisting renal disease, and 115 (69%) had preexisting hepatic disease. Age was positively correlated (r = 0.4) with survival time, with older cats more likely to live longer. Cats with preexisting renal disease had significantly shorter survival times than did cats without preexisting renal disease. When cats with preexisting renal disease were excluded, median survival time for cats treated with methimazole alone (2.0 years; interquartile range [IQR], 1 to 3.9 years) was significantly shorter than median survival time for cats treated with 131I alone (4.0 years; IQR, 3.0 to 4.8 years) or methimazole followed by 131I (5.3 years; IQR, 2.2 to 6.5 years). CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that age, preexisting renal disease, and treatment type were associated with survival time in cats undergoing medical treatment of hyperthyroidism.  相似文献   

9.
The intravenous and oral disposition of the antithyroid drug methimazole was determined in 10 clinically normal cats and nine cats with naturally occurring hyperthyroidism. After intravenous administration of 5 mg methimazole, the mean residence time was significantly (P less than 0.05) shorter in the cats with hyperthyroidism than in the normal cats, but there was no significant difference between the mean values for total body clearance (CL), steady state volume of distribution (Vdss), terminal elimination rate constant (ke), or serum terminal half-life (t1/2) in the two groups of cats. After oral administration, the mean bioavailability of methimazole was high in both the normal cats (77.6 per cent) and cats with hyperthyroidism (79.5 per cent). The values for mean residence time, ke and serum terminal t1/2 after oral dosing were significantly shorter in the cats with hyperthyroidism than in the normal cats. However, after oral administration of methimazole there were no significant differences between the mean values for CL, Vdss, bioavailability and maximum serum concentrations or the time for maximal concentrations to be reached in the two groups of cats. Overall, most pharmacokinetic parameters for methimazole were not altered by the hyperthyroid state. However, the cats with hyperthyroidism did show a trend toward faster elimination of the drug compared with the normal cats, similar to what has been previously described for the antithyroid drug propylthiouracil in cats. These results also indicate that methimazole is well absorbed when administered orally and has a higher bioavailability than that of propylthiouracil in cats with hyperthyroidism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Pharmacological management of feline hyperthyroidism offers a practical treatment option for many hyperthyroid cats. Two drugs have been licensed for cats in the last decade: methimazole and its pro‐drug carbimazole. On the basis of current evidence and available tablet sizes, starting doses of 2·5 mg methimazole twice a day and 10 to 15 mg once a day for the sustained release formulation of carbimazole are recommended. These doses should then be titrated to effect in order to obtain circulating total thyroxine (TT4) concentrations in the lower half of the reference interval. Treated cases should be monitored for side‐effects, especially during the first months of treatment. Some side‐effects may require discontinuation of treatment. At each monitoring visit, clinical condition and quality of life should also be evaluated, with special attention to possible development of azotaemia, hypertension and iatrogenic hypothyroidism. When euthyroidism has been achieved, monitoring visits are recommended after 1 month, 3 months and biannually thereafter. Cats with pre‐existing azotaemia have shorter survival times. However, development of mild azotaemia during the initial course of treatment, unless associated with hypothyroidism, does not appear to decrease survival time. The long‐term effects of chronic medical management require further study .  相似文献   

11.
The objective of this study was to determine whether transdermal methimazole was as safe and effective as oral methimazole for the control of hyperthyroidism in cats. Forty-seven cats with newly diagnosed hyperthyroidism were randomized to receive either transdermal methimazole in pluronic lecithin organogel (PLO; applied to the inner pinna), or oral methimazole (2.5 mg q12h for either route). Cats were evaluated at weeks 0, 2, and 4 with a physical exam, body weight determination, CBC, biochemical panel, urinalysis, measurement of total levothyroxine (T4) concentration, indirect Doppler blood pressure determinaiton, and completion of an owner questionnaire. Data between the 2 groups and over time were compared by nonparametric methods. Forty-four cats followed the protocol (17 oral and 27 transdermal). Significantly more cats treated with oral methimazole had serum T4 concentrations within the reference range after 2 weeks (14 of 16 cats) compared to those treated by the transdermal route (14 of 25; P = .027). This difference was no longer significant by 4 weeks of treatment (9 of 11 for oral versus 14 of 21 for transdermal), possibly because of inadequate numbers evaluated by 4 weeks. Cats treated with oral methimazole had a higher incidence of gastrointestinal (GI) adverse effects (4 of 17 cats) compared to the cats treated with transdermal methimazole (1 of 27; P = .04), but no differences were found between groups in the incidence of neutropenia, hepatotoxicity, or facial excoriations. Although the overall efficacy of transdermal methimazole is not as high as that of oral methimazole at 2 weeks of treatment, it is associated with fewer GI adverse effects compared to the oral route.  相似文献   

12.
Background: Methimazole suppresses thyroid hormone synthesis and is commonly used to treat feline hyperthyroidism. The degree of variation in thyroid hormone concentrations 24 hours after administration of methimazole and optimal time for blood sampling to monitor therapeutic efficacy have not been determined.
Objective: To assess thyroid hormone concentration variation in serum of normal and hyperthyroid cats after administration of methimazole.
Animals: Four healthy cats and 889 retrospectively acquired feline thyroid hormone profiles.
Methods: Crossover and retrospective studies . In the crossover study, healthy cats were treated with increasing doses of oral methimazole until steady state of thyroid suppression was achieved. Thyroid hormones and thyroid stimulating hormone (TSH) were serially and randomly monitored after methimazole. Paired t -tests and a 3-factor analysis of variance were used to determine differences between thyroid hormone concentrations in treated and untreated cats in the crossover study. Thyroid profiles from methimazole-treated hyperthyroid cats were retrieved from the Diagnostic Center for Population and Animal Health database and reviewed. Linear regression analysis evaluated relationships of dosage (mg/kg), dosing interval (q24h versus q12h), and time after methimazole to all thyroid hormone concentrations.
Results: All serum concentrations of thyroid hormones were significantly suppressed and TSH was significantly increased for 24 hours after administration of oral methimazole in healthy cats ( P < .005). In hyperthyroid cats, there were no significant relationships between thyroid hormone concentrations and time postpill or dosing interval.
Conclusions: Timing of blood sampling after oral methimazole administration does not appear to be a significant factor when assessing response to methimazole treatment.  相似文献   

13.
The effect of daily doses of 5-15 mg of methimazole on the platelet count, prothrombin time (PT), activated partial thromboplastin time (APTT), and proteins induced by vitamin K absence or antagonists (PIVKA) clotting time in 20 hyperthyroid cats was determined. No significant (P > .05) difference was found in median platelet count. PT, APTT, or PIVKA clotting time before treatment compared to median values at 2-6 weeks or > or =7-12 weeks of methimazole treatment. No cat had a prolonged APTT at any time. At 2-6 weeks of methimazole treatment, 1 cat each developed thrombocytopenia or prolonged PIVKA clotting time despite initially normal values. Three cats had abnormal coagulation tests (prolonged PT [n = 1] and PIVKA clotting time [n = 3]) before treatment that fluctuated during treatment. Excluding the 3 cats that had abnormal PIVKA clotting time before treatment, prolonged PIVKA clotting time developed in 6% (1/17; 95% confidence interval, 0-28%) cats treated with methimazole for 2-6 weeks. Seemingly. doses of methimazole commonly used to treat hyperthyroidism in cats do not cause alteration in PT and APTT, and only rarely prolong PIVKA clotting time. Nevertheless, abnormal PIVKA clotting time may explain bleeding tendencies unassociated with thrombocytopenia in methimazole-treated hyperthyroid cats.  相似文献   

14.
Hyperthyroidism is the most common feline endocrinopathy; thyroid computed tomography (CT) may improve disease detection and methimazole dose selection. Objectives of this experimental pre‐post with historical case‐control study were to perform thyroid CT imaging in awake or mildly sedated hyperthyroid cats, compare thyroid gland CT appearance in euthyroid and hyperthyroid cats pre‐ and postmethimazole treatment, and determine whether thyroid size or attenuation correlate with methimazole dose needed for euthyroidism. Premethimazole treatment, eight hyperthyroid cats received CT scans from the head to heart, which were compared to CT of seven euthyroid cats. Total thyroxine levels were monitored every 3–4 weeks. Postmethimazole CT was performed 30 days after achieving euthyroid status. Computed tomography parameters recorded included thyroid length, width, height, attenuation, and heterogeneity. Median time between CT was 70 days (53–213 days). Mild sedation was needed in five hyperthyroid cats premethimazole, and none postmethimazole. Thyroid volume was significantly larger in hyperthyroid cats compared to euthyroid cats (785.0 mm3 vs. 154.9 mm3; P = 0.002) and remained unchanged by methimazole treatment (?4.5 mm3; P = 0.50). Thyroid attenuation and heterogeneity decreased with methimazole treatment (96.1 HU vs. 85.9 HU; P = 0.02. 12.4 HU vs. 8.1 HU; P = 0.009). Methimazole dose ranged from 2.5 to 10 mg daily with a positive correlation between pretreatment thyroid gland volume and dose needed to achieve euthyroidism (P = 0.03). Euthyroid and hyperthyroid cats are easily imaged awake or mildly sedated with CT. Methimazole in hyperthyroid cats significantly lowers thyroid attenuation and heterogeneity, but not size.  相似文献   

15.
Transdermal methimazole treatment in cats with hyperthyroidism   总被引:1,自引:0,他引:1  
The objectives of this study were to assess serum thyroxine concentrations and clinical response in hyperthyroid cats to treatment with transdermal methimazole, and to determine if further investigation is indicated.Clinical and laboratory data from 13 cats with hyperthyroidism were retrospectively evaluated. Methimazole (Tapazole, Eli Lilly) was formulated in a pleuronic lecithin organogel (PLO)-based vehicle and was applied to the inner pinna of the ear at a dosage ranging from 2.5mg/cat q 24h to 10.0mg/cat q 12h. During the treatment period, cats were re-evaluated at a mean of 4.3 weeks (recheck-1), and again at a mean of 5.4 months (recheck-2).Clinical improvement was observed, and significant decreases in thyroxine concentrations were measured at recheck-1 (mean: 39.57nmol/L, SEM: 14.4, SD: 41.2) and recheck-2 (mean: 36.71nmol/L, SEM: 13.9, SD: 45.56) compared to pretreatment concentrations (mean: 97.5nmol/L, SEM: 11.42, SD: 39.5). No adverse effects were reported.  相似文献   

16.
The oral disposition of the antithyroid drugs methimazole and carbimazole were compared in nine clinically normal cats. After the administration of 5 mg of methimazole, serum concentrations of methimazole increased in all the cats, with mean drug concentrations reaching peak values (1·37 μg ml−1) at 30 minutes. After administration of 5 mg carbimazole, serum concentrations of carbimazole remained low, but serum methnnazole became readily measurable, with mean drug concentrations reaching peak values (0·79 μg ml−1) at 120 minutes. When serum concentrations of methimazole attained after administration of the two antithyroid drugs were compared, the mean maximum serum methimazole concentration achieved after administration of methimazole was approximately two-fold higher than peak concentrations measured after administration of carbimazole. In addition, the mean area under the serum concentration curve (AUC) after administration of methimazole was approximately two-fold higher than the mean AUC determined after administration of carbimazole. When the differences in molecular weight between the two drugs was taken into consideration, however, these methimazole:carbimazole ratios of 2:1 were nearly equivalent to the molar ratio of the 5 mg doses of the drugs given (1·63). Results of this study indicate that carbimazole is nearly totally converted to methimazole after oral administration to cats, similarly to the findings in man. The finding of less available serum methimazole after administration of a 5 mg tablet of carbimazole than after methimazole is also consistent with published antithyroid drug dosages needed to control hyperthyroidism in cats.  相似文献   

17.
The pharmacological effects of glargine administered once or twice daily were compared in six healthy cats. A two-way crossover study was performed with insulin and glucose concentrations measured following subcutaneous administration of glargine once daily (0.5U/kg) or twice daily (0.25U/kg, repeated after 12h). Nadir glucose concentration and mean daily glucose concentration did not differ significantly following insulin administration once daily or twice daily in divided doses. Time to reach last glucose nadir differed, with longer intervals occurring following twice daily dosing. Blood glucose failed to return to baseline concentration by 24h in three of six cats in each treatment group. Insulin variables were not significantly different following once or twice daily dosing. This study in healthy cats demonstrates that glargine has a long duration of action with carry-over effects to the next day likely, regardless of dosing regimen. A study in diabetic cats is required to determine the best dosing regimen.  相似文献   

18.
The medical records of 62 hyperthyroid cats treated with a fixed dose of 4 mCi of radioactive iodine (131I) were reviewed. In 60 cats, serum thyroxine concentrations were determined after treatment, allowing evaluation of treatment success. Eighty-four percent of the cats had normal serum thyroxine concentrations after treatment. Five of the 60 cats (8%) remained hyperthyroxinemic after treatment. Five cats (8%) were hypothyroxinemic when evaluated within 60 days of treatment. Three of these cats had normal serum thyroxine concentrations 6 months after treatment, and none had clinical signs of hypothyroidism. The administration of a fixed dose of 4 mCi of 131I was determined to be an effective treatment for feline hyperthyroidism.  相似文献   

19.
Pharmacologic management of feline hyperthyroidism.   总被引:1,自引:0,他引:1  
Radioiodine is considered the treatment of choice for hyperthyroidism, but in some situations, methimazole therapy is preferred, such as in cats with preexisting renal insufficiency. Unfavorable outcomes from methimazole are usually attributable to side effects, such as gastrointestinal upset, facial excoriation, thrombocytopenia, neutropenia, or liver enzyme elevations. Because restoration of euthyroidism can lead to a drop in glomerular filtration rate, all cats treated with methimazole should be monitored with blood urea nitrogen and creatinine levels in addition to serum thyroxine (T(4)) and a complete blood cell count. Transdermal methimazole is associated with fewer gastrointestinal side effects and can be used in cats with simple vomiting or inappetence from oral methimazole. Hypertension may not resolve immediately when serum T(4) is normalized, and moderate to severe hypertension should be treated concurrently with atenolol, amlodipine, or an angiotensin-converting enzyme inhibitor.  相似文献   

20.
Background: Hyperthyroid cats are at risk of developing azotemic chronic kidney disease (CKD) and diagnostic tools currently used to screen for CKD in hyperthyroid cats are either unreliable or impractical.
Hypothesis: Urine N -acetyl-β- d -glucosaminidase index (NAGi) is a good biomarker for azotemic CKD in hyperthyroid cats.
Animals: Twenty-four newly diagnosed nonazotemic hyperthyroid cats and 10 healthy cats.
Methods: All cats were evaluated for hyperthyroidism at baseline. Hyperthyroid cats were treated with methimazole and reevaluated once euthyroid. At the end of the study, cats were divided into 3 groups: healthy cats, nonazotemic, and azotemic euthyroid cats. Baseline group characteristics were compared to predict azotemic CKD. The influence of treatment on NAGi was evaluated.
Results: Baseline NAGi was significantly different among groups ( P = .004). Azotemic cats had a higher median value (13.12 U/g) when compared with healthy cats (1.38 U/g). With NAGi >2.76 U/g, negative and positive predictive values for development of azotemia were 77.7 and 50%, whereas the combination of a urine specific gravity (USG) ≤1.035 and T4 >7.80 μg/dL enhanced predictive values to 88.9 and 83.3%, respectively. NAGi values decreased significantly over time in treated nonazotemic cats.
Conclusions and Clinical Relevance: Baseline NAGi did not differentiate azotemic from nonazotemic euthyroid cats. NAGi could be used to assess renal function during medical therapy allowing the clinician to adjust methimazole dosage accordingly. The combination of USG and T4 could optimize identification of appropriate candidates for permanent treatment of hyperthyroidism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号