首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possibility of using the VERT_MIG algorithm in simulation models of the vertical migration of radionuclides in soil is discussed. The algorithm was successfully used to develop models of 137Cs and 90Sr migration for radioactive contamination of different soils as a result of the accidents at the Chernobyl and Fukushima-1 nuclear power plants. The modeling results are given. Prospects for further use of this algorithm and some aspects of using imitation modeling in this area are discussed.  相似文献   

2.
Radioactive contamination of soils is considered as a separate type of degradation decreasing their fertility. Natural soil radioactivity is described. The main sources of technogenic radionuclides for the soil cover (global radionuclide fallout after nuclear weapons tests, the operation of nuclear facilities, radioactive waste) were shown. The phytomelioration of soils containing radionuclides was assessed. Issues were analyzed related to the remediation of agricultural soils after radiation accidents associated with the release of radionuclides into the environment: the discharge of radionuclides into the Techa River (1949–1953) and the Kyshtym (Southern Urals, 1957), Windscale (United Kingdom, 1957), and Chernobyl (Ukraine, 1986) accidents. The hazard of radioactive contamination of the soil-plant cover was assessed from two viewpoints: the anthropocentric (sanitary-hygienic) principle, when the degree of radioactive contamination of agricultural crops and the conformity of their radionuclide content to radiological standards are taken into account (maximum permissible concentrations of radionuclides), on the one hand, and the ecocentric (biospheric, environmental) approach, when the consequences of the irradiation of soil biota and living terrestrial organisms caused by radionuclides present in the soils are taken into account (conformity to the radiation standards and permissible radiation doses), on the other hand. For some technogenic radionuclides, the use of these principles for assessing the hazard of radioactive contamination of the soil was exemplified, which is of importance for determining the rehabilitation strategy of agricultural lands contaminated with radionuclides.  相似文献   

3.
The results of the study are presented on the distribution and migration of radiocesium in mountainous (580–620 m a.s.l.) landscapes in the northeast of Honshu Island (Tohoku Region, Miyagi Prefecture) subjected to radioactive contamination after the nuclear accident at Fukushima-1 NPP. In July 2014, the average contamination density with radiocesium (134Сs and 137Сs) over the territory (150 km to the northwest from NPP) was equal to 16 kBq/m2. This contamination is estimated at the acceptable level according to both Japanese and Russian standards and legislation. Three years after the accident, radiocesium is found to be unevenly distributed by the biogeocenosis components, i.e. 45% in litter, 40% in plants, 10% in soil, and 5% in roots. As for the distribution of total radiocesium (Cs tot = 134Сs + 137Сs) by the profile of volcanic podzolic-ocherous soil (Dystric Aluandic Andosols), its maximal content (about 80%) was found in the surface layer (0–2.5 cm), with the specific activity ranging from 250 to 10070 Bq/kg and sharply decreasing with the depth. Radiocesium amount in the soils of forest ecosystems was on average by 20% higher than in meadow ecosystems. Accumulation of radionuclides in soils of lower and middle parts of a slope with an insignificant vertical migration was found to be the most general regularity. The air dose rate did not exceed the maximal permissible level, and the snow cover acted as an absorbing and scattering screen.  相似文献   

4.
The spatial-temporal features of the radioactive contamination of terrestrial ecosystem components caused by the deterioration of the multibarrier protection of regional radioactive waste storages of the State Research Center of the Russian Federation-Leipunskii Institute of Physics and Power Engineering at the input of radionuclides into the soil and ground water were studied. The composition of the radioactive contamination was determined, and the hydrological and geochemical processes resulting in the formation of large radioactive sources were described. The natural features of the radioactive waste storage areas favoring the entry of 90Sr, 137Cs, and 226Ra into the soils and their inclusion in the biological turnover were characterized. The directions of the horizontal migration of 90Sr, 137Cs, and 226Ra and the sites of their accumulation within the superaquatic and aquatic landscapes of a near-terrace depression were studied; the factors of the 90Sr accumulation in plants and cockles were calculated. The results of the studies expand the theoretical concepts of the mechanisms, processes, and factors controlling the behavior of radionuclides at the deterioration of the multibarrier protection of radioactive waste storages. The presented experimental data can be used for solving practical problems related to environmental protection in the areas of industrial nuclear complexes.  相似文献   

5.
The methodology and procedure for cadastral valuation of land in the areas contaminated with radionuclides are presented. The efficiency of rehabilitation measures applied to decrease crop contamination to the levels satisfying sanitary-hygienic norms is discussed. The differentiation of cadastral value of radioactively contaminated agricultural lands for the particular farms and land plots is suggested. An example of cadastral valuation of agricultural land contaminated during the Chernobyl Nuclear Power Plant accident is given. It is shown that the use of sandy and loamy sandy soddy-podzolic soils with the 137Cs contamination of 37–185 and >185 kBq/m2 for crop growing is unfeasible. The growing of grain crops and potatoes on clay loamy soddy-podzolic soils with the 137Cs contamination of 555–740 kBq/m2 is unprofitable. The maximum cadastral value of radioactively contaminated lands is typical of leached chernozems.  相似文献   

6.
Data on the concentrations of natural (226Ra, 232Th and 40K) and artificial (137Cs) radionuclides and on the physicochemical properties of chernozems sampled in different years are presented. In 1952, upon the creation of the Penza-Kamensk state shelterbelt, three deep (up to 3 m) soil pits were examined within the former arable field under two-year-old plantations of ash and maple along the transect crossing the territory of the Beloprudskaya Experimental Station of the USSR Academy of Sciences in Volgograd oblast. The samples from these pits were included into the collection of dated soil samples of the Dokuchaev Central Soil Science Museum. Five pits were examined along the same transect in 2009: three pits under shelterbelts (analogues of the pits studied in 1952) and two pits on arable fields between the shelterbelts. In the past 57 years, certain changes took place in the soil structure, bulk density, and the content and composition of humus. The salt profile of soils changed significantly under the forests. The comparison of distribution patterns of natural soil radionuclides in 1952 and 2009 demonstrated their higher contents at the depth of 10–20 cm in 2009 (except for the western shelterbelt). Background concentrations of natural radionuclides in parent materials and relationships between their distributions and the salt profiles of soils have been determined; they are most clearly observed is the soils under shelterbelts. Insignificant contamination with 137Cs (up to 34 Bq/kg) has been found in the samples of 2009 from the upper (0–20 cm) horizon. The activity of 137Cs regularly decreases from the east to the west; the highest concentrations of this radionuclide are found in the topmost 10 cm. This allows us to suppose that 137Cs was brought with aerial dust by eastern winds, and the shelterbelts served as barriers to the wind flow.  相似文献   

7.
The concentration of medically used radionuclides has been studied in sludge from the sewage treatment plant serving the borough of Malmo. In this area all nuclear medicine procedures are carried out in one hospital and almost all patients live in the borough. Therefore, the input of medically used radionuclides into the sewage system can be estimated with good accuracy. Samples of digested sludge have been taken once or twice a week during half a year. Iodine-131 (physical half life (T) = R.05 d) was detected in all samples. The 131I-activity concentration due to medical use varied between (0.03±0.01) and (0.12±0.02) nCi kg?1. The ratio between the total output of 131I via the sludge and an adherent input of the radionuclide into the sewage system was determined to (2.6 ± 0.6) × 10?3, which is equivalent to a ratio of (2 ± 1) × 10?2 for stable I. Occasionally measurable activities of 198Au (T=2.7 d) and 201T1(T=3.l d) have been found. The radioactivity concentration of medically used radionuclides in the sludge is low and constitutes no health problems for the persons involved. The sludge however has proved to be a very sensitive and suitable integrator of radioactive material released from a large urban area.  相似文献   

8.
Specific activities of artificial (137Cs, 90Sr) and natural (40К, 232Th, 226Ra) radionuclides in background soils of southern and middle taiga of Komi Republic have been estimated with consideration for the landscape-geochemical features of the territory. It has been shown that their accumulation and migration in soils are determined by the following factors: position in relief, texture, and organic matter content. No anomalous zones with increased contents of radionuclides in soils have been revealed.  相似文献   

9.
The dynamics of the 14C content in the humus of chernozems in 1900?C2008 are considered. The elevated 14C content in the atmosphere because of nuclear weapons tests has led to the contamination of humus with bomb radiocarbon. In 1966?C1968, the 14C reserves in the profiles of chernozems exceeded the background ones by 15%; in 1978, by 12%; and, in 1998, by 2%. By the year of 2008, its reserves became equal to the background ones. The 14C distribution along the soil profiles changed. By 1978, the 0- to 30-cm-thick soil layer became free from radiocarbon due to its self-purification; however, at depths of 40?C70 and 100?C115 cm, its weak accumulation was registered. By 2008, the whole soil profile was free from 14C. The main mechanism of the soil self-purification from radiocarbon is suggested to be the constant substitution of fragments of humus compound structures for those of fresh organic matter entering the soils with the 14C content being in equilibrium with the atmospheric one, i.e., due to the renewal of the carbon in the humus. The rate of the carbon renewal and its migration in the soils are assed based on the 14C concentrations in the humus.  相似文献   

10.
The existing approaches to studying the risk of chemical contamination of soils are analyzed. It is noted that the actual and critical loads of contaminants on the soil cover are often compared for estimating these risks. The insufficient use of economic tools and methods for assessing the risk of soil contamination is emphasized. The sanitary-hygienic standards are found out to be exceeded for lead, zinc, cadmium and copper content in soils in six localities, each of 6250 m2 in the area, situated in the industrial and transport zones of Podol’sk and Moscow. The values of actual and maximal permissible damage exerted by the heavy-metal contamination to the studied soils are calculated. The probable damage R and the degree of probable damage implementation (DPDI) are used as the indices of soil contamination risk.  相似文献   

11.
Different variants of combined radioactive and oil pollution were simulated in a series of model experiments with soils contaminated with radioactive materials. In the soils with a 137Cs pollution density of 5395.5 kBq, the number of Aeromonas, Pseudomonas, and Rhodococcus representatives decreased, and the number of mycobacteria and fungi increased. The pollution of the soils with diesel fuel with up to 5 mL/100 g soil is accompanied by raising the number of hydrocarbon-oxidizing microorganisms; it eliminates to some extent the negative influence of the radionuclides on the soil microbial community approaching the soil to its initial or background state. The high soil pollution with diesel fuel (30 mL/100 g) leads to a decrease in the population of the microbial community and the biological activity. In the growing of plants, the negative effect of the combined radioactive and oil pollution on the biological activity manifests itself less contrastingly.  相似文献   

12.
137Caesium was measured in soils sampled from 101 locationsdistributed across the Piemonte Region (North-West of Italy). The contamination levels found ranged from a few kBq m-2 to about 60 kBq m-2, the regional average being of the order of 15 kBq m-2. The data obtained were interpolated with geostatistical functions in order to obtain a detailed mapof radioactive contamination for the whole region. A second map,representing the rainfall for the period of Chernobyl atmospheric contamination, weighted with the estimated values of air contamination, was produced.The comparison of the two maps and a statistical analysis of the data show that 84% of the 137Cs global inventory is due to wet deposition, associated with 9% pre-Chernobyl fallout and a 7% attributed to Chernobyl dry deposition.A deposition model based on a linear relationship betweenwet deposition (D w) and `weighted rainfall'(R w) isproposed, applied and tested with available data. On this basisthe following parameters were estimated: scavenging factor, washout ratio, cloud height, dry deposition velocity, mediandiameter of the particles.  相似文献   

13.
《CATENA》2004,57(1):15-34
Concentrations in the soil of anthropogenic and natural radionuclides have been investigated in order to assess the applicability of the 137Cs technique in an area of typical Mediterranean steep slopes. This technique can be used to estimate net soil redistribution rates but its potential in areas with shallow and stony soils on hard rock lithology have not been evaluated so far. In this research, the validity of using this technique in stony shallow soils at very steep slopes is discussed together with the relations between radionuclide concentrations and other soil properties, lithology, slope morphology and land use in a Mediterranean environment. Both natural Potassium-40 (40K), Uranium-238 (238U), Thorium-232 (232Th) and anthropogenic Caesium-137 (137Cs) radionuclides have been determined in samples taken along slope transects on uncultivated serpentinite soils and cultivated gneiss soils. In addition to the radionuclide concentrations, parameters such as slope position, slope angle, aspect, soil depth, surface stone cover, moss, litter, vegetation cover, soil crust, stone content and bulk density have been quantified.All the natural radionuclides 40K, 238U, 232Th show significantly higher concentrations in the gneiss than in the serpentinite soils, opposed to the 137Cs concentration, which is found significantly higher in the serpentinite soils probably because of the difference in clay mineralogy. The exponential decreasing depth distribution of 137Cs and its homogeneous spatial distribution emphasise the applicability of the 137Cs technique in this ecosystem.Lithology determines the concentration of natural and anthropogenic radionuclides. Land use determines the relations between 137Cs concentration/inventory and some soil characteristics. Higher 137Cs concentration and inventory are associated with higher percentages of vegetation cover, higher percentage of stones in the soil and higher values of soil bulk density in cultivated gneiss soils. Slope morphology and land use influence the soil redistribution at slope scale. The gneiss slopes show a zonation of four to five areas of differential erosion/accumulation processes corresponding with more regular slopes and soil redistribution due to water erosion and to tillage translocation and erosion. The serpentinites, as an example of a more unstable slope type, show more erosion areas with less accumulation downslope and soil redistribution due to water erosion.  相似文献   

14.
Radionuclide fallout during nuclear accidents on the land may impair the atmosphere, contaminate farmland soils and crops, and can even reach the groundwater. Previous research focused on the field distribution of deposited radionuclides in farmland soils, but details of the amounts of radionuclides in the plough layer and the changes in their proportional distribution in the soil profile with time are still inadequate. In this study, a lysimeter experiment was conducted to determine the vertical migration of 137Cs and 60Co in brown and aeolian sandy soils, collected from the farmlands adjoining Shidaowan Nuclear Power Plant(NPP) in eastern China, and to identify the factors influencing their migration depths in soil. At the end of the experiment(800 d), >96% of added 137Cs and 60Co were retained in the top 0–20 cm soil layer of both soils;very little 137Cs or 60Co initially migrated to 20–30 cm, but their amounts at this depth increased with time. The migration depth of 137Cs was greater in the aeolian sandy soil than in the brown soil during 0–577 d, but at the end of the experiment, 137Cs migrated to the same depth(25 cm) in both soils. Three phases on the vertical migration rate(v) of 60Co in the aeolian sandy soil can be identified: an initial rapid movement(0–355 d, v = 219 ± 17 mm year-1), followed by a steady movement(355–577 d, v = 150 ± 24 mm year-1) and a very slow movement(577–800 d, v = 107 ± 7 mm year-1). In contrast, its migration rate in the brown soil(v = 133 ± 17 mm year-1) was steady throughout the 800-d experimental period. The migration of both 137Cs and 60Co in the two soils appears to be regulated by soil clay and silt fractions that provide most of the soil surface area, soil organic carbon(SOC), and soil pH, which were manifested by the solid-liquid distribution coefficient of 137Cs and 60Co. The results of this study suggest that most 137Cs and 60Co remained within the top layer(0–20 cm depth) of farmland soils following a simulated NPP accident, and little reached the subsurface(20–30 cm depth). Fixation of radionuclides onto clay minerals may limit their migration in soil, but some could be laterally distributed by soil erosion and taken up by crops, and migrate into groundwater in a high water table level area after several decades.Remediation measures, therefore, should focus on reducing their impact on the farmland soils, crops, and water.  相似文献   

15.
Bader  J. L.  Gonzalez  G.  Goodell  P. C.  Pillai  S. D.  Ali  A. S. 《Water, air, and soil pollution》1999,109(1-4):263-276
Chromium-containing industrial effluents are primarily responsible for environmental contamination by toxic and highly mobile, hexavalent chromium. The dilution plate-count method, using media amended with Cr(VI) at concentrations ranging from 0 to 1000 mg L-1, was used to compare the sizes of Cr(VI)-resistant bacterial populations from a soil contaminated with 25 100 mg kg-1 total Cr [12 400 mg kg-1 Cr(VI)] to those isolated from a slightly contaminated soil (99.6 mg kg-1 total Cr) and two other soils without any history of Cr contamination. Bacterial populations resistant to 500 mg L-1 Cr(VI) were isolated from all soils except the heavily contaminated soil. To determine whether Cr-resistant bacterial populations were indigenous to both the contaminated and the uncontaminated soils, enrichment cultures containing Cr(VI) at concentrations ranging from 0 to 1000 mg L-1 were employed. Bacterial populations, as high as 105 (colony forming units) CFU g-1 soil, tolerant of 500 mg L-1 Cr(VI) were isolated from all soils within 48 h of enrichment suggesting that the presence of aerobic Cr(VI)-resistant bacterial populations is unrelated to contamination levels or contamination history. However, identification of these resistant bacteria using fatty acid profiles was unsuccessful suggesting that these populations may have unique characteristics. Fungal colonies resistant to 1000 mg L-1 Cr(VI) were routinely isolated from both uncontaminated and contaminated soils. The results suggest that Cr-resistant microorganisms may be present in soils, even those with no history of Cr contamination.  相似文献   

16.
贵州铅锌冶炼区农田土壤镉铅有效性评价与预测模型研究   总被引:3,自引:1,他引:2  
张厦  宋静  高慧  张强  刘赣 《土壤》2017,49(2):328-336
农田土壤重金属的不同活性库分布和土壤-溶液分配模型能够提供重金属的生物有效性和浸出能力等信息,因而在风险评价和修复实践中非常重要。本研究采集毕节铅锌冶炼区30个历史污染农田土壤,同时在贵州省范围内采集5种类型背景土壤制成不同浓度Pb/Cd单一污染土壤;经3个月老化,分别测定由0.43 mol/L HNO_3、0.1 mol/L HCl和0.005 mol/L DTPA提取态表征的重金属反应活性库以及由0.01 mol/L CaCl_2提取态表征的直接有效库;分析铅锌冶炼区农田土壤Cd、Pb不同有效库的分布特征,建立土壤-溶液分配模型,并讨论土壤理化性质的影响。结果表明:历史污染土壤中Cd和Pb的直接有效库占全量比例分别比人工污染土壤低4倍和223倍,然而历史污染土壤Cd和Pb的反应活性库(0.43 mol/L HNO_3提取态)占全量比例要高于相应人工污染土壤中的比例。拓展Freundlich形式吸附方程能够准确描述各提取态表征的Cd和Pb活性库与土壤全量Cd和Pb的关系,尤其0.43 mol/L HNO_3提取方法能够克服土壤理化性质对土壤Cd和Pb提取的影响而与总量建立极显著的相关关系。pH依附性Freundlich吸附方程准确描述了Cd和Pb的总反应活性库分别与土壤溶液Cd和Pb的关系,对于Pb而言,还要考虑土壤有机质和有效磷的影响。本研究可为矿区农田土壤重金属污染评价、修复以及农田有效态标准的推导提供参考。  相似文献   

17.
Repeated applications of bordeaux mixture (a blend of copper sulfate and calcium hydroxide) and pyrethroid insecticides (Pys) have led to elevated copper (Cu) and Pys concentrations in vineyard surface soils. To understand the potential influence of Cu on the fate of Pys in the soil environment, we selected two Pys, cypermethrin (CPM) and lambda-cyhalothrin (λ-CHT), and two typical Chinese vineyard soils, Haplic Acrisol and Luvic Phaeozem, as experimental samples. The dissipation experiment was conducted at room temperature in the dark, and the transport of both Pys through the soils was investigated using soil thin-layer chromatography. The results showed that the transport of Pys in both soils increased as the Cu2+ concentration increased from 0 to 100 mg L-1 , and Pys were more transportable in Haplic Acrisol (HA) than in Luvic Phaeozem (LP) under the same experimental conditions. For CPM, only 100 mg L-1 of Cu2+ significantly (P<0.05) increased Pys transport through both soils relative to water. Lambda-CHT was significantly (P<0.05) transported through HA by all the Cu2+ concentrations compared to water, and all but the 1 mg L-1 of Cu2+ significantly (P<0.05) increased the transport of λ-CHT through LP relative to water. However, the dissipation rates of CPM and λ-CHT decreased with the addition of Cu to soils. Our findings suggest that the risk of groundwater contamination by Pys increases in the soils with elevated Cu concentrations.  相似文献   

18.
In contaminated water reservoirs, the sorption and binding of radionuclides to solids (SR) determines their bioavailability and transport and thus human and ecosystem exposure. In this work, the influence of organic matter (OM) on binding of the radionuclides 90Sr, 137Cs, sum of 235U, 238U, and sum of 239Pu, 240Pu to solids are investigated, using experimental data derived from ecological monitoring of radioactive waste deposits in South Ural (Russia). OM in several surface water reservoirs mainly consists of humic substance (HS) which forms humates and fulvates with radionuclides and binds to solids via different mechanisms, such as coordinating bond or covalent bond. These processes are strongly dependent on the phase of HS, which can be colloidal or soluble high-molecular compounds. Based on the spatial distribution of radionuclides, SR and OM in waste deposits, we assumed a specific influence of humic acids (HA) on the binding of radionuclides to SR, and quantified it with invariant values of a modified partitioning coefficient. The mathematical form of this invariant value emphasizes a significant impact of the local mass of HA (mHA/V) and local surface area of SR (s?=?Ssorb/V) per volume V on the processes involved in binding radionuclides to SR. These processes may retard radionuclide migration into groundwater.  相似文献   

19.
《Applied soil ecology》1999,11(2-3):261-269
Different fungal ecotypes were isolated from soils which had received long-term applications of metal-contaminated sewage sludge with the aim of studying the degree of tolerance and adaptation to heavy metals of arbuscular mycorrhizal (AM) fungi. The development and structural aspects of AM colonization produced by the different fungal isolates were studied using two host plants, Allium porrum and Sorghum bicolor, which were grown in either contaminated or non-contaminated soils. Four different AM fungi were successfully isolated from the experimental field plots: (i) Glomus claroideum, isolated from plots receiving only inorganic fertilizer; (ii) another apparently similar ecotype of Glomus claroideum, but isolated from plots with 300 m3 ha−1 year−1 of contaminated sludge added, (iii) an unidentified Glomus sp., present only in the less contaminated plots (100 m3 ha−1 year−1 of unamended sludge) and (iv) Glomus mosseae, isolated from plots receiving 100 or 300 m3 ha−1 year−1 of amended or unamended sludge (intermediate rates of contamination). There were consistent differences in behaviour among the four AM fungi tested with regard to the colonization levels they produced in non-contaminated and contaminated soils. Both total and arbuscular colonization were affected by heavy metal contamination. The main conclusions of this study are that Glomus sp. and G. mosseae isolates are strongly inhibited by heavy metals, which acted mainly by interfering with the growth of the external mycelium, and also by limiting the production of arbuscules. Our results suggest that G. claroideum isolates, particularly the ecotype which was isolated from the plots receiving the highest dose of metal-contaminated sludge, shows a potential adaptation to increased metal concentration in soil.  相似文献   

20.
In the framework of the second Swiss forest soil inventory, 137Cs-activity from 172 sites was measured systematically for the first time in the topmost soil layer (0–5 cm) and represented on a map. The spatial distribution of 137Cs contamination was similar to the pattern observed in 1986 from dose equivalent measurements following the Chernobyl nuclear power plant accident. Forest soils from regions with high precipitation in 1986 showed a higher 137Cs activity than regions with low precipitation. At sites with high caesium activities it was possible to discriminate between 137Cs originating from global fallout of the fifties and sixties and 137Cs from the Chernobyl accident. The results indicate that radiocaesium persists in the top soil layers and is recycled in forest ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号