首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cefoxitin pharmacokinetics and bioavailability were studied in unweaned calves. The antibiotic was administered to nine calves intravenously (i.v.), to seven calves intramuscularly (i.m.) at 20 mg/kg and to eight calves i.m. at 20 mg/kg together with probenecid at 40 mg/kg. Serum concentration versus time data were analysed using statistical moment theory (SMT). The i.v. data were also fitted by a linear, open two-compartment model. The elimination half-life (t1/2) was 66.9 +/- 6.9 min (mean +/- SD) after i.v. and 81.0 +/- 10.9 min after i.m. administration. The t1/2 increased to 125.5 +/- 15.6 min by the co-administration of probenecid. The total body clearance (ClT) was 4.88 +/- 1.71 ml/min/kg and the volume of distribution (Vss) 0.3187 +/- 0.0950 l/kg. The mean residence time (MRT) was 68.2 +/- 12.3 min after i.v. and 118.6 +/- 16.8 min after i.m. injection and increased to 211.5 +/- 16.8 min by the co-administration of probenecid. The mean absorption time (MAT) was 50.6 min and the estimated bioavailability (F) of cefoxitin after i.m. administration was 73.8%. The cefoxitin protein binding ranged from 55.0 to 42.0% at concentrations from 2 to 50 micrograms/ml. The MIC90 values for cefoxitin were 6.25 micrograms/ml for E. coli and Salmonella group B isolates, 3.13 micrograms/ml for Salmonella group C and D and Pasteurella multocida. There were no statistically significant differences between the pharmacokinetic parameters calculated by SMT or compartmental analysis. SMT provided an additional independent parameter, the MRT, for characterization of drug disposition kinetics.  相似文献   

2.
Ceftriaxone was administered to Israeli-Friesian male calves by IV and IM routes. The antibiotic was administered IV (10 mg/kg) to 10 calves and IM to 23 calves; 8 were given the antibiotic at the rate of 10 mg/kg of body weight, 5 were given 20 mg/kg, and 10 were given 10 mg/kg, together with probenecid at 40 mg/kg. Serum concentration vs time profiles measured after IV and IM administration were analyzed by use of statistical moment theory. The following mean values +/- SD were found: elimination half-life (t1/2) was 83.8 +/- 8.6 minutes after IV administration and significantly longer 116.8 +/- 20.5 minutes (P less than 0.001) after IM administration at 10 mg/kg. The t1/2 was increased to 141.3 +/- 24.4 minutes by the coadministration of probenecid and to 145.0 +/- 48.2 minutes by doubling the IM dosage to 20 mg/kg. The total body clearance was 3.39 +/- 0.42 ml/min/kg and the renal clearance 2.37 +/- 0.74 ml/min/kg. The specific volume of distribution was 0.2990 +/- 0.0510 L/kg. The average mean residence time (MRT) was 94.0 +/- 12.3 minutes after IV administration and 137.6 +/- 19.9 minutes after IM administration of ceftriaxone at 10 mg/kg. The MRT was increased to 198 +/- 48.8 minutes by the coadministration of probenecid and to 191.0 +/- 59.4 minutes by doubling the IM dose. The former value was significantly different from the MRT after IM administration of the antibiotic at 10 mg/kg. Bioavailability of ceftriaxone after IM administration at 10 mg/kg and at 20 mg/kg was 78% and 83%, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Ceftazidime pharmacokinetic values were studied in unweaned calves given the antibiotic alone or in combination with probenecid. Ceftazidime was administered IV to 9 calves at a dosage of 10 mg/kg of body weight and IM (10 mg/kg) to 8 calves, to 7 calves (10 mg/kg plus probenecid [40 mg/kg]), and to 9 calves (10 mg/kg plus probenecid [80 mg/kg]). Serum concentration-vs-time data were analyzed, using noncompartmental methods based on statistical moment theory. The data for IV ceftazidime administration also were fitted by use of a linear, open 2-compartment model. The mean (+/- SD) terminal half-life was 138.7 +/- 23.6 minutes and 126.3 +/- 10.5 minutes after IV and IM administrations, respectively. The mean residence time was 167.3 +/- 21.1 minutes and 201.4 +/- 16.8 minutes after IV and IM administrations, respectively. Coadministeration of probenecid did not affect the terminal half-life or mean residence time values. The total body clearance was 1.75 +/- 0.26 ml/min/kg, and the volume of distribution at steady state was 0.294 +/- 0.064 L/kg. The estimated mean absorption time was 34.1 minutes. There were no significant differences between the mean residence time calculated by statistical moment theory or by compartmental analysis, indicating central compartment output of ceftazidime. The 90% minimal inhibitory concentration values of ceftazidime determined for Escherichia coli, Salmonella spp, Pasteurella multocida, and P haemolytica isolates ranged from less than 0.01 to 0.1 micrograms/ml.  相似文献   

4.
Cefoperazone pharmacokinetics were studied in unweaned calves. The antibiotic was administered to 10 calves intravenously, to eight calves intramuscularly at 20 mg kg-1 and to 10 calves intramuscularly at 20 mg kg-1 together with probenecid at 40 mg kg-1. Serum concentration versus time data were analysed by non-compartmental methods based on the statistical moment theory. The intravenous data were also fitted by a linear, open two-compartment model. The terminal halflife of cefoperazone was 127.9 +/- 28.2 min (mean +/- SD) after intravenous and 136.9 +/- 19.6 min after intramuscular administration. The t1/2 was increased to 257.3 +/- 127.3 min by the co-administration of probenecid. The total body clearance was 8.16 +/- 1.60 ml min-1 kg-1 and the volume of distribution at steady state was 0.713 +/- 0.167 litre kg-1. The mean residence time values were 87.2 +/- 10.6 min after intravenous and 140.3 +/- 20.6 min after intramuscular injection and were increased to 264.5 +/- 99.8 min by the co-administration of probenecid. The estimated mean absorption time was 53.1 min and the estimated bioavailability after intramuscular administration was 76.3 per cent. The minimal inhibitory concentration (MIC90) values of cefoperazone ranged from 0.5 to 2 micrograms ml-1 for Escherichia coli, salmonella groups C, D and E and Pasteurella multocida isolates. Salmonella group B strains appeared to be highly resistant to cefoperazone with MIC90 greater than 32 micrograms ml-1. There were no significant differences between the pharmacokinetic variables calculated by statistical moment theory or compartmental analysis indicating central compartment output of cefoperazone.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Phenoxymethyl penicillin (penicillin V) was administered intravenously (i.v.) and orally to pre-ruminant calves and the distribution and elimination kinetics, as well as the oral bioavailability, were determined. After i.v. injection, the drug was distributed rapidly in the body, the elimination half-life (t1/2 beta) was 34 min and the apparent volume of distribution at steady-state (Vd ss) was 0.30 l/kg. Mean peak serum drug concentrations were directly related to the oral dose administered, i.e. 0.22 microgram/ml, 1.06 micrograms/ml and 2.14 micrograms/ml after dosing at 10, 20 and 40 mg/kg, respectively. The elimination t1/2 of the drug after oral dosing varied between 90 and 110 min, and the oral bioavailability was approximately 30% of the dose. The co-administration of phenoxymethyl penicillin and probenecid resulted in elevation and prolongation of serum drug concentration. The percentage of drug bound to serum proteins was 78.8% +/- 8.2%. Phenoxymethyl penicillin was probably inactivated and degraded in the gastrointestinal tract of 6-week-old calves fed exclusively hay, silage and concentrates as very low and erratic serum drug concentrations were measured after these calves were dosed orally with the drug at 40 mg/kg. In view of the narrow antibacterial spectrum of the drug and the relatively high dose required, it appears that phenoxymethyl penicillin can only be of limited practical value for the treatment of bacterial infections in preruminant calves.  相似文献   

6.
The pharmacokinetics of intravenous (i.v.) and intramuscular (i.m.) single-dose administration of acyclovir were determined in Quaker parakeets. After i.v. injection at a dose of 20 mg/kg of acyclovir, elimination half-life was estimated at 0.65 h, volume of distribution at steady state was 627.65 ml/kg, and clearance was 11.22 ml/kg/min. The estimated pharmacokinetic values after i.m. injection at a dose of 40 mg/kg of acyclovir were an elimination half-life of 0.71 h and a bioavailability of 90.1%. The peak plasma acyclovir concentration occurred at 15 min when the drug was administered i.m. Plasma concentrations of acyclovir were undetectable 4-6 h after i.v. administration and 6-8 h after i.m. administration. Oral (capsules) and intravenous (sodium salt) formulations of acyclovir were given by gavage at 80 mg/kg. Peak concentrations with the sodium salt formulation were lower and developed more slowly than with the capsules. In studies designed to detect excessive drug accumulation or adverse side effects, acyclovir was administered i.m. at 40 mg/kg every 8 h for 7 days. Plasma concentrations were determined 15 min after (peak) and just prior to drug administration (trough). In another study acyclovir was gavaged at a dose of 80 mg/kg every 8 h for 4 days. Acyclovir plasma concentrations were determined just prior to and 2 h after drug administration. In both experiments, the birds maintained normal appetite and weight and did not exhibit excessive drug accumulation. Acyclovir plasma concentrations ranging from 2.07 +/- 1.09 micrograms/ml to 3.93 +/- 1.13 micrograms/ml were maintained for 4 days when acyclovir was administered in the feed and water (sole source of food and water).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The minimal inhibitory concentration (MIC) of flumequine for 249 Salmonella, 126 Escherichia coli, and 22 Pasteurella multocida isolates recovered from clinical cases of neonatal calf diarrhoea, pneumonia and sudden death was less than or equal to 0.78 microgram/ml. The pharmacokinetics of flumequine in calves was investigated after intravenous (i.v.), intramuscular (i.m.) and oral administration. The two-compartment open model was used for the analysis of serum drug concentrations measured after rapid i.v. ('bolus') injection. The distribution half-life (t1/2 alpha) was 13 min, elimination half-life (t1/2 beta) was 2.25 h, the apparent area volume of distribution (Vd(area)), and the volume of distribution at steady state (Vd(ss)) were 1.48 and 1.43 l/kg, respectively. Flumequine was quickly and completely absorbed into the systemic circulation after i.m. administration of a soluble drug formulation; a mean peak serum drug concentration (Cmax) of 6.2 micrograms/ml was attained 30 min after treatment at 10 mg/kg and was similar to the concentration measured 30 min after an equal dose of the drug was injected i.v. On the other hand, the i.m. bioavailability of two injectable oily suspensions of the drug was 44%; both formulations failed to produce serum drug concentrations of potential clinical significance after administration at 20 mg/kg. The drug was rapidly absorbed after oral administration; the oral bioavailability ranged between 55.7% for the 5 mg/kg dose and 92.5% for the 20 mg/kg dose. Concomitant i.m. or oral administration of probenecid at 40 mg/kg did not change the Cmax of the flumequine but slightly decreased its elimination rate. Flumequine was 74.5% bound in serum. Kinetic data generated from single dose i.v., i.m. and oral drug administration were used to calculate practical dosage recommendations. Calculations showed that the soluble drug formulation should be administered i.m. at 25 mg/kg every 12 h, or alternatively at 50 mg/kg every 24 h. The drug should be administered orally at 30 and 60 mg/kg every 12 and 24 h, respectively. Very large, and in our opinion impractical, doses of flumequine formulated as oily suspension are required to produce serum drug concentrations of potential clinical value.  相似文献   

8.
Cephapirin (20 mg/kg of body weight, IV) was administered before and after 3 doses of probenecid (25, 50, or 75 mg/kg, intragastrically, at 12-hour intervals) to 2 mares. Clearance and apparent volume of distribution, based on area under the curve, were negatively correlated with probenecid dose. Clearance of cephapirin was decreased by approximately 50% by administration of 50 mg of probenecid/kg. Serum, synovial fluid, peritoneal fluid, CSF, urinary, and endometrial concentrations of cephapirin were determined after 5 doses of cephapirin (20 mg/kg, IM, at 12-hour intervals) without and with concurrently administered probenecid (50 mg/kg, intragastrically) to 6 mares, including the 2 mares given cephapirin, IV. Highest mean serum cephapirin concentrations were 16.1 +/- 2.16 micrograms/ml at 0.5 hour after the 5th cephapirin dose [postinjection (initial) hour (PIH) 48.5] in mares not given probenecid and 23.7 +/- 1.30 micrograms/ml at 1.5 hours after the 5th cephapirin dose (PIH 49.5) in mares given probenecid. Mean peak peritoneal fluid and synovial fluid cephapirin concentrations were 6.2 +/- 0.57 micrograms/ml and 6.6 +/- 0.58 micrograms/ml, respectively, without probenecid administration and 12.3 +/- 0.46 micrograms/ml and 10 +/- 0.78 micrograms/ml, respectively, with concurrent probenecid administration. Mean trough cephapirin concentrations for peritoneal and synovial fluids in mares given probenecid were 2 to 3 times higher than trough concentrations in mares not given probenecid. Overall mean cephapirin concentrations were significantly higher for serum, peritoneal fluid, synovial fluid, and endometrium when probenecid was administered concurrently with cephapirin (P less than 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The pharmacokinetics and bioavailability of probenecid given IV and orally at the dosage level of 10 mg/kg of body weight to mares were investigated. Probenecid given IV was characterized by a rapid disposition phase with a mean half-life of 14.0 minutes and a subsequent slower elimination phase with a mean half-life of 87.8 minutes in 5 of 6 mares. In the remaining mare, a rapid disposition phase was not observed, and the half-life of the elimination phase was slower (172 minutes). The mean residence time of probenecid averaged 116 minutes for all 6 mares and 89.2 minutes for the 5 mares with biphasic disposition. The total plasma clearance of probenecid averaged 1.18 +/- 0.49 ml/min/kg, whereas renal clearance accounted for 42.6 +/- 9.3% of the total clearance. The steady-state volume of distribution of probenecid averaged 116 +/- 28.2 ml/kg. Plasma protein binding of probenecid was extensive, with 99.9% of the drug bound at plasma probenecid concentrations of 10 micrograms/ml. The maximum plasma probenecid concentration after 10 mg/kg orally averaged nearly 30 micrograms/ml. The half-life of probenecid after oral administration was approximately 120 minutes. Oral bioavailability was good with greater than 90% of the dose absorbed. The effect of probenecid on tubular secretion of organic anions was evaluated by determining the pharmacokinetics of IV cefazolin (11 mg/kg) administered alone and 15 minutes after probenecid (10 mg/kg orally). Treatment with probenecid did not affect pharmacokinetic values of cefazolin. This failure of probenecid to alter the pharmacokinetics of cefazolin may be caused by insufficient plasma probenecid concentrations after the oral dose.  相似文献   

10.
The pharmacokinetics of amikacin were studied in healthy mature female chickens (n = 6). Single doses of amikacin were injected as an i.v. bolus (10 mg/kg) and i.m. (20 mg/kg) into the same birds with a 30-day rest period between treatments. Amikacin was determined by the fluorescence polarization immunoassay method. The i.v. pharmacokinetics could be described by a two-compartment model with a t1/2 alpha of 0.150 +/- 0.064 h and a t1/2 beta of 1.44 +/- 0.34 h. The total body clearance was 0.109 +/- 0.017 1/h/kg and the volume of distribution at steady-state was 0.193 +/- 0.060 l/kg. Following a single i.m. injection, the peak plasma concentration (Cmax) was 50.79 +/- 4.05 micrograms/ml and occurred at 0.50 +/- 0.26 h. The i.m. extent of absorption was 91.2 +/- 17.6%. Simultaneous modeling of i.v. and i.m. results provided estimates of an absorption half-life of 0.480 +/- 0.158 h. The i.m. pharmacokinetics after repeated administration were studied following the tenth dose (20 mg/kg, every 8 h). The Cssmax was 38.58 +/- 6.96 micrograms/ml and occurred at 0.79 +/- 0.37 h, and the biological half-life of amikacin was 1.86 +/- 0.47 h. The multiple dosing yielded peak concentrations of 39 micrograms/ml and trough concentrations of 3.26 micrograms/ml. Based on these data, the recommended amikacin dosage in chickens is 20 mg/kg body weight every 8 h.  相似文献   

11.
The study was conducted on 10 buffalo calves with a weight of 98.5 +/- 3.9 kg and age 9.7 +/- 1.3 months. Ten trials of two treatments were carried out using a randomized block design. Atropine at the dose of 0.02 mg/kg bodyweight was administered in both the groups. The animals of group I received romifidine at the dose of 10 microg/kg i.v., 10 min after atropine administration, whereas, animals of group II received triflupromazine at the dose of 0.3 mg/kg i.m. and 10 min later romifidine at the dose of 10 microg/kg i.v. immediately followed by ketamine at the dose of 5 mg/kg i.v. The onset of action of romifidine in group I occurred within 2 min and the animals remained under mild sedation for 31 +/- 4.8 min. In group II, the triflupromazine-romifidine-ketamine combination induced anaesthesia for 14 +/- 2.3 min. Hypothermia, significant bradycardia and respiratory depression was noticed in both groups at different time intervals.  相似文献   

12.
Twenty-nine healthy 17- to 29-day-old unweaned Israeli-Friesian male calves were each given a single IV or IM injection of 10 or 20 mg of moxalactam disodium/kg of body weight. Serum concentrations were measured serially during a 12-hour period. Serum concentration vs time profiles were analyzed by use of linear least-squares regression analysis and the statistical moment theory. The elimination half-lives after IV administration were 143.7 +/- 30.2 minutes and 155.5 +/- 10.5 minutes (harmonic mean +/- SD) at dosages of 10 and 20 mg of moxalactam/kg of body weight, respectively. Corresponding mean residence time values were 153.1 +/- 26.8 minutes and 169.9 +/- 19.3 minutes (arithmetic mean +/- SD). Mean residence time values after IM administration were 200.4 +/- 17.5 minutes and 198.4 +/- 19.9 minutes at dosages of 10 and 20 mg/kg, respectively. The volumes of distribution at steady state were 0.285 +/- 0.073 L/kg and 0.313 +/- 0.020 L/kg and total body clearance values were 1.96 +/- 0.69 ml/min/kg and 1.86 +/- 0.18 ml/min/kg after administration of dosages of 10 and 20 mg/kg, respectively. Moxalactam was rapidly absorbed from the IM injection site and peak serum concentrations occurred at 1 hour. The estimated bioavailability ranged from 69.8 to 79.1%. The amount of serum protein binding was 53.4, 55.0, and 61.5% when a concentration of moxalactam was at 50, 10, and 2 micrograms/ml, respectively. The minimal inhibitory concentrations of moxalactam ranged from 0.01 to 0.2 micrograms/ml against Salmonella and Escherichia coli strains and from 0.005 to 6.25 micrograms/ml against Pasteurella multocida strains.  相似文献   

13.
A comparative pharmacokinetic study was conducted in rainbow trout (Salmo gairdneri) and African catfish (Clarias gariepinus) following intravenous (i.v.) and intramuscular (i.m.) administration of oxytetracycline (OTC) at a dose rate of 60 mg/kg body weight. Trout and catfish were kept in aerated tap water in tanks at constant temperatures of 12 degrees C and 25 degrees C, respectively. The two- and three-compartment open models adequately described plasma drug disposition in African catfish and rainbow trout respectively, following i.v. OTC administration. Compared to catfish (COP = 86 +/- 10 micrograms/ml) an eightfold higher extrapolated zero time concentration was obtained in trout (COP = 753 +/- 290 micrograms/ml). A significant difference was observed with respect to the relatively large apparent distribution volumes (Vd(area] after i.v. OTC administration (trout, mean value: 2.1 l/kg; catfish, mean value: 1.3 l/kg). The mean final elimination half-lives of both fish species were greater than previously reported in mammals (trout, 89.5 h; catfish, 80.3 h). A mean maximum plasma concentration (Cmax = 56.9 micrograms/ml) was obtained in trout at 4 h after i.m. administration of OTC. In catfish a lower Cmax of 43.4 micrograms/ml was determined at about 7 h. No significant difference was observed with respect to bioavailability following i.m. administration of OTC (trout, 85%; catfish, 86%).  相似文献   

14.
Effect of probenecid on pharmacokinetics of 99mTc-mercaptoacetylytriglycine (99mTc-MAG3) in dogs was investigated before (control), and after 15 min and 24 h of i.v. injection of probenecid (20 mg/kg). Plasma concentration-time profiles of 99mTc-MAG3 were described with a two-compartment open model. Plasma 99mTc-MAG3 clearances (Clp, ml/min/kg) were 7.9 +/- 0.5, 3.3 +/- 0.5 and 4.8 +/- 1.3 in control, 15 min and 24 h after probenecid administration respectively. Similarly, the biological half-lives at elimination phase (t(1/2), h) were 0.61 +/- 0.09, 0.79 +/- 0.11 and 0.74 +/- 0.12, and volumes of distribution at steady state (Vdss, L/kg) were 0.29 +/- 0.04, 0.20 +/- 0.05 and 0.25 +/- 0.06 respectively. The prolonged biological half-life and decreased Vdss decreased Clp significantly. Clp was a function of plasma probenecid concentration based on Michaelis-Menten kinetics. The maximum Clp inhibition (Imax) by probenecid and the plasma probenecid concentration that induced 50% of Imax (I50) were estimated to be 72 +/- 12% and 13 +/- 8 microg/ml respectively. This means that the rest (about 28%) of the Clp is not blocked by probenecid alone, suggesting the possibility of another route(s) of elimination or renal transporters which are independent from probenecid. Moreover, inter-species correlation between Clp of 99mTc-MAG3 and body weight are discussed.  相似文献   

15.
The pharmacokinetics of amikacin sulfate (AK) were studied in the horse after intravenous (i.v.) and intramuscular (i.m.) administration. Serum (Cs), synovial (Csf) and peritoneal (Cpf) fluid concentrations of the drug were measured. Doses of 4.4, 6.6 and 11.0 mg/kg were given. The concentrations at 15 min following i.v. injection were 30.3 +/- 0.3, 61.2 +/- 6.9 and 122.8 +/- 7.4 micrograms/ml, respectively, for the 4.4, 6.6 and 11.0 mg/kg doses. Mean peak Cs values after the intramuscular injections occurred at 1.0 h post-injection and were 13.3 +/- 1.6, 23.0 +/- 0.6 and 29.8 +/- 3.2 micrograms/ml, respectively. The t 1/2 of amikacin was 1.44, 1.57 and 1.14 h for the 4.4, 6.6 and 11.0 mg/kg doses, respectively. In this study, minimum inhibitory concentrations (MIC) of amikacin sulfate were determined for six pathogens. Based on the MIC and the pharmacokinetic parameters, it would appear that the usual therapeutic dose of amikacin would be between 4.4 and 6.6 mg/kg twice daily and, for the more serious life-threatening infections, dosing three times a day.  相似文献   

16.
Pharmacokinetics (PK) of probenecid including plasma probenecid concentrations, in vitro plasma protein binding properties, and in vivo PK parameters were determined in dogs. Probenecid concentrations were best determined by HPLC, which showed good linearity and good recovery with simple plasma preparation. The quantification limit of probenecid was approximately 50 ng/ml at S/N ratio = 3, by simple procedure with HCl and methanol treatment. Probenecid showed two types of binding characteristics, i.e., high-affinity with low-capacity and low-affinity with high-capacity binding. This result indicated 80-88% of probenecid was bound to plasma protein(s) at observed concentrations (< 80 microg/ml) in vivo at an intravenous dose of 20 mg/kg. Plasma probenecid concentration-time profile following i.v. administration in dogs showed biphasic decline and well fitted a two-compartment open model. The total body clearance was 0.34 +/- 0.04 ml/min/kg, volume of distribution at steady-state was 0.46 +/- 0.07 l/kg, elimination half-life was 18 +/- 6 hr, and mean residence time (MRT) was 23 +/- 6 hr. Since probenecid has been known as a potent inhibitor of renal tubular excretion of acidic drugs and highly binds to plasma proteins, our observation in relation to plasma protein binding and PK parameters will serve as the basic information concerning drug-drug interactions in dogs and in other mammalian species.  相似文献   

17.
The in-vitro activity of flumequine against 157 strains of bacteria isolated from birds was determined. The minimum inhibitory concentration (MIC) of 96.3% of the Enterobacteriaceae, Proteus spp. and Yersinia pseudotuberculosis studied (n = 135) was less than or equal to 1 microgram/ml. Pharmacokinetics of flumequine in pigeons (Columba livia) was investigated after intravenous, intramuscular and oral administration. From the blood disappearance curves after i.v. bolus injection (10 mg/kg body weight) clearance rate, blood half-time and distribution volume were calculated. The recovery of unchanged flumequine from the droppings in 24 h was 37 +/- 10% of the administered dose. Flumequine was also given i.m. at two dose levels, 10 and 60 mg/kg body weight. The availability of flumequine as intact drug was 22 and 23%, respectively, in 24 h. Therapeutic blood levels were maintained for 4 and 10 h, respectively. After an oral dose of flumequine (60 mg/kg body weight) an availability of 6.7 +/- 2.5% and a peak blood concentration of 2.68 +/- 0.92 microgram/ml at 2 h after administration were found. The recovery of unchanged flumequine from the droppings in 24 h was 1.55 +/- 0.79% of the administered dose. With the exception of the i.m. dose of 10 mg/kg, all flumequine administrations made the pigeons vomit. It appears that blood concentrations below 3 micrograms/ml will not induce vomiting. On the basis of the present data, a dosage regimen for flumequine in pigeons of a priming dose of 30 mg/kg i.m., followed after 8 h by oral administration of 30 mg/kg, this dose being repeated every 8-12 h, would be expected to give blood concentrations between 1.44 and 2.88 micrograms/ml.  相似文献   

18.
Six Merino ewes were given 1 g (27 g/kg) probenecid by the intravenous (i.v.), intramuscular (i.m.) and subcutaneous (s.c.) routes. After i.v. injection, the biological half-life was 1.55 h and apparent volume of distribution at the steady state (Vdss) 0.18 l/kg. Body clearance (ClB) and renal clearance (ClR) were 0.12 l/h/kg and 0.03 l/h/kg, respectively. Approximately 28% of unchanged probenecid was excreted in urine. Plasma probenecid concentrations after i.v., i.m. and s.c. injections were 133, 37, and 31 micrograms/ml, respectively, at 15 min; 76, 36, and 34 micrograms/ml at 1 h; and 43, 23 and 34 micrograms/ml at 2 h. The average bioavailability of probenecid given by i.m. and s.c. injection was 46% and 34%, respectively. However, after 2 h, probenecid plasma concentrations remained higher when it was given subcutaneously than when it was given intramuscularly. Urine output was correlated positively (P less than 0.05) with kel and ClB. Urine pH increased significantly (P less than 0.01) for the first 2 h, and then steadily declined over the subsequent 6 h. The results suggested that probenecid in sheep was rapidly eliminated because it was rapidly excreted in the normal but alkaline urine. Subcutaneous administration of probenecid in animals may be a useful alternative to oral or i.v. administration.  相似文献   

19.
Alteration in the arrhythmogenic dose of epinephrine (ADE) was determined in 6 healthy dogs under halothane anesthesia following the administration of xylazine at 1.1 mg/kg i.v. and acepromazine at 0.025 mg/kg i.v. The order of treatment was randomly assigned with each dog receiving both treatments and testing was carried out on 2 separate occasions with at least a 1 wk interval. The ADE determinations were made prior to drug administration during halothane anesthesia (CNTL) and then 20 min and 4 h following drug treatment. Epinephrine was infused for 3 min at increasing dose rates (2.5, 5.0, 10.0 micrograms/kg/min) until the arrhythmia criterion (4 or more intermittent or continuous premature ventricular contractions) was reached within the 3 min of infusion or the 1 min following cessation. The interinfusion interval was 20 min. There was a significant difference (P = 0.0001) in the ADE determined following acepromazine administration at 20 min (20.95 micrograms/kg +/- 2.28 SEM) compared to CNTL (6.64 micrograms/kg +/- 1.09), xylazine at 20 min (5.82 micrograms/kg +/- 0.95) and 4 h (6.13 micrograms/kg +/- 1.05), and acepromazine at 4 h (7.32 micrograms/kg +/- 0.34). No other significant differences existed (P < 0.05). In this study we were unable to show any sensitization to epinephrine following xylazine administration during halothane anesthesia, while a protective effect was shown with a low dose of acepromazine.  相似文献   

20.
Biological availability and pharmacokinetic properties of tylosin were determined in broiler chickens after oral (p.o.) and intravenous (i.v.) administration at a dose of 10 mg/kg. The calculated bioavailability--F%, by comparing AUC values--p.o. and AUC--i.v., ranged from 30%-34%. After intravenous injection tylosin was rapidly distributed in the organism, showing elimination half-life (t1/2 beta) values of 0.52 h and distribution volume (Vd) of 0.69 L/kg, at a clearance rate (Cl) of 5.30 +/- 0.59 ml/min/kg. After oral administration, tylosin has a similar distribution volume (Vd = 0.85 L/kg), while the elimination half-life t1/2 beta of 2.07 h was four times bigger than after i.v. administration at Cl = 4.40 +/- 0.27 ml/min/kg. The obtained value tmax = 1.5 h for tylosin after oral administration indicates that using this antibiotic with drinking water in broiler chickens is the method of choice. However, a relatively low value Cmax = 1.2 micrograms/ml after oral administration of tylosin shows that dosing of this antibiotic in broiler chickens should be higher than in other food producing animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号