首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Restriction fragment length polymorphism and sequence analysis of PCR-amplified ribosomal DNA were used to identify and classify phytoplasmas associated with diseases of various wild and cultivated plants. The diseases examined were either not known before or the presumable causal agents were not yet identified and characterized or were only known from other geographic areas. New diseases examined were those causing virescence and phyllody of Bunias orientalis and Cardaria draba. Both were associated with strains of the aster yellows phytoplasma. The same type of aster yellows phytoplasma was also found to be associated with yellows and phyllody diseases of Portulaca oleracea, Stellaria media, Daucus carota ssp. sativus, and Cyclamen persicum. In German and French DNA samples from diseased Trifolium repens, the clover phyllody phytoplasma was identified, which could clearly be distinguished from other phytoplasmas of the aster yellows group. Strains of the stolbur phytoplasma were detected in big bud-affected tomatoes and almost exclusively in Convolvulus arvensis. In Cirsium arvense and Picris echioides two distinct phytoplasmas were identified which showed relationship to the sugarcane white leaf phytoplasma group but may represent a new group or subgroup. In Conyza (syn.: Erigeron) canadensis a phytoplasma of the X-disease group was detected. A strain from Gossypium hirsutum showed the same restriction profiles as the faba bean phyllody phytoplasma.  相似文献   

2.
Wang K  Hiruki C 《Phytopathology》2001,91(6):546-552
ABSTRACT This paper describes the identification and differentiation of phytoplasmas by a highly sensitive diagnostic technique, DNA heteroduplex mobility assay (HMA). Closely related phytoplasma isolates of clover proliferation (CP), potato witches'-broom (PWB), and alfalfa witches'-broom (AWB) were collected from the field from 1990 to 1999. The entire 16S rRNA gene and 16/23S spacer region were amplified by polymerase chain reaction (PCR) from the field samples and standard CP, PWB, and AWB phytoplasmas and were subjected to restriction fragment length polymorphism (RFLP) analysis and HMA. Two subgroups (I and II) of phytoplasmas in the CP group were identified by HMA but not by RFLP analysis. The results were confirmed by 16/23S spacer region sequence data analysis. After HMA analyses of the PCR-amplified 16/23S spacer region, 14 phytoplasma isolates from field samples were classified into two aster yellows subgroups: subgroup I, phytoplasma isolates from China aster (Callistephus chinensis) yellows, French marigold (Tagetes patula) yellows, cosmos (Cosmos bipinnatus cv. Dazzler) yellows, clarkia (Clarkia unguiculata) yellows, California poppy (Eschscholzia californica cv. Tai Silk) yellows, monarda (Monarda fistulosa) yellows, and strawflower (Helichrysum bracteatum) yellows; and subgroup II, phytoplasma isolates from zinnia (Zinnia elegans cv. Dahlia Flower) yellows, Queen-Annes-Lace (Daucus carota) yellows, scabiosa (Scabiosa atropurpurea cv. Giant Imperial) yellows, Swan River daisy (Brachycombe multifida cv. Misty Pink) yellows, pot marigold (Calendula officinalis) yellows, purple coneflower (Echinacea purpurea) yellows, and feverfew (Chrysanthemum parthenium) yellows. The results indicate that HMA is a simple, rapid, highly sensitive and accurate method not only for identifying and classifying phytoplasmas but also for studying the molecular epidemiology of phytoplasmas.  相似文献   

3.
Between 1994 and 1998 a field study was conducted to identify plant hosts of the European stone fruit yellows (ESFY) phytoplasma in two apricot growing regions in southern and southwestern France where the incidence of apricot chlorotic leaf roll was high. A total of 431 samples from 51 different plant species were tested for the presence of phytoplasmas by PCR using universal and ESFY-specific primers. ESFY phytoplasma was detected in six different wild growing Prunus species exhibiting typical ESFY symptoms as well as in symptomless dog rose bushes (Rosa canina), ash trees (Fraxinus excelsior) and a declining hackberry (Celtis australis). The possible role of these plant species in the spread of ESFY phytoplasma is discussed. PCR-RFLP analysis of ribosomal DNA amplified with the universal primers was carried out to characterize the other phytoplasmas found. Thus, elm yellows phytoplasma, alder yellows phytoplasma and rubus stunt phytoplasma were detected in declining European field elm trees (Ulmus carpinifolia Gled), in declining European alder trees (Alnus glutinosa) and in proliferating Rubus spp. respectively. The presence of rubus stunt phytoplasma in great mallow (Malva sylvestris) and dog rose was demonstrated for the first time. Furthermore, the stolbur phytoplasma was detected in proliferating field bindweed (Convolvulus arvensis) and a previously undescribed phytoplasma type was detected in red dogwood (Cornus sanguinea). According to the 16S rDNA-RFLP pattern this new phytoplasma belongs to the stolbur phytoplasmas group.  相似文献   

4.
During the summer 1996, twelve of twenty-eight leek plants located in a garden near eské Budjovice, South Bohemia exhibited symptoms typical of diseases associated with phytoplasmas. In summer 1998 similar symptoms were detected in leek plants in a field used for seed production located in Romagna, North Italy. In both cases the plants were established in the spring of the previous year. Plants showed flower abnormalities: stamen elongation, anther sterility, pistil proliferation, as well as poor, if any, seed production. Phytoplasma-like structures were detected by scanning and transmission electron microscopy in phloem sieve elements in the Czech diseased plants, but not in healthy ones. Nested-PCR amplifications of extracted DNA with phytoplasma-specific oligonucleotide primer pairs confirmed the presence of phytoplasmas in these plants at low concentrations. Restriction fragment length polymorphism analyses of amplified ribosomal sequences allowed the identification of detected phytoplasmas: all the samples from the Czech Republic contained aster yellows related phytoplasmas (16SrI-B) while in the Italian samples aster yellows related phytoplasmas (16SrI-B) together with stolbur related phytoplasmas (16SrXII-A) were identified. This is the first report of detection and identification of a phytoplasma disease of leek in the Czech Republic and Italy.  相似文献   

5.
ABSTRACT Chromosome sizes of 71 phytoplasmas belonging to 12 major phylogenetic groups including several of the aster yellows subgroups were estimated from electrophoretic mobilities of full-length chromosomes in pulsed-field gels. Considerable variation in genome size, from 660 to 1,130 kilobases (kb), was observed among aster yellows phytoplasmas. Chromosome size heterogeneity was also observed in the stolbur phytoplasma group (range 860 to 1,350 kb); in this group, isolate STOLF contains the largest chromosome found in a phytoplasma to date. A wide range of chromosome sizes, from 670 to 1,075 kb, was also identified in the X-disease group. The other phytoplasmas examined, which included members of the apple proliferation, Italian alfalfa witches' broom, faba bean phyllody, pigeon pea witches' broom, sugarcane white leaf, Bermuda grass white leaf, ash yellows, clover proliferation, and elm yellows groups, all have chromosomes smaller than 1 megabase, and the size ranges within each of these groups is narrower than in the aster yellows, stolbur, and X-disease groups. The smallest chromosome, approximately 530 kb, was found in two Bermuda grass white leaf phytoplasma isolates. This not only is the smallest mollicute chromosome found to date, but also is the smallest chromosome known for any cell. More than one large DNA band was observed in several phytoplasma preparations. Possible explanations for the occurrence of more than one band may be infection of the host plant by different phytoplasmas, the presence of more than one chromosome in the same organism, or the presence of large extrachromosomal DNA elements.  相似文献   

6.
The genetic relatedness of phytoplasmas associated with dieback (PDB), yellow crinkle (PYC) and mosaic (PM) diseases in papaya was studied by restriction fragment length polymorphism (RFLP) analysis of the 16S rRNA gene and 16S rRNA/23S rRNA spacer region (SR). RFLP and SR sequence comparisons indicated that PYC and PM phytoplasmas were identical and most closely related to members of the faba bean phyllody strain cluster. By comparison the PDB phytoplasma was most closely related to Phormium yellow leaf (PYL) phytoplasma from New Zealand and the Australian grapevine yellows (AGY) phytoplasma from Australia. These three phytoplasmas cluster with the stolbur and German grapevine yellows (VK) phytoplasmas within the aster yellows strain cluster. Primers based on the phytoplasma tuf gene, which amplify gene products from members of the AY strain cluster, also amplified a DNA product from the PDB phytoplasma but not from either the PYC or PM phytoplasmas. Primers deduced from the 16S rRNA/SR selectively amplified rDNA sequences from the PDB and AGY phytoplasmas but not from other members of the stolbur strain cluster. Similarly, primers designed from 16S rRNA/SR amplified rDNA from the PYC and PM phytoplasmas but not from the PDB phytoplasma. These primers may provide for more specific detection of these pathogens in epidemiological studies.  相似文献   

7.
ABSTRACT Antisera raised against phloem-limited phytoplasmas generally react only with the phytoplasma strain used to produce the antigen. There is a need for an antiserum that reacts with a variety of phytoplasmas. Here, we show that an antiserum raised against the SecA membrane protein of onion yellows phytoplasma, which belongs to the aster yellows 16S-group, detected eight phytoplasma strains from four distinct 16S-groups (aster yellows, western X, rice yellow dwarf, and elm yellows). In immunoblots, approximately 96-kDa SecA protein was detected in plants infected with each of the eight phytoplasmas. Immunohistochemical staining of thin sections prepared from infected plants was localized in phloem tissues. This antiserum should be useful in the detection and histopathological analysis of a wide range of phytoplasmas.  相似文献   

8.
The identity of phytoplasmas detected in strawberry plants with green petal (SGP) and lethal yellows (SLY) diseases was determined by RFLP analysis of the 16S rRNA gene and adjacent spacer region (SR). RFLP and sequence comparisons indicated that the phytoplasmas associated with SGP and SLY were indistinguishable and were most closely related to ' Candidatus Phytoplasma australiense', the phytoplasma associated with Australian grapevine yellows, papaya dieback and Phormium yellow leaf diseases. This taxon lies within the aster yellows strain cluster. Primers based on the phytoplasma tuf gene, which amplify only members of the AY strain cluster, amplified a DNA product from the SGP and SLY phytoplasmas. Primers deduced from the 16S rRNA/SR of P. australiense that amplify only members of this taxon amplified rDNA sequences from the SGP and SLY phytoplasmas. Primers that selectively amplify members of the faba bean phyllody (FBP) phytoplasma group, the most commonly occurring phytoplasma group in Australia, did not amplify rDNA from the SGP and SLY phytoplasmas.  相似文献   

9.
Primer pairs were designed from a cloned DNA probe of a strain of flavescence dorée (FD) phytoplasma and from a cloned DNA probe of a strain of stolbur phytoplasma. Among an array of reference phytoplasma strains maintained in periwinkle, pair FD9f/r amplified a 1.3 kb DNA fragment only with phytoplasma strains of elm yellows (EY) group, i.e. two strains of FD and two strains of EY. Tru9I restriction analysis of the fragment amplified by FD9f/r revealed a diversity among EY-group phytoplasmas. The FD strains differed from the strains isolated from elm. The profile of the phytoplasmas infecting the grapevine samples from Catalonia and most of the samples from Northern Italy were identical to that of a FD strain. Three other profiles were detected in grapevine from Palatinate, in Germany.The two primer pairs derived from a stolbur strain, STOL4f/r and STOL11f2/r1, specifically amplified a 1.7 kb and a 0.9 kb DNA fragment, respectively, with all strains in the stolbur subgroup. However, the pair STOL4f/r did not recognise strain MOL. Both pairs allowed to detect phytoplasmas in diseased grapevines from France, Italy, Spain and Israel. Attempts to differentiate between phytoplasmas in the stolbur subgroup by restriction analyses failed. The pairs FD9f/r and STOL11f2/r1 could be used in the same reaction (multiplex PCR) to detect EY-group phytoplasmas, stolbur-subgroup phytoplasmas or both phytoplasmas simultaneously when template DNAs were mixed.  相似文献   

10.
A total of 62 phytoplasma isolates were collected from North America, Europe and Asia and analysed by heteroduplex mobility assay (HMA) of the 16/23S spacer region amplified by the polymerase chain reaction. The results revealed wide genetic diversity among the phytoplasmas studied and a number of new phytoplasma strains were identified from known or new plant hosts in Alberta, Canada. Two distinctive subgroups were revealed by HMA in phytoplasmas associated with canola yellows, Chinese aster yellows, dandelion yellows and monarda yellows. In Alberta, two subgroups of the aster yellows group of phytoplasmas, I-A and I-B, were prevalent in naturally infected field crops and ornamentals in open gardens. The results indicated that HMA is a simple, but rapid and accurate, alternative method for the detection and estimation of genetic divergence of phytoplasmas when finer molecular characterization of phytoplasmas is required at the subgroup level.  相似文献   

11.
The presence of phytoplasma inFragaria ananassa x Duch cv Senga Sengana showing strawberry green petals symptoms was observed by electron microscopy of phloem tissue. No phytoplasmas were found in asymptomatic strawberry plants used as controls. Nucleic acids extracted from these plants were used in nested-PCR assays with primers amplifying 16S rRNA sequences specifie for phytoplasmas. Bands of 1.2 kb were obtained and the subsequent nested-PCR with specific primers and RFLP analyses allowed to classify the detected phytoplasmas in the aster yellows group (16SrI). They belonged to the subgroup I-C of which type strain is clover phyllody phytoplasma.  相似文献   

12.
Since 2000, a disease has occurred with high levels of incidence in crops of cauliflower grown in the green belt area of the city of S?o Paulo, Brazil. The symptoms are characterized by stunting, malformation of the inflorescence, reddening leaves, and vascular necrosis, suggesting infection by phytoplasma. These symptoms are similar to those described in Brassicas species affected by the aster yellows (16SrI) group of phytoplasma. In the present study, a phytoplasma from the 16SrIII-J subgroup was identified in cauliflower plants based on actual and virtual RFLP patterns and phylogenetic analysis, and was distinct from the phytoplasmas frequently associated with aster yellows disease in Brassicas. Pathogenicity assays using dodder confirmed that the identified phytoplasma is the agent of the observed disease, which is here designated as cauliflower stunt. Consequently, this species of Brassica may be recognized as a new host for subgroup 16SrIII-J, which has frequently been found in diverse species cultivated in Brazil. The spatial pattern of diseased plants was determined in ten cauliflower plots of 300 to 728 plants each. All plants in these plots were evaluated by visual assessments, assigned as diseased or healthy and mapped. The dispersion index and Taylor’s power law were determined for various quadrat sizes and the results showed that the diseased plants were distributed in a random pattern in fields with a low disease incidence and in an aggregated pattern in fields with a disease incidence greater than 25?%. According to an isopath area analysis, diseased plants were predominantly present in the field borders, suggesting that the pathogen is possibly introduced by vector(s) from the external area.  相似文献   

13.
A 2-year study of host association, molecular characterisation and vector transmission of a phytoplasma related to the 16SrII group in a vineyard of south-eastern Serbia was conducted. Grapevine, eight common weeds and 31 Auchenorrhyncha species were collected and analysed for phytoplasma presence. PCR-RFLP analyses of the 16S rRNA gene identified the presence of a new strain of phytoplasma related to the 16SrII group in P. hieracioides with symptoms of stunting or bushy stunting. Grapevine samples, all without symptoms, were negative for phytoplasma presence. Plants of Erigeron annuus, Cynodon dactylon, Daucus carota and P. hieracioides, either exhibiting symptoms of yellowing or without symptoms, were positive for the presence of stolbur phytoplasma. Among the tested cicada species, seven were infected with phytoplasmas from the aster yellows group, two with stolbur phytoplasma, two with 16SrII phytoplasma, and one with the 16SrV-C phytoplasma subgroup. The phytoplasma strain of the 16SrII group was recorded in approximately 50?% of the collected leafhopper species Neoaliturus fenestratus and in a few specimens of the planthopper Dictyophara europaea. The vector status of N. fenestratus was tested using the second generation of the planthopper in two separate transmission trials with P. hieracioides and periwinkle seedlings. In both tests, the leafhopper successfully transmitted 16SrII phytoplasma to exposed plants, proving its role as a natural vector of this phytoplasma in Europe. A finer molecular characterisation and phylogenetic relatedness of the 16SrII phytoplasma strain by sequence analyses of the 16S rRNA and ribosomal protein genes rpl22-rps3 indicated that it was most closely related to the 16SrII-E subgroup.  相似文献   

14.
ABSTRACT In the spring of 2000, an aster yellows (AY) epidemic occurred in carrot crops in the Winter Garden region of southwestern Texas. A survey revealed that vegetable crops, including cabbage, onion, parsley, and dill, and some weeds also were infected by AY phytoplasmas. Nested polymerase chain reaction (PCR) and restriction fragment length polymorphism analysis of PCR-amplified phytoplasma 16S rDNA were employed for the detection and identification of phytoplasmas associated with these crops and weeds. Phytoplasmas belonging to two subgroups, 16SrI-A and 16SrI-B, in the AY group (16SrI), were predominantly detected in infected plants. Carrot, parsley, and dill were infected with both subgroups. Onion and three species of weeds (prickly lettuce, lazy daisy, and false ragweed) were predominantly or exclusively infected by subgroup 16SrI-A phytoplasma strains, while cabbage was infected by subgroup 16SrI-B phytoplasmas. Both types of phytoplasmas were detected in three leafhopper species, Macrosteles fascifrons, Scaphytopius irroratus, and Ceratagallia abrupta, commonly present in this region during the period of the epidemic. Mixed infections were very common in individual carrot, parsley, and dill plants and in individual leafhoppers. Sequence and phylogenetic analyses of 16S rDNA and ribosomal protein (rp) gene sequences indicated that phytoplasma strains within subgroup 16SrI-A or subgroup 16SrI-B, detected in various plant species and putative insect vectors, were highly homogeneous. However, based on rp sequences, two rpI subgroups were identified within the subgroup 16SrI-A strain cluster. The majority of subgroup 16SrI-A phytoplasma strains were classified as rp subgroup rpI-A, but phytoplasma strains detected in one onion sample and two leafhoppers (M. fascifrons and C. abrupta) were different and classified as a new rp subgroup, rpI-N. The degree of genetic homogeneity of the phytoplasmas involved in the epidemic suggested that the phytoplasmas came from the same pool and that all three leafhopper species may have been involved in the epidemic. The different phytoplasma population profiles present in various crops may be attributed to the ecological constraints as a result of the vector-phytoplasma-plant three-way interaction.  相似文献   

15.
In the Campania region of southern ltaly. commercial orchards of European hazel ( Corylus avellana ) are severely affected by yellowing and decline. To determine whether phytoplasmas are associated with the disorder, stem samples from diseased trees were examined using polymerase chain reaction assays. No visible products were obtained by amplification of sample DNA with universal and group-specific phytoplasma primers. However, when the products obtained with universal primers were re-amplified with nested primers that were specific for the fruit tree phytoplasmas of the apple proliferation group, most samples tested positively. Restriction site analysis revealed that the trees were infected with the apple proliferation, pear decline, and European stone fruit yellows phytoplasmas in about the same proportion. Some of the trees were doubly infected with one of the fruit tree phytoplasmas and the aster yellows agent. Most of the infected trees were also identified by hybridization of the products obtained in the initial amplification with suitable oligonucleotide probes.  相似文献   

16.
Numerous plants ofSilene nicaeensis having symptoms resembling those associated with the presence of phytoplasmas were observed in an extensive coastal area in the south of Italy. Microscopic observation showed histological abnormalities in the organization of tissues in symptomatic plants, and molecular tests, including PCR/RFLP analyses and nucleic acid sequencing, revealed the presence of phytoplasmas belonging to the aster yellows group (‘Candidatus phytoplasma asteris’). This is the first report of phytoplasma infection inS. nicaeensis, a wild species that colonizes the Calabrian coast. http://www.phytoparasitica.org posting June 12, 2008  相似文献   

17.
Berges R  Rott M  Seemüller E 《Phytopathology》2000,90(10):1145-1152
ABSTRACT For competitive polymerase chain reaction (PCR), an internal standard DNA template was developed that consisted of a highly conserved, internally deleted 16S rDNA fragment of an aster yellows phytoplasma. The internal standard was calibrated using a quantified culture of Acholeplasma laidlawii. Serial dilutions of the internal standard and fixed amounts of target templates from infected plants were coamplified with the same primers, and the products obtained were quantified using an enzyme-linked immunosorbent assay procedure. Analysis of the data revealed that the phytoplasma concentration in the plants examined differed by a factor of about 4 x 10(6). Phytoplasma concentrations of 2.2 x 10(8) to 1.5 x 10(9) cells per g of tissue were identified in periwinkles infected with various phytoplasmas. High to moderate concentrations were detected in Malus domestica (apple) genotypes infected with the apple proliferation phytoplasma, Alnus glutinosa (alder) genotypes infected with the alder yellows phytoplasma, and most aster yellows-infected Populus (poplar) genotypes examined. Very low phytoplasma concentrations, ranging from 370 to 34,000 cells per g of tissue, were identified in proliferation-diseased apple trees on resistant rootstocks 4551 and 4608, yellows-diseased Quercus robur (oak) trees, and Carpinus betulus (hornbeam) trees. Such low concentrations, which corresponded to about 4 to 340 cells in the reaction mixture, could only be detected and quantified by nested PCR.  相似文献   

18.
A new real-time PCR detection system was developed for grapevine yellows (GY) using TaqMan minor groove binder probes and including two amplicons for group-specific detection of Flavescence dorée (FD) and Bois noir (BN) phytoplasmas, plus a universal phytoplasma amplicon. FD and BN amplicons were designed to amplify species-specific genomic DNA fragments and the universal amplicon to amplify the 16S ribosomal DNA region. Efficiency of PCR amplification, limit of detection, range of linearity and dynamic range were assessed for all three amplicons. The specificity of detection systems was tested on several other isolates of phytoplasmas and bacteria and on healthy field grapevine and insect samples. No cross-reactivity with other phytoplasma strains, plant or insect DNA was detected. The assay was compared with conventional PCR on more than 150 field grapevine, insect and field bindweed samples. Real-time PCR showed higher sensitivity as phytoplasmas were detected in several PCR-negative and in all PCR-positive samples. A data-mining analysis of results from both detection approaches also favoured real-time PCR over conventional PCR diagnostics. The developed procedure for detection of phytoplasmas in grapevine also included amplification of plant DNA co-extracted with phytoplasmic DNA, providing additional quality control for the DNA extraction and PCR amplification for each sample. The newly developed assay is a reliable, specific and sensitive method easily applicable to high-throughput diagnosis of GY.  相似文献   

19.
ABSTRACT Epidemics of aster yellows in lettuce in Ohio are caused by at least seven distinct phytoplasma strains in the aster yellows (AY) group. Five of the strains are newly reported: AY-BW, AY-WB, AY-BD3, AY-SS, and AY-SG. All seven strains were characterized based on symptoms in aster and lettuce, and by polymerase chain reaction (PCR). Strain AY-BD2 (formerly 'Bolt') causes yellowing and leaf distortion in lettuce and bolting in aster, whereas strain AY-S (formerly 'Severe') causes stunting, leaf clustering, and phyllody. Strain AY-WB causes yellowing and wilting in lettuce and witches'-broom in aster. Strain AY-SG induces horizontal growth in lettuce and aster plants. Strain AY-BW causes chlorosis of emerging leaves and abnormally upright growth of leaf petioles. AY-SS causes symptoms similar to those caused by AY-S but has a different PCR-restriction fragment length polymorphism (RFLP) banding pattern. Strains AY-BD2 and AY-BD-3 cause mild leaf and stem distortion in lettuce but are differentiated by PCR-RFLP. All phytoplasma strains collected from lettuce in Ohio belong to the 16SrI group. AY-WB belongs to the 16SrI-A subgroup and the other six belong to the 16SrI-B subgroup. Five of the seven strains were distinguished from each other by primer typing. The results of phylogenetic analyses of sequences of the 16S rRNA genes were basically consistent with the classification based on PCR-RFLP, in which AY-WB clustered with phytoplasmas of the 16rIA subgroup and the other Ohio lettuce strains clustered with phytoplasmas in the 16SrI-B subgroup.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号