首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang  Jin-Ling  Yuan  Da-Gang  Zhao  Yu-Guo  He  Yue  Zhang  Gan-Lin 《Journal of Soils and Sediments》2021,21(5):2154-2164
Purpose

With increasing urban area and population, global cities are playing a more important role in the alteration of the global biogeochemical cycles. The aims of this study are to understand the concentrations and stoichiometric relations of biogenic elements (C, N, and P) in urban soils, further to reveal the effects of C, N, and P accumulation on the urban environment.

Materials and methods

We collected 317 surface (0–10 cm) soil samples taken from Nanjing, China, a typical city with more than 2000 years of history. These soil samples were located in different urban zones of Nanjing with different land use histories. The soil C, N, and P concentrations were determined. The stoichiometric relations of soil C, N, and P were investigated in urban soils. Meanwhile, some studies on sources of C, N, and P in diverse urban settings from literature were combined to explore the universal rule of C, N, and P cycling and their ecological and environmental effects in urban area.

Results and discussion

Compared to rural soils, more C, N, and P are accumulated in the urban soils, which also change their stoichiometric relations. The concentrations of OC, TN, and TP in urban top soils are 17.0 ± 9.69 g kg?1, 1.53 ± 0.92 g kg?1, and 1.31 ± 0.67 g kg?1, respectively. The mean atomic ratio of C:N:P is 37:3:1 in the surface of urban soils that strictly differs from natural soils in China and the whole world. The mean of C:N ratio in urban soils is similar to that of agriculture, grassland, and forest soils. However, the ratios of C:P and N:P in urban soils are much lower than that in agricultural, forest, and grassland soils. This implies that P is extremely enriched in the urban soils. The high C in urban soils are considered coming from natural and anthropogenic sources. The high N and P mainly come from anthropogenic sources.

Conclusions

The well-constrained C:N:P ratio in rural soils does not apply for urban soils. The abnormal C:N:P ratio of urban soils is the result of unbalanced accumulation of C, N, and P from human activities. Urban soils are already an important storage of carbon. High N and P in urban soils may bring threat of surface water eutrophication and ground water contamination. These effects are expected to increase with the city development time.

  相似文献   

2.
Abstract

As part of a series of studies for evolving useful soil tests for Cu, Fe, Mn and Zn in cultivated organic soils, 55 such soils from eastern Canada were used in a greenhouse study. Oat, carrot, onion, and all three followed by lettuce were grown in a greenhouse in 2 L pots containing 1.8 L of soil. The moisture, fertilization and temperature conditions provided were known to be non‐Hmiting. And yet, yields of crops, on per kg soil basis, generally correlated negatively with certain soil properties. The more decomposed and denser soils tended to be less productive, even though more soil, but not significantly less water, was accessible to the roots in such soils than in the case of less decomposed, more open soils. In contrast, crop yield per unit soil volume (1.8 L) basis showed a negative effect of water holding capacity on yield of oat, and positive effect of pH on carrot yield. No other correlations were significant. The results thus corroborated the practice of basing soil tests and fertilizer reconmendations on volume rather than weight of organic soils; indicated that the quality of organic soils, in terms of ability to store and cycle water, oxygen and nutrients, declines with length of cultivation, even before nutritional and water management problems arise, probably due to poor soil aeration; and suggested that the effect of soil quality on potential productivity be examined to derive factors that would help refine fertilizer recommendations.  相似文献   

3.
A column leaching experiment using three soils (Inceptisol, Ultisol, and Andisol) and seven livestock manure composts that had different characteristics was conducted for 19 weeks to investigate the interactive effects of composts and soils on the phosphorus (P) leaching potential of compost-amended soils and to identify the principal variables that affect P leaching. Cumulative total P leaching (TPcum) tended to increase with increasing total and available P concentration in the soils. Among various compost properties, total P concentration was positively correlated with TPcum from the compost-amended soils, except for the Andisol, which has a high P-sorption capacity. There was no significant relationship between TPcum and water-extractable P concentration of the composts, suggesting that total P rather than inorganic P concentration of composts may be successfully used in predicting P leaching potential from compost-amended soils except for soils that have a high P-sorption capacity, as in Andisol.  相似文献   

4.

Purpose

This paper reviews chemical, physical, and biological problems of salt-affected soils and different reclamation methods applied to rehabilitate these soils.

Methods

Methods to increase C stocks in these lands are discussed with a focus on biochar application as a potential new approach to not only to increase the C content but also to improve soil properties. Gaps in research knowledge in this field are then identified.

Results

Given the concern on the continued worldwide expansion of salt-affected lands and the focus on C sequestration processes, this review has evaluated current knowledge on salt-affected soils and their remediation with organic materials and plants. The review of the published literature has highlighted important gaps in knowledge, which limit our current understanding of rehabilitation of salt-affected soils with organic amendments specially biochar and the associated carbon dynamic. Knowledge about application of biochar in salt-affected soils is scant, and to date, most studies have evaluated biochar use only in nonsalt-affected soils.
  相似文献   

5.
We investigated different types of phosphatase activity (phosphomono-, phosphodi-, phosphotriesterase, inorganic pyrophosphatase) in five forest soils in Vorarlberg, Austria. Phosphatase activity was determined both in soils and in soil extracts prepared with different solutions (distilled water, 0.1M sodium pyrophosphate at pH 7, 0.1M sodium phosphate buffer/1M KCl at pH 6.5, and a modified universal buffer at pH 4, 6.5, 9, and 11). High phosphomonoesterase activity in these soils indicated a severe deficiency in available P. Acidic phosphomonoesterase prevailed over alkaline phosphomonoesterase activity. Phosphodiesterase was highest in the least acidic soil but no general trend towards an optimum pH was recognized. Phosphotriesterase activity was observed in only two of the five soils and favoured an alkaline optimum pH; this activity was not detected in strongly acid soils. Inorganic pyrophosphatase activity was high in soils with no phosphotriesterase. Phosphomonoesterase, phosphodiesterase and inorganic pyrophosphatase activities were much lower in soil extracts than in soils.  相似文献   

6.
Methane emission by soils results from antagonistic but correlated microbial activities. Methane is produced in the anaerobic zones of submerged soils by methanogens and is oxidised into CO2 by methanotrophs in the aerobic zones of wetland soils and in upland soils. Methanogens and methanotrophs are ubiquitous in soils where they remain viable under unfavourable conditions. Methane transfer from the soil to the atmosphere occurs mostly through the aerenchyma of aquatic plants, but also by diffusion and as bubbles escaping from wetland soils. Methane sources are mainly wetlands. However 60 to more than 90 % of CH4 produced in the anaerobic zones of wetlands is reoxidised in their aerobic zones (rhizosphere and oxidised soil-water interface). Methane consumption occurs in most soils and exhibits a broad range of values. Highest consumption rates or potentials are observed in soils where methanogenesis is or has been effective and where CH4 concentration is or has been much higher than in the atmosphere (ricefields, swamps, landfills, etc.). Aerobic soils consume atmospheric CH4 but their activities are very low and the micro-organisms involved are largely unknown. Methane emissions by cultivated or natural wetlands are expressed in mg CH4·m–2·h–1 with a median lower than 10 mg CH4·m–2·h–1. Methanotrophy in wetlands is most often expressed with the same unit. Methane oxidation by aerobic upland soils is rarely higher than 0.1 mg CH4·m–2·h–1. Forest soils are the most active, followed by grasslands and cultivated soils. Factors that favour CH4 emission from cultivated wetlands are mostly submersion and organic matter addition. Intermittent drainage and utilisation of the sulphate forms of N-fertilisers reduce CH4 emission. Methane oxidation potential of upland soils is reduced by cultivation, especially by ammonium N-fertiliser application.  相似文献   

7.
Model soil contamination with Cr, Cu, Ni, and Pb in the dry steppes and semideserts of southern Russia has worsened the biological soil properties. With respect to the degree of deterioration of the biological properties, the soils can be arranged in the following sequence: dark chestnut soils > chestnut soils > light chestnut soils > brown semidesert soils > sandy brown semidesert soils. The sequence of metal oxides according to the adverse effect on the biological soil properties is as follows: CrO3 > CuO ≥ PbO ≥ NiO.  相似文献   

8.
David K. Swanson   《CATENA》1985,12(4):329-342
Soils in coarse-grained tills on Pinedale (about 20,000 years old) and Bull Lake (about 140,000 years old) moraines show significant variaton with slope position and age. Soils on the Pinedale moraine are mostly non-calcareous Typic Cryoborolls with A/Bw/C profiles that thicken considerably downslope. These soils are weakly developed due to their youth and to the unstable, steep (up to 24°), highly convexo-concave slopes. Soils on the Bull Lake moraine are mostly Argic Cryoborolls with A/Bt/C profiles. These soils are more strongly developed than soils at similar positions on the Pinedale moraine because the Bull Lake moraine is older and has less steep (up to 16°), more gently curved slopes. The soils on the Bull Lake moraine contain more clay, a higher proportion of pedogenic clay, more weathered stones, and more free sesquioxides. Erosion and dry conditions at the convex summit and shoulder sites on the Bull Lake moraine have resulted in thin soils with minimal argillic horizons; these soils are only slightly more strongly developed than soils at analogous sites on the much younger Pinedale moraine. In contrast, at the concave sites in downslope positions the soils on the Bull Lake moraine are much more strongly developed than analogous soils on the Pinedale moraine; slow deposition of weathered material, probably transported by creep, has acted concurrently with pedogenesis to form soils with thick, homogeneous argillic horizons. The relationship between hillslope curvature and soil properties on both moraines is shown by significant correlations between soil properties and the second derivative of the hillslope profile. This relationship is probably due primarily to the interaction of soil formation and soil creep.  相似文献   

9.
土法炼锌区大气沉降Pb、Zn、Cd及其对土壤质量的影响   总被引:6,自引:0,他引:6  
Dust emissions from smelters, as a major contributor to heavy metal contamination in soils, could severely influence soil quality. Downwind surface soils within 1.5 km of a zinc smelter, which was active for 10 years but ceased in 2000, in Magu Town, Guizhou Province, China were selected to examine Pb, Zn, and Cd concentrations and their fractionation along a distance gradient from a zinc smelter, and to study the possible effects of Pb, Zn, and Cd accumulation on soil microorganisms by comparing with a reference soil located at a downwind distance of 10 km from the zinc smelter. Soils within 1.5 km of the zinc smelter accumulated high levels of heavy metals Zn (508 mg kg-1), Pb (95.6 mg kg-1), and Cd (5.98 mg kg-1) with low ratios of Zn/Cd (59.1--115) and Pb/Cd (12.4--23.4). Composite pollution indices (CPIs) of surface soils (2.52--15.2) were 3 to 13 times higher than the reference soils. In metal accumulated soils, exchangeable plus carbonate-bound fractions accounted for more than 10% of the total Zn, Pb, and Cd. The saturation degree of metals (SDM) in soils within 1.5 km of the smelter (averaging 1.25) was six times higher than that of the reference soils (0.209). A smaller soil microbial biomass was found more frequently in metal accumulated soils (85.1--438 μg C g-1) than in reference soils (497 μg C g-1), and a negative correlation (P < 0.01) of soil microbial biomass carbon to organic carbon ratio (Cmic/Corg) with SDM was observed. Microbial consumption of carbon sources was more rapid in contaminated soils than in reference soils, and a shift in the substrate utilization pattern was apparent and was negatively correlated with SDM (R = -0.773, P < 0.01). Consequently, dust deposited Pb, Zn, and Cd in soils from zinc smelting were readily mobilized, and weredetrimental to soil quality mainly in respect of microbial biomass.  相似文献   

10.
During 1 yr, CO2-C losses from 7 agricultural soils containing 0.5–1.5% organic C ranged from 70 to 243 mg 100 g ? 1 while losses from three allophanic soils containing 4.9–8.9% organic C varied from 92 to 191 mg. Losses as 14CO2 from ring-labeled model and cornstalk lignins averaged about 30% from the agricultural soils compared to about 11% for the allophanic soils. Losses of 2-side chain lignin carbons were about the same as for the ring carbons. Carbon losses from 1-side chain and methoxyl C varied from 42 to 59% in the normal soils while losses from the allophanic soils were a third to a half these values. From 6 to 9% of protein, cysteine, lysine, and glucosamine carbons linked into model humic acid polymers were lost during 1 yr in the allophanic soils compared with 13–24% from the normal soils. Comparable losses from two fungal melanins were 7–15% for the normal soils and 2–4% for the allophanic soils.  相似文献   

11.
Abstract

A study was conducted to determine the influence of the volcanic ash deposition on the physicochemical characteristics of some soils of West Sarawak and to evaluate their suitability for some common crops. A total of seven common soil series of different geology and locations from West Sarawak were collected and analyzed for their physicochemical and dissolution analysis. For comparison, similar analytical procedures were conducted on selected volcanic ash soils of Indonesia and the Philippines. The Sarawak soils were classified as Inceptisol, Ultisol, and Oxisol. The soils were acidic and had relatively low CEC and exchangeable bases. The other laboratory analysis, however, were not conclusive in the results. The soils were evaluated for crops such as rubber, oil palm, rice, pepper, banana and tapioca. Most of these soils were rated as moderate (S2) to marginally suitable (S3), indicating insignificant contribution of volcanic ash into the fertility status of soils of west Sarawak regions.  相似文献   

12.
Forms of Cu, Ni, and Zn in the contaminated soils of the Sudbury mining/smelting district were studied to assess metal mobility and plant availability. Soil, tufted grass (Deschampsia caespitosa (L.) Beauv.), tickle grass (Agrostis scabra Willd.), dwarf birch (Betula pumila L. var. glandulifera Regel) and white birch (Betula paprifera Marsh.) leaf and twig samples were taken from 20 locations around three Cu-Ni smelters. The sampling sites were collected to cover a wide range of soil pH and soil Cu and Ni concentrations. The water-soluble, exchangeable, sodium acetate-soluble, and total concentrations of the metals in the soils were analyzed. The soils were contaminated with Cu and Ni up to 2000 µg g?1. Zinc concentrations were also elevated in some samples above the normal soil level of 100 µg g?1. The mobility of Cu and Zn, expressed as the proportion of metals in Fl and F2 forms, increased with soil pH decrease. A strong positive correlation was found between the soil exchangeable (F2) Ni and the soil pH. Concentrations of Cu and Ni in birch twigs showed a good linear relationship with exchangeable forms of the metals in soils. A highly significant correlation was also found between total Ni in soils and the metal content of the twigs. No significant correlation was found between Zn concentrations in the soils and plants. Birch twigs are a good indicator (better than leaves) of Cu and Ni contamination of the Sudbury soils. The mobile forms of Cu and Ni and low pH seem to be the main factors that will control the success of revegetation. Strong variability of the soil metal mobility requires any reclamation effort be site-specific.  相似文献   

13.
The morphology and physicochemical properties of mountain-tundra and mountain-forest soils of the Subpolar Urals are analyzed. Gleyic humus-illuvial podburs, in combination with humus-illuvial podburs and raw-humus gleyzems, predominate in the mountain-tundra zone; permafrost-affected gleyzems and peat gleyzems with a shallow (30–50 cm) permafrost table are developed on colluvial fans at the foots-lopes. Iron-illuvial podzols, iron-illuvial svetlozems, eluviated burozems, texture-differentiated podzolic soils with a microprofile of a podzol, and gleyed peat-podzolic soils occur in the mountain-forest zone. The organic carbon and nitrogen pools in the soils considerably vary depending on the soil type and local landscape conditions. The organic carbon pool stored in the upper 50 cm of the soil profile varies from 7.7 to 39.3 kg/m2 in the mountain-tundra soils and from 6.5 to 11.8 kg/m2 in the mountain-forest soils. The corresponding values for the nitrogen pool are 0.4–2.4 and 0.4–0.8 kg/m2, respectively.  相似文献   

14.
Abstract

Soil test recommendations currently used in Alaska are based on a limited amount of in‐state data along with consideration of data from other states. Recently, Mehlich 3 extractable P has been found to be highly correlated to yield on representative agricultural soils in Alaska. To fully use its multi‐element capability, a study was conducted to correlate Mehlich 3 extractable P and cations (K, Ca, and Mg) with the P and cations extracted by the Bray 1 and ammonium acetate methods respectively.

When Mehlich 3 extractable K and Mg were regressed with ammonium acetate extractable K and Mg respectively, the relationship was essentially one‐to‐one and the relationship held across all soils tested. Significant variation was observed among soils in the extraction of Mehlich 3‐P and Ca relative to Bray 1‐P and ammonium acetate‐Ca. Individual soil character appeared to affect the regressions for extractable P and Ca, even though the R2 values were generally high. The regression slopes for Mehlich 3‐P versus Bray 1‐P ranged from 1.01 to 1.88 with Mehlich 3 extracting an average of 66% more P than Bray 1 in the volcanic ash soils, and 12% more in the loess soils. The regression slopes for Mehlich 3‐Ca versus ammonium acetate‐Ca ranged from 0.95 to 1.33, and the former extracted an average of 17% more Ca than the latter. It is suggested that the regression data of P and Ca can be extrapolated to other soils based on soil classification; to extend the soil test data over a geographic base.  相似文献   

15.
Characteristics, such as microbial biomass, basal respiration, and functional diversity of the microbial communities, were investigated in paddy soils located in Bandung, West Java Province, Indonesia, that have been heavily polluted by industrial effluents for 31 years. Paddy soil samples (10?C20 cm) were taken from two sites: polluted soils and unpolluted soils (as control sites). The polluted soils contained higher salinity, higher sodicity, higher nutrient contents, and elevated levels of heavy metals (Cr, Mn, Ni, Cu, and Zn) than unpolluted soils. Soil physicochemical properties, such as maximum water holding capacity, exchangeable sodium percentage, sodium adsorption ratio, and swelling factor, in polluted soils were much greater than those in unpolluted soils (P?<?0.05). Changes in the physical and chemical soil properties were reflected by changes in the microbial communities and their activities. BIOLOG analysis indicated that the functional diversity of the microbial community of polluted soils increased and differed from that of unpolluted soils. Likewise, the average rate of color development (average well color development), microbial biomass (measured as DNA concentration), and the soil CO2 respiration were higher in polluted soils. These results indicate that major changes in the chemical and physical properties of paddy soils following the application of industrial wastewater effluents have had lasting impacts on the microbial communities of these soils. Thus, the increased activity, biomass, and functional diversity of the microbial communities in polluted soils with elevated salinity, sodicity, and heavy metal contents may be a key factor in enhancing the bioremediation process of these heavily polluted paddy soils.  相似文献   

16.
ABSTRACT

Application of alkaline biochar has been proposed as an alternative to lime for remediation of acidic soils. However, questions remain as to how the reactions and fate of metals in acidic soils can be affected by biochar amendment. To find out how biochar addition might affect sorption-desorption behavior of zinc (Zn) in acidic soils, a soil with an initial pH value of 4.67 was treated with different levels [0 (control), 1%, 3%, and 6%] of biochar produced from pyrolysis of sugarcane bagasse at 600°C and incubated for 30 days under 80% of water holding capacity. At the end of the incubation period, important soil chemical properties were measured and batch isotherm experiments were performed to determine soil Zn sorption-desorption parameters. The results showed that the biochar-amended soils had higher pH values (up to 2.5 pH units), electrical conductivity (up to 2.66 times), and cation exchange capacities (up to 42%) relative to the un-amended acidic soil. Biochar addition also led to significant enhancements in soil exchangeable calcium, magnesium, sodium, and potassium cations. Both sorption and desorption isotherm experiments revealed the significantly higher capacity of the biochar-amended soils to retain Zn than that of the control. Moreover, the biochar-amended soils exhibited a higher affinity for Zn sorption than did the un-amended acidic one. It can be concluded that biochar derived from sugarcane bagasse could serve as a good amendment material to reclaim acidic soils and to reduce Zn mobility and toxicity in acidic metal-contaminated soils.  相似文献   

17.
Red soils in Greece are distributed throughout the country, but they occur more frequently in the southern provinces and constitute important soil resources supporting several land utilization types. They can be grouped into two categories: the autochthonous and the allochthonous. The former soils are found on hard limestone and on basic igneous rocks in sloping mountainous or hilly landscapes. Moreover, they can be found on mica schists and gneisses in locations adjacent to marble or calcareous mica schists.Allochthonous red soils are wide-spread on late Tertiary and Pleistocene surfaces in the lowlands. Many of these deep deposits have red strata, a few decimeters to several meters thick, or red-colored and fine-textured layers interbedded with light colored deposits of marl, or conglomerates and also with thick strata enriched with calcareous concretions. They are distributed in the thermo- and meso-mediterranean bioclimatic zones. These sites have a common feature, the gently sloping terrain that ensures efficient drainage.There are some differences in chemical and physical properties and in the clay mineralogy of the two groups of Greek red soils. Palygorskite is present in some soils developed on basic rocks; the clay minerals of the allochthonous soils on Pleistocene and late Pliocene seems to be mixed with micas in significant amounts.Soil forming factors required for the formation of red soils are: (a) parent material containing iron-bearing minerals, and rich in bases, (b) slope gradients and/or water permeabilities of the bed-rock securing excessive drainage and (c) vegetation cover that does not produce high amounts of, and deeply distributed organic matter.The allochthonous red soils have likely inherited their color from their parent materials that were transported from the originally formed residual soils on hard limestone. The soils retain the red color in the thermo-mediterranean zone only on sloping terrains. The soils on these landscapes are frequently stratified.The Greek red soils belong to the great groups of: Rhodoxeralfs, Palexeralfs, Xerochrepts, Orthents. Large portions of the allochthonous soils have been desertified or have been severely degraded and their extensive exploitation is not recommended.Soil management practices applied in the allochthonous soils include erosion control, preservation of organic matter, minimum tillage, split application of nitrogen using non-acidifying fertilizers, irrigation, soil water conservation and sheltered agriculture.  相似文献   

18.
 Five bacterial strains, one from each of the five known species of the plant growth-promoting bacteria (PGPB) Azospirillum (A. brasilense, A. lipoferum, A. amazonense, A. halopraeference, and A. irakense) were inoculated into two natural, semiarid soils (terra rosa and loessial sandy) from Israel, and two artificial soils constructed to simulate the native soils. Within 60 days, the populations of all five Azospirillum species declined significantly in a linear fashion, in both the native soils and in the homologous artificial soils. Increased levels of CaCO3, and fine and rough sand, had significant detrimental effects on the survival of the five Azospirillum species, whereas increased organic matter content improved survival. In contrast, when the bacterial strains were incubated in the rhizosphere of tomato seedlings grown in the artificial soils, manipulation of these soil variables had only a marginal effect on bacterial survival; all Azospirillum species survived well in the tomato rhizosphere under conditions that are otherwise detrimental. This study indicates that most cells of the strains of five known species of Azospirillum died out linearly over time in two semiarid soils, and that only the major soil components affected Azospirillum survival in soil. Because mortality was similar in native soils and in artificial homologous soils, artificial soils can be used to study the soil behavior of Azospirillum. Received: 9 April 1999  相似文献   

19.
Application of organic wastes to cultivated lands can replace mineral fertilizers but may also alter soil physical properties and enhance pollution potential. The objective of this study was to investigate the effects of biosolids [composted manure (MC) and activated sludge (AS)] and specific biosolid component [orthophosphate (OP), phytic acid (PA) and humic acid (HA)] application on soils differing in texture [loamy‐sand (Ramat‐HaKovesh, RH), loam (Gilat, GL) and clay (Bet‐Dagan, BD)], infiltration rate, runoff volume and soil sediment loss. The soils were packed in erosion boxes (400 × 200 × 40 mm) and subjected to six consecutive simulated rainstorms, each of 186 mm deionized water. The results showed that runoff volume and sediment loss from untreated soils increased with increasing clay contents. In treated soils, the response to AS application differed from the response to other amendments; in the BD clay and GL loam, it was the only amendment that caused a decrease in sediment removed by runoff. In the RH loamy‐sand, all amendments reduced the final infiltration rate, but only AS and HA increased the measured runoff. It is proposed that the difference in the response of the soils to the amendments is associated with the soil's ability to attenuate changes in the negative charge on the clay edges following the increase in the specific adsorption of charged anions, thus controlling clay swelling and maintaining aggregate integrity. The effects of amending soils with a source of organic matter in order to control runoff and soil erosion are not straight forward and depend on soil and amendment properties. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
One-year-old seedlings of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook) are not colonized with ectomycorrhizal (EM) fungi, but often colonized with arbuscular mycorrhizal (AM) fungi. The AM fungi could be important for nutrient acquisition in Chinese fir seedlings. Previous studies show that feedbacks between aboveground and belowground plant tissues play a fundamental role in controlling the interaction between plants and AM fungi. Our results indicate significant feedback in seedlings grown on shrubland soils, but not on plowed soils. The amounts of sugar in fir leaves in the shrubland soils were significantly lower than those in plowed soils. Leaf zinc (Zn) and nitrogen (N) concentrations were significantly higher in seedlings in shrubland soils than in plowed soils. In mycorrhizal seedlings growing in shrubland soils, leaf N:P ratios were significantly higher than those in plowed soils, likely because of enhanced N absorption through AM-mediated process. Leaf N:P ratios in seedlings grown on plowed soils were below the threshold levels, because of low metabolic activity of feedback in AM-mediated process. The results suggested that the presence of feedback between Chinese fir seedlings and AM fungi should be benefit in transplanting Chinese fir seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号