首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The adsorption capacity of pine tree leaves for removal of methylene blue (MB) from aqueous solution was investigated in a batch system. The effects of the process variables, such as solution pH, contact time, initial dye concentration, amount of adsorbent, agitation speed, salt concentration, and system temperature on the adsorption process were studied. The extent of methylene blue dye adsorption increased with increase in initial dye concentration, contact time, agitation speed, temperature, and solution pH but decreased with increased in amount of adsorbent and salt concentration. Equilibrium data were best described by both Langmuir isotherm and Freundlich adsorption isotherm. The maximum monolayer adsorption capacity of pine tree leaves biomass was 126.58?mg/g at 30?°C. The value of separation factor, R L , from Langmuir equation and Freundlich constant, n, both give an indication of favorable adsorption. The intrapartical diffusion model, liquid film diffusion model, double exponential model, pseudo-first and second order model were used to describe the kinetic and mechanism of adsorption process. A single stage bath adsorber design for the MB adsorption onto pine tree leaves has been presented based on the Langmuir isotherm model equation. Thermodynamic parameters such as standard Gibbs free energy (??G 0), standard enthalpy (??H 0), and standard entropy (??S 0) were calculated.  相似文献   

2.
Tamarind fruit shell was used as a low-cost biosorbent for the removal of methylene blue from aqueous solution. The various factors affecting adsorption, such as agitation, pH, initial dye concentration, contact time, and temperature, were investigated. The dye adsorption capacity was strongly dependent on solution pH as well as temperature. The Langmuir isotherm model showed good fit to the equilibrium adsorption data, and the maximum adsorption capacity obtained was 1.72 mg g?1 at 303 K. The kinetics of adsorption followed the pseudo-second-order model and the rate constant increased with increase in temperature, indicating endothermic nature of adsorption. The Arrhenius equation was used to obtain the activation energy (E a) for the adsorption system. The activation energy was estimated to be 19.65 kJ mol?1. Thermodynamic parameters such as Gibbs free energy (ΔG 0), enthalpy (ΔH 0), and entropy (ΔS 0) were also investigated. Results suggested that adsorption of methylene blue onto tamarind fruit shell was a spontaneous and endothermic process. The present investigation suggests that tamarind fruit shell may be utilized as a low-cost adsorbent for methylene blue removal from aqueous solution.  相似文献   

3.
The kinetics and mechanism of methylene blue adsorption onto raw pine cone biomass (Pinus radiata) was investigated under various physicochemical parameters. The extent of the methylene blue dye adsorption increased with increases in initial dye concentration, contact time and solution pH but decreases with the amount of adsorbent, salt concentration and temperature of the system. Overall the kinetic studies showed that the methylene blue adsorption process followed pseudo-second-order kinetics among various kinetic models tested. The different kinetic parameters including rate constant, half-adsorption time and diffusion coefficient are determined at different physicochemical conditions. Equilibrium data were best represented by Langmuir isotherm among Langmuir and Freundlich adsorption isotherm. The maximum monolayer adsorption capacity of pine cone biomass was 109.89 mg/g at 30°C. The value of separation factor, R L, from Langmuir equation and Freundlich constant, n, both give an indication of favourable adsorption. Thermodynamic parameters such as standard Gibbs free energy (?G 0), standard enthalpy (?H 0), standard entropy (?S 0) and the activation energy (A) were calculated. A single-stage batch absorber design for the methylene blue adsorption onto pine cone biomass has been presented based on the Langmuir isotherm model equation.  相似文献   

4.
Studies on the removal of cadmium(II) ions from aqueous solutions by adsorption on various activated carbons [commercial activated carbon (CAC) and chemically prepared activated carbons (CPACs) from raw materials such as straw, saw dust and datesnut] have been carried out with an aim to obtain information on treating effluents containing Cd(II) ions. Factors influencing the adsorption of Cd(II) ions from aqueous solution by ACs have been investigated by following a batch adsorption technique at 30± 1 °C. The percentage removal increased with decrease in initial concentration and particle size of CPACs and an increase in contact time, dose and initial pH of the solution. Adsorption process was inhibited by the added electrolytes. The adsorption data were fitted with the Langmuir, Dubinim–Radushkevich and Freundlich isotherms and first-order kinetic equations viz., first-order, Lagergren and Bhattacharya–Venkobachar equations and intra-particle diffusion model. The kinetics of adsorption is first order with intra-particle diffusion as one of the rate determining steps. Thermodynamic parameters were obtained from equilibrium constants measured at 30, 35 and 40 °C (Error = ± 1 °C). Results of the studies on adsorption of Cd2+ ions from simulated wastewater were compared with that of CAC and Tulsion CXO-9(H), a commercial ion exchange resin/cationic resin (CR). Straw carbon showed the maximum adsorption capacity towards Cd2+ ions and a high value of rate constant of adsorption. Straw carbon is an alternative low-cost adsorbent to CAC.  相似文献   

5.
Colour Removal from Synthetic Dye Wastewater Using a Bioadsorbent   总被引:1,自引:0,他引:1  
Removal of dyes (Crystal Violet, Methylene Blue, Malachite Greenand Rhodamine B) from aqueous solutions at differentconcentrations, pH and temperatures by Neem sawdust has beencarried out successfully. The percentage of the dye adsorbed byNeem sawdust decreased from 91.56 to 78.94 and 84.93 to 71.25 for Crystal Violet and Malachite Green, respectively, when the concentration of the dye was increased from 6 to 12 mg L-1 at atemperature 30 ± 1 °C and pH 7.2. Adsorption ofother dyes (Methylene Blue and Rhodamine B) also decreased withincreasing concentration of the dye in solutions. The values ofthe rate constant of adsorption (k ad) of Crystal Violet at25, 35 and 45 °C were found to be 10.80, 10.52 and 10.25 × 10-2 min-1, respectively. The values of the Langmuir constant for adsorption capacity (Q o) of Crystal Violet on the adsorbent varied from 4.44 to3.99 mg g-1, respectively, with the increase of temperaturebetween 25 to 45 °C. The equilibrium data followed theLangmuir model of adsorption. The variation in the extent ofremoval with pH has been explained on the basis of surfaceionisation and complexation. Thermodynamic parameters(ΔG, ΔH and ΔS) have also been determinedto explain the results.  相似文献   

6.
The adsorption of lead onto date palm fibers (palm fibers) and leaf base of palm (petiole) has been examined in aqueous solution by considering the influence of various parameters such as contact time, solution pH, adsorbent dosage, particle sizes, ionic strength, and temperature. The adsorption of Pb(II) increased with an increase of contact time. The optimal range of pH for Pb(II) adsorption is 3.0?C4.5. The linear Langmuir and Freundlich models were applied to describe the equilibrium isotherms, and both models fitted well. The monolayer adsorption capacity of Pb(II) on palm fibers and petiole was found as 18.622 and 20.040 mg/g, respectively, at pH 4.5 and 25°C. Dubinin-Radushkevich (D-R) isotherm model was also applied to equilibrium data. The mean free energy of adsorption (2.397 and 4.082 kJ/mol) onto palm fibers and petiole, respectively, may be carried out via physisorption mechanism. Pseudo-first-order rate equation and pseudo-second-order rate equation were applied to study the adsorption kinetics. In comparison to first-order kinetic model, pseudo-second-order model described well the adsorption kinetics of Pb(II) onto palm fibers and petiole from aqueous solution. From the results of the thermodynamic analysis, Gibbs free energy ??G, enthalpy change ??H, and entropy ??S were determined. The positive value of ??H suggests that interaction of Pb(II) adsorbed by palm fibers is endothermic. In contrast, the negative value of ??H indicates that interaction of Pb(II) ions by petiole is exothermic. The negative value of ??G indicates that the adsorption of Pb(II) ions on both palm fibers and petiole is a spontaneous process.  相似文献   

7.
The aim of this work is the investigation of possible use of flyash in the removal of zinc (Zn2+) and cadmium (Cd2+) contained in aqueous solutions. Batch adsorption experiments wereperformed in order to evaluate the removal efficiency oflignite-based fly ash. The parameters studied include contact time, pH,temperature, initial concentration of the adsorbate and fly ashdosage. The contact time necessary to attain equilibrium was found to be two hours. Maximum adsorption occurred in the pH range of 7.0 to 7.5. The percent adsorption of Zn2+ and Cd2+ increased with an increase in concentration of Zn2+ and Cd2+, dosage of fly ash and temperature. Theapplicability of Langmuir isotherm suggests the formation ofmonolayer coverage Zn2+ and Cd2+ ions at the outer surface of the adsorbent. Thermodynamic parameters suggested the endothermic nature of the adsorption process. The fly ashwas found to be an metal adsorbent as effective as activated carbon.  相似文献   

8.
Paper mulberry (Broussonetia papyrifera) leaf powder was used to remove heavy metal ions from aqueous solutions. The specific uptakes of Cu (II), Pb (II), and Cd (II) by the leaf powder were 43.40?±?0.2, 43.9?±?0.5, and 30.65?±?0.9 mg g?1, respectively, when 500 mg L?1 of the metal solutions were used. The data fitted well to the Langmuir isotherm. The process followed the pseudo-second-order kinetic equation and intraparticle diffusion played an important role in the adsorption process. On the basis of the calculated thermodynamic parameters such as standard enthalpy (??H°), entropy (??S°) and free energy change (??G°), it was inferred that the sorption process was endothermic and spontaneous in nature. The surface properties of the leaf powder (revealed by scanning electron microscopic observations) were suitable for the metal adsorption process. Energy dispersive X-ray fluorescence analysis confirmed the sequestration of the metal ions by the leaf powder. Fourier transform infrared spectroscopy implicated that different functional groups on the leaf powder were involved in the metal adsorption process. The results obtained from this study implicated that the B. papyrifera leaf powder was a good choice as a metal adsorbent. This abundantly available natural and eco-friendly biosorbent could be effectively used to develop a technology in the future.  相似文献   

9.
The present study deals with the synthesis and subsequent application of Fe3O4@n-SiO2 nanoparticles for the removal of Cr(VI) from aqueous solutions. Rice husk, an agrowaste material, was used as a precursor for the synthesis of nanoparticles of silica. Synthesized nanoparticles were characterized by XRD and SEM to investigate their specific characteristics. Fe3O4@n-SiO2 nanoparticles were used as adsorbent for the removal of Cr(VI) from their aqueous solutions. The effects of various important parameters, such as initial Cr(VI) concentration, adsorbent dose, temperature, and pH, on the removal of Cr(VI) were analyzed and studied. A pH of 2.0 was found to be optimum for the higher removal of Cr(VI) ions. It was observed that removal (%) decreased by increasing initial Cr(VI) concentration from 1.36?×?10-2 to 2.4?×?10-2 M. The process of removal was found to be endothermic, and the removal increased with the rise in temperature from 25 to 45 °C. The kinetic data was better fitted in pseudo-second-order model in comparison to pseudo-first-order model. Langmuir and Freundlich adsorption capacities were determined and found to be 3.78 and 1.89 mg/g, respectively, at optimum conditions. The values of ΔG 0 were found to be negative at all temperatures, which confirm the feasibility of the process, while a positive value of ΔH 0 indicates the endothermic nature of the adsorption process. The present study revealed that Fe3O4@n-SiO2 nanoparticles can be used as an alternate for the costly adsorbents, and the outcome of this study may be helpful in designing treatment plants for treatment of Cr(VI)-rich effluents.  相似文献   

10.
Zeolites with high porous and cation exchange capacity have been widely used for agricultural and environmental purposes. This study was conducted to assess the thermodynamics and sorption characteristics of chemically modified zeolite (CMZ) from obtained natural zeolite (NZ), and to compare its properties. At first step of the sorption experiment, effects of pH, slurry concentration, stirring time, and heat on Zn removal were determined. Linear Langmuir isotherm was well fitted to data, and maximum sorption capacities (q max) were calculated as 20.87 and 33.44 mg/g for NZ and CMZ, respectively. Dubinin-Redushkevich (D-R) isotherm showed that the adsorption process was probably controlled by chemical ion-exchange mechanism. The solubility of zinc DTPA should be so directly related to the model of D-R model. Therefore, zeolites can be used as carrier Zn in soils with insufficient zinc arid and semiarid regions. Enthalpy (ΔH°) and entropy (ΔS°) values were positive. The change values of Gibbs free energy (ΔG°) illustrated that the sorption of Zn ions onto zeolites was feasible and spontaneous. From the obtained results, it could be concluded that chemical modification increased q max value of NZ, and the findings indicate clearly the possibility of using NZ and CMZ as Zn carrier in agricultural and also environmental treatments.  相似文献   

11.
Batch experiments were carried out to investigate the adsorption characteristics of Co(II) and Ni(II) by 13× molecular sieves which are hydrothermally synthetic byproducts accompanied with preparation of potassium carbonate from insoluble potash ores. The response surface methodology technique was utilized to optimize the process conditions. The combined effects of the major parameters including pH, initial concentration of metal ions, and temperature on the adsorption were investigated using central composite design. The analysis of variance of the quadratic model suggested that the predicted values were in good agreement with experimental data. The optimum conditions were found to be: initial concentration of metal ions, 20?mg/L; temperature 40?°C for both the metals; and pH, 6.29 and 8.0 for Co(II) and Ni(II), respectively. Scanning electron microscope and X-ray diffraction analyses testified to the obvious change of the surface morphology and the presence of metal on the sorbent after adsorption. The results from the sequential adsorption?Cdesorption cycles showed that 13× molecular sieves adsorbent held good desorption and reusability.  相似文献   

12.
为筛选稳定、高效、环境友好的重金属污染修复材料,利用批吸附试验研究了不同温度下褐煤、腐植酸、活性炭对镉(Cd~(2+))的吸附特征,采用非线性χ~2检验辅助决定系数判断等温线模型拟合度,用红外光谱对材料功能团进行了识别。结果表明,Temkin模型能最好拟合3种材料对Cd~(2+)的等温吸附过程,Langmuir和Freundlich模型也能较好拟合但与温度有关。吸附热力学参数表明,3种材料对Cd~(2+)的吸附为优惠发生的物理吸附,并且是自发的吸热过程,3种材料与Cd~(2+)之间均有较强的作用力。在温度294.55~313.15 K时腐植酸、褐煤和活性炭对Cd~(2+)的最大吸附量分别为36.14~44.09、29.63~38.20 mg·g~(-1)和21.04~30.34 mg·g~(-1),吸附量随温度升高而升高,吸附自由能随着温度升高而降低,说明升温吸附更容易发生。准二级动力学拟合数据最好,表明3种材料对Cd~(2+)的吸附存在着化学过程。褐煤基活性炭和褐煤基腐植酸具有丰富的孔隙结构。红外光谱图表明腐植酸和褐煤较大的吸附量与其含氧功能团种类较多以及在波数2 360 cm~(-1)和2 342 cm~(-1)附近吸收峰有关。因此,褐煤基3种材料对Cd~(2+)的吸附是自发的吸热过程,腐植酸对Cd~(2+)的最大吸附量和吸附能力最大,用Temkin等温方程和准二级动力学曲线能最适宜描述褐煤基材料对Cd~(2+)的吸附特征。  相似文献   

13.
以粉煤灰(Fly ash,FA)为原料,通过负载壳聚糖和钙离子制备一种新型吸附剂(Ca/CTS/FA)用于酸性大红3R(Acid scarlet 3R,AS 3R)染料的吸附去除,考察了最佳吸附条件和吸附性能,探讨了吸附动力学、吸附热力学及复合吸附剂的再生。结果表明:水体pH、吸附剂投加量、吸附时间和振荡频率均对吸附有影响。在不同温度下,Ca/CTS/FA对AS 3R的吸附动力学均能用准二级吸附速率方程精确描述(R2=1.00)。不同温度下的等温吸附数据分别用Langmuir模型、Freundlich模型和Dubinin-Radushkevich(D-R)模型进行拟合,结果表明等温吸附行为更符合Langmuir模型,同时也较好地符合Freundlich模型和D-R模型;由D-R方程获得的平均吸附能、表观活化能及热力学研究均表明该吸附过程由化学吸附、物理吸附和氢键作用共同控制。热力学参数中吸附自由能变为负值、焓变为正值说明该吸附是吸热性质的自发过程。Ca/CTS/FA复合吸附剂能用0.01 mol·L-1 NaOH溶液再生,至少可循环使用8次以上,再生率均在99%以上。  相似文献   

14.
不同质地土壤对镉的吸附特性及影响因子研究   总被引:1,自引:0,他引:1  
通过Cd~(2+)吸附解吸试验,探究了初始Cd~(2+)浓度、p H、有机质、土壤质地和枯草芽孢杆菌-生物质炭复合体对土壤吸附Cd~(2+)影响。结果表明:土壤对Cd~(2+)的吸附能力随着溶液浓度、p H的升高而增加,土壤有机质可显著提高土壤对Cd~(2+)的固定能力,壤土对Cd~(2+)的吸附能力显著高于砂质壤土。土壤施加枯草芽孢杆菌-生物质炭复合体后,土壤对于Cd~(2+)的吸附能力显著提高,并且施加枯草芽孢杆菌–生物质炭复合体为20 ml/kg时对Cd~(2+)的吸附量提高11.7%;Freundlich模型(R~2=0.997)可以很好地拟合Cd~(2+)吸附过程。枯草芽孢杆菌–生物质炭复合体的施加降低了土壤表面Cd~(2+)的解吸能力,进一步证明复合体能加强土壤对Cd~(2+)的固定稳定化,具有作为钝化剂修复土壤重金属污染、降低食品污染风险的潜力。  相似文献   

15.
The batch sorption experiments were carried out using a novel adsorbent, freshwater macrophyte alligator weed, for the removal of basic dye malachite green from aqueous solution. Effects of process parameters such as initial solution pH, contact time, adsorbent concentration, particle size, and ion strength were investigated. The adsorbent was characterized by FT-IR. The adsorption of malachite green by alligator weed was solution pH dependent. The adsorption reached equilibrium at 240 min for two particle size fractions. The pseudo-first-order equation, Ritchie second-order equation, and intraparticle diffusion models were tested. The results showed that adsorption of malachite green onto alligator weed followed the Ritchie second-order equation very well and the intraparticle diffusion played important roles in the adsorption process. The Langmuir and Freundlich equations were applied to the data related to the adsorption isotherms and the observed maximum adsorption capacity (q max) was 185.54 mg g?1 at 20°C according to the Langmuir model. The effects of particle size, adsorbent concentration, and ionic strength on the malachite green adsorption were very marked. The alligator weed could serve as low-cost adsorbents for removing malachite green from aqueous solution.  相似文献   

16.
The magnetic-poly(divinylbenzene-1-vinylimidazole) [m-poly(DVB-VIM)] microbeads (average diameter 53-212?μm) were synthesized and characterized; their use as adsorbent in removal of Cr(VI) ions from aqueous solutions was investigated. The m-poly(DVB-VIM) microbeads were prepared by copolymerizing of divinylbenzene (DVB) with 1-vinylimidazole (VIM). The m-poly(DVB-VIM) microbeads were characterized by N(2) adsorption/desorption isotherms, ESR, elemental analysis, scanning electron microscope (SEM) and swelling studies. At fixed solid/solution ratio the various factors affecting adsorption of Cr(VI) ions from aqueous solutions such as pH, initial concentration, contact time and temperature were analyzed. Langmuir, Freundlich and Dubinin-Radushkvich isotherms were used as the model adsorption equilibrium data. Langmuir isotherm model was the most adequate. The pseudo-first-order, pseudo-second-order, Ritch-second-order and intraparticle diffusion models were used to describe the adsorption kinetics. The apparent activation energy was found to be 5.024?kJ?mol(-1), which is characteristic of a chemically controlled reaction. The experimental data fitted to pseudo-second-order kinetic. The study of temperature effect was quantified by calculating various thermodynamic parameters such as Gibbs free energy, enthalpy and entropy changes. The thermodynamic parameters obtained indicated the endothermic nature of adsorption of Cr(VI) ions. Morever, after the use in adsorption, the m-poly(DVB-VIM) microbeads with paramagnetic property were separeted via the applied magnetic force. The magnetic beads could be desorbed up to about 97% by treating with 1.0?M NaOH. These features make the m-poly(DVB-VIM) microbeads a potential candidate for support of Cr(VI) ions removal under magnetic field.  相似文献   

17.
The adsorption and desorption of copper (II) ions from aqueous solutions were investigated using polydopamine (PD) nanoparticles. The nanoscale PD nanoparticles with mean diameter of 75?nm as adsorbent were synthesized from alkaline solution of dopamine and confirmed using scanning electron microscopy and X-ray diffraction analysis. The effects of pH (2?C6), adsorbent dosage (0.2?C0.8?g?L?1), temperature (298?C323?K), initial concentration (20?C100?mg?L?1), foreign ions (Zn2+, Ni2+, Cd2+, Fe2+, and Ag+), and contact time (0?C360?min) on adsorption of copper ions were investigated through batch experiments. The isotherm adsorption data were well described by the Langmuir isotherm model. The maximum uptake capacity of Cu2+ ions onto PD nanoparticles was found to 34.4?mg/g. The kinetic data were fitted well to pseudo-second-order model. Moreover, the thermodynamic parameters of the adsorption (the Gibbs free energy, entropy, and enthalpy) were studied.  相似文献   

18.
膨润土对重金属离子的竞争性吸附研究   总被引:6,自引:0,他引:6  
通过间歇震荡平衡法研究了膨润土对4种重金属离子Cd2+、Zn2+、Cu2+、Pb2+的竞争性吸附特性及其机制。研究结果表明:与单一离子体系比较,膨润土在竞争体系中对Cd2+、Zn2+、Cu2+、Pb2+4种重金属离子的吸附量均呈下降趋势。竞争体系下,其它重金属离子的存在显著抑制了膨润土对Cd2+的吸附,降幅为19.20%~37.50%,而对Pb2+的吸附能力几乎没有影响,降幅仅为0.41%~2.83%。膨润土对4种重金属离子的富集系数,其大小顺序依次为Pb2+>Cu2+>Zn2+>Cd2+。该选择性吸附顺序与重金属离子的一级水解常数密切相关。  相似文献   

19.
Rare earth mineral based adsorbent viz. lanthanum oxide was investigated for potential application in defluoridation of drinking water for isolated and rural communities. Results of batch experiments indicated about 90% removal in 30 min from a 4 mg L−1 synthetic fluoride solution. The effects of various parameters like contact time, pH, initial concentration, and sorbent dose on sorption efficiency were investigated. Adsorption efficiency was dependent on initial fluoride concentration and the sorption process followed BET model. Variation of pH up to 9.5 has insignificant effect on sorption and beyond a pH of 9.5, the effect was drastic. Among anions investigated, carbonates exhibited high detrimental effect on fluoride adsorption while anions like bicarbonates, chlorides, and sulfates did not seriously affect the process. Adsorbent showed negligible desorption of fluoride in distilled water. Alum was more effective regenerant than HCl and NaOH. Results of cyclic regeneration with alum indicated that the sorbent could be regenerated for ten cycles without significant loss of sorption capacity. Studies with upflow fixed-bed continuous flow columns indicated the usefulness of sorbent for fluoride removal in continuous flow process.  相似文献   

20.
Adsorption of Potassium and Sodium Ions by Variable Charge Soils   总被引:4,自引:2,他引:4  
Adsorption of potassium and sodium ions by four typical variable charge soils of South China was studied.The results indicated that the variable charge soils saturated with H and Al showed a much higher preference for potassium ions relative to sodium ions,and this tendence could not be changed by such factors as the pH,the concentration of the cations,the dielectric constant of solvent,the accompanying anions and the iron oxide content etc.,suggesting that this difference in affinity is caused by the difference in the nature of the two cations.It was observed that a negative adsorption of sodium ions by latosol and lateritic red soil in a mixed system containing equal amount of potassium and sodium ions at low pH,which is caused by a competitive adsorption of potassium and sodium ions and repulsion of positive charge on the surfaces of soil particles for cations.The adsorption of potassium and sodium ions increased with the decreases in the dielectric constant of solvent and the iron oxide content.Sulfate affected the adsorption of potassium and sodium ions through changing the surface properties of the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号