首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Birth weight positively predicts postnatal growth and performance in pigs and can be increased by sustained maternal porcine ST (pST) treatment from d 25 to 100 of pregnancy (term ~115 d). The objective of this study was to test whether a shorter period of maternal pST treatment in late pregnancy (d 75 to 100) could also increase birth and weaning weights of progeny under commercial conditions. Gilts (parity 0) and sows (parities 2 and 3) were not injected (controls) or injected daily with pST (gilts: 2.5 mg?d(-1), sows: 4.0 mg?d(-1), both ~13 to 14 μg?kg(-1)?d(-1)) from d 75 to 100 of pregnancy. Litter size and BW were recorded at birth and weaning, and dams were followed through the subsequent mating and pregnancy. Maternal pST injections from d 75 to 100 increased litter average progeny weight at birth (+96 g, P = 0.034) and weaning (+430 g, P = 0.038) in sows, but had no effect on progeny weight in gilts (each P > 0.5). Maternal pST treatment did not affect numbers of live-born piglets and increased numbers of stillborn piglets in sows only (+0.4 pigs/litter, P = 0.034). Maternal pST treatment did not affect subsequent reproduction of dams. Together with our previous data, these results suggest that sustained increases in maternal pST are required to increase fetal and postnatal growth in gilt progeny, but that increasing maternal pST in late pregnancy may only be an effective strategy to increase fetal and possibly postnatal growth in sow progeny.  相似文献   

2.
Maternal nutrition and progeny birth weight affect muscle fiber development in the pig, thereby influencing early postnatal growth rate. The objective of the study was to determine the extent to which growth, morphometric characteristics, and area and distribution of slow-oxidative (SO), fast oxidative-glycolytic (FOG), and fast glycolytic (FG) fibers of three muscles (LM = longissimus muscle; RF = rectus femoris; ST = semitendinosus) of slaughter pigs were affected by DE intake level during the first 50 d of gestation. Multiparous Swiss Large White sows were assigned randomly to one of three energy intake treatments: 1) fed 2.8 kg/d of a standard diet (STD; n = 6) containing 10.7 MJ DE/kg; 2) fed 2.8 kg/d of a low-energy diet (LE; n = 5) containing 6.6 MJ DE/kg; or 3) fed 4.0 kg/d of a standard diet (HE; n = 5) containing 10.7 MJ DE/kg (as-fed basis). Sows were subjected to energy intake treatments for the first 50 d of gestation; however, from d 51 to parturition, sows received 2.8 kg/d of the standard diet, and the amount of feed offered each sow during lactation was adjusted according to the litter size. Sows farrowed normally and pig birth weights were recorded. Based on birth weight, the two lightest (1.27 kg; Lt) and two heaviest (1.76 kg; Hvy) barrows and gilts from the 16 litters (n = 64) were selected at weaning and were offered a fixed amount of feed (170 g x BW(0.569)/d) from 25 to 105 kg BW. Regardless of the birth weight, progeny from HE sows grew slower (P < 0.05) during lactation and the growing-finishing period, had a lower (P < 0.05) gain-to-feed ratios, and had higher (P < 0.05) percentages of adipose tissue than pigs born from LE sows. The ST was shorter (P = 0.03) in Lt than in Hvy pigs, and the ST of gilts was heavier (P = 0.01) and had a larger (P = 0.01) girth than the ST of barrows. Overall mean fiber area tended to be larger (P < or = 0.11) in the LM and light portion of the ST of Lt than in Hvy pigs, and was larger (P = 0.03) in the ST of gilts than barrows. The ST of progeny from LE sows had fewer (P < 0.10) FG fibers, which was compensated by either more (P < 0.05) FOG in the light portion of the ST, or more (P < 0.10) SO fibers in the dark portion, and these differences were more pronounced in Lt pigs than in Hvy pigs. Overall, maternal feeding regimen affected muscle fiber type distribution, whereas birth weight and gender affected muscle fiber area.  相似文献   

3.
Two experiments were conducted to evaluate whether administration of recombinant porcine somatotropin (pST) to sows (Hampshire-Yorkshire) enhanced lactational performance. In Exp. 1, sows (n = 84) were fed a corn-soybean meal diet (17.8% CP), or a similar diet with 8% added fat, from d 108 of gestation to d 28 of lactation. Half of the sows fed each diet were injected with 6 mg/d of pST from d 108 of gestation to d 24 of lactation. Diets were fed at 2.27 kg/d from d 108 of gestation until farrowing and then were self-fed during lactation. By d 3 of lactation, litter size was standardized at 8 to 10 pigs per litter. Treating sows with pST resulted in a 10-fold increase (P less than .001) in serum somatotropin at 4 h postinjection. Serum glucose was increased (P less than .01) and serum triglycerides, creatinine, and urea N were decreased (P less than .01) by pST. During the summer, apparent heat stress occurred in pST-treated sows, resulting in 14 deaths. Most (10) of the deaths occurred just before, during, or shortly after farrowing. Fewer (P less than .08) deaths occurred when pST-treated sows were fed the diet with added fat. Sows treated with pST consumed less feed (P less than .10) and lost more backfat (P less than .10) during lactation than controls. Increasing the dietary fat did not prevent these changes. Weaning weights of pigs and milk yield of sows (estimated by deuterium oxide dilution) were not affected by pST treatment. In Exp. 2, sows (n = 42) were injected weekly with 0 or 70 mg of pST on d 3, 10, 17, and 24 of lactation. Litters were standardized by d 3 at 8 to 10 pigs, and sows were fed the same control (low fat) diet as in Exp. 1. Sows treated with pST consumed less feed and lost more weight and backfat during lactation than untreated sows. Litter size, average pig weaning weights, and milk yield were not influenced by pST treatment. These data indicate that a 6-mg daily injection of pST from 6 d prepartum to d 24 of lactation or a 70-mg weekly injection of pST from 3 d postpartum to d 24 of lactation does not increase milk production in lactating sows.  相似文献   

4.
The objective of this study was to evaluate the effect of development diet on first-parity reproductive performance across different genetic types of females. Gilts (n = 708) 8 to 15 d of age from five genetic lines were assembled using a segregated early weaning protocol. Genetic types represented industry variation for reproductive capacity and lean growth potential. Sampling procedures were not designed to evaluate performance differences among the genetic lines. When the gilts weighed approximately 20 kg, they were moved from the nursery facilities to a slotted-floor, environmentally controlled facility, and seven to eight animals within a genetic type were penned together. When the gilts weighed approximately 40 kg, they were moved to a modified open-front facility. Nineteen gilts were allotted to each pen (.92 m2 per pig). Gilts were assigned to one of three development diets at 120 d of age. Diet 1 (high energy, 18% CP) and Diet 2 (high energy, 13% CP) were provided for ad libitum consumption to the assigned gilts until they weighed approximately 113 kg. Gilts receiving Diet 3 (23% CP) were fed 1.8 kg/d from 82 kg until they reached 180 d of age (approximately 100 kg). Gilts were fed 2 kg daily of a gestation diet from 180 d to 200 d of age and 2.7 kg daily from 200 d until mating. To stimulate the estrus cycle, gilts were commingled and exposed to vasectomized boars beginning at 180 d of age. Gilts that were in estrus and 210 d of age or older were artificially inseminated with commercial semen. Gilts not detected in estrus within the first 50 d of observation were injected with PG600 and estrus detection continued for 30 additional days. Of the 657 gilts entering breeding pens, 422 farrowed. Bred gilts were distributed to 10 cooperator facilities before farrowing. Mixed model procedures were used to analyze the data. Significant (P < .05) genetic type x gilt development diet interactions were found for number of pigs born, number of pigs born alive, total litter birth weight, and litter birth weight of pigs born alive. Significant interactions consistently involved one genetic line and gilt development Diets 1 and 2. Gilts from this genetic line-diet subclass had poorer farrowing performance (P < .05) than gilts from the same line fed development Diet 3. Only two other significant genetic line x gilt development diet interactions were found. Gilt development diet had little influence on first-parity reproductive performance.  相似文献   

5.
A possible management strategy to alter fetal development and enhance sow productivity and progeny performance was examined by maternal administration of porcine somatotropin during early gestation. Eighteen crossbred gilts were bred naturally to boars of similar genetics, and pregnancy was confirmed between Days 21 and 24 of gestation by ultrasound. All animals were allowed ad libitum consumption of a 16% CP gestation diet through Day 21 of gestation and 3.0 kg/d for the remainder of gestation. Gilts were injected twice daily with 0 (n = 10) or 15 μg/kg body weight (BW) (n = 10; total, 30 μg/kg BW per d) pituitary-derived porcine somatotropin (pST) during Days 28 to 40 of gestation. Data were collected postmortem during embryonic, neonatal, and market-weight phases. At 41 d of gestation, pST treatment increased embryonic survival (87.9 versus 77.0%; P < 0.05) and embryo crown rump lengths (77.96 versus 65.14 mm; P < 0.01), but embryo weight was not altered (10.15 and 9.03 g; P > 0.10). Pigs from pST-treated gilts had increased (P < 0.01) crown rump lengths at birth (31.5 versus 30.4 cm) and 21 d (50.9 versus 48.4 cm). However, no differences were observed in birth or 21-d weights as a result of pST treatment (P > 0.10). Neonatal carcasses of progeny (20 kg BW) from the pST-treated gilts had heavier semitendinosus muscles (76.1 versus 66.0 g; P < 0.10), larger longissimus muscle cross-sectional area (10.1 versus 8.2 cm2; P < 0.05), longer sides (51.2 versus 47.9 cm; P < 0.001), and decreased 10th rib backfat (6.67 versus 8.64 mm; P < 0.001) compared with those of controls. Carcasses of market-weight progeny (100 kg BW) from pST-treated gilts had larger longissimus muscle cross-sectional area (P < 0.10), heavier trimmed loins (P < 0.10), and longer carcass sides (P < 0.05). Data are supportive of a hypothesis that mechanisms during early embryonic development are sensitive to manipulation through selected management strategies of the sow and that modifications of this strategy may serve as a model for the examination of molecular and cellular events controlling early embryonic growth.  相似文献   

6.
A total of 214 gilts was used (two trials) to determine the effect of protein level and choline supplementation during gestation on weight gain, conception rate and subsequent reproductive performance. The gilts were fed either a 12 or 16% crude protein sorghum-soybean meal diet containing either a high supplemental choline level or no supplemental choline in a 2 X 2 factorial arrangement of treatments. Conception rate was not influenced by either protein or choline level. Choline supplementation increased pig weight at 42 d of age (P less than .14) and litter weight at 21 (P less than .12) and 42 d (P less than .1). Gilts fed the 16% protein diet produced larger pigs at 42 d (P less than .13) and heavier litters at birth, (P less than .1) 21 d (P less than .14) and 42 d (P less than .05) than gilts fed the 12% protein diet. A larger choline effect on litter size and pig and litter weight was observed for gilts fed the 12% protein diet than for those fed the 16% gestation diet, although the protein-choline interaction was not significant for any traits measured. The incidence of spraddle leg condition was low and was not affected by level of dietary protein or supplemental choline.  相似文献   

7.
The aim of this study was to investigate whether dietary protein intake during gestation less than or greater than recommendations affects gilts growth and body composition, gestation outcome, and colostrum composition. German Landrace gilts were fed gestation diets (13.7 MJ of ME/kg) containing a low (n = 18; LP, 6.5% CP), an adequate (n = 20; AP, 12.1%), or a high (n = 16; HP, 30%) protein content corresponding to a protein:carbohydrate ratio of 1:10.4, 1:5, and 1:1.3, respectively, from mating until farrowing. Gilts were inseminated by semen of pure German Landrace boars and induced to farrow at 114 d postcoitum (dpc; Exp. 1). Energy and protein intake during gestation were 33.3, 34.4, and 35.8 MJ of ME/d (P < 0.001) and 160, 328, and 768 g/d, respectively, in LP, AP, and HP gilts (P < 0.001). From insemination to 109 dpc, BW gain was least in LP (42.1 kg), intermediate in HP (63.1 kg), and greatest in AP gilts (68.3 kg), whereas increase of backfat thickness was least in gilts fed the HP diet compared with LP and AP diets (3.8, 5.1, 5.0 mm; P = 0.01). Litter size, % stillborn piglets, and mummies were unaffected (P > 0.28) by the gestation diet. Total litter weight tended to be less in the offspring of LP and HP gilts (14.67, 13.77 vs. 15.96 kg; P = 0.07), and the percentage of male piglets was greater in litters of HP gilts (59.4%; P < 0.01). In piglets originating from LP and HP gilts, individual birth weight was less (1.20, 1.21 vs. 1.40 kg; P = 0.001) and birth weight/crown-rump length ratio was reduced (45.3, 46.4 vs. 50.7 g/cm; P = 0.003). Colostrum fat (7.8, 7.4 vs. 8.1%) and lactose concentrations (2.2, 2.1 vs. 2.6%) tended to be reduced in LP and HP gilts (P = 0.10). In Exp. 2, 28 gilts (LP, 10; AP, 9; HP, 9) were treated as in Exp. 1 but slaughtered at 64 dpc. At 64 dpc, LP gilts were 7% lighter than AP gilts (P = 0.03), whereas HP gilts were similar to AP gilts. Body composition was markedly altered in response to LP and HP feeding with less lean (P < 0.01) and greater fat content (P = 0.02 to 0.04) in LP and less fat content (P = 0.02 to 0.04) in HP gilts. Fetal litter weight and number, and embryonic survival at 64 dpc were not affected by the diets. These results indicated that gestation diets containing protein at 50 and 250% of recommendations and differing in protein:carbohydrate ratio led to marked changes in protein and fat metabolism in gilts resulting in fetal growth retardation of 15%, which mainly occurred during the second half of gestation.  相似文献   

8.
A study involving 546 crossbred gilts from six seasons was conducted to evaluate raw mung beans as a partial replacement for soybean meal in diets for gilts during gestation. Gilts were randomly allotted to either a control sorghum grain-soybean meal diet or a diet in which a portion of the soybean meal was replaced with mung beans. In the first three seasons, gilts were fed diets in which the protein supplement was totally soybean meal or 89% mung beans (high level) and 11% soybean meal. In the last three seasons the level of mung beans in the supplemental protein was reduced to 61% mung beans with 39% soybean meal (moderate level). Feeding the high level of mung beans decreased (P less than .05) weight gain during gestation and reduced (P less than .05) weight loss during lactation compared with gilts fed the control diet or the moderate level of mung beans. Little difference was noted in litter size at birth, but litter size at 21 d for gilts fed moderate levels of mung beans was less (P less than .05) than for gilts fed the control diet or the high level of mung beans. Little difference was noted in survival rate to 21 or 42 d or individual and litter weights at birth and 21 d. Pig and litter weights at 42 d, however were reduced in gilts fed the high level of mung beans (P less than .05 and P less than .10, respectively) compared with the control diet.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Development of gilts that conceive early and continue to produce offspring is an objective of swine production. We investigated different patterns of growth on reproductive development and performance of gilts through the first farrowing. At 13 wk of age and 43 kg BW, 286 white crossbred gilts were penned individually and assigned to treatments: Ad lib, ad libitum intake from 13 to 25 wk of age; Control, ad libitum intake from 13 wk of age until 100 kg BW and then 90% of ad libitum intake until 25 wk of age; and Restricted, 74% of ad libitum intake from 13 wk to 25 wk of age. Feed was formulated to restrict energy intake. The study was replicated in three seasons. At 25 wk of age, gilts were moved by treatment to group pens, fed for ad libitum consumption, and estrus detection was initiated. Gilts were inseminated at first estrus, and those recycling were remated. Postmating gilts were fed 1.5x maintenance until 105 to 110 d of pregnancy. Gilts were moved either to the farrowing facility or the abattoir at 105 to 110 d of pregnancy. Those taken to the abattoir were slaughtered and number, weight, and condition of the fetuses were recorded. Gilts moved to the farrowing facility were allowed to farrow, and number, weight, and condition of the piglets were recorded. Daily feed intake during breeding was 3.4 kg/d by Restricted gilts, 2.9 by Control gilts, and 2.7 kg/d by Ad lib gilts. Increased feed intake by Restricted gilts during breeding resulted in compensatory gains that overcame the reduced reproductive performance that resulted from the reduced BW and backfat these gilts carried at the start of breeding. Days to first estrus and pregnancy were not influenced by development period treatment (P < 0.13). Percentage of Ad lib, Control, and Restricted gilts that successfully completed their pregnancies were 61, 74, and 66, respectively (P > 0.19). Total feed fed from 13 wk of age to end of the first pregnancy per gilt assigned did not differ among Ad lib (506 kg) and Control (498 kg) gilts but was less (P < 0.01) in Restricted gilts (451 kg). Number of piglets born per gilt assigned (P > 0.09) and piglets produced per kilogram of feed fed from 13 wk of age to term (P > 0.29) were 6.47 and 0.0134 in Ad lib gilts, 7.26 and 0.0150 in Control gilts, and 6.38 and 0.0149 in Restricted gilts, respectively. Moderate feed restriction, 74% of ad libitum intake, reduced feed consumed from 13 wk of age to end of the first pregnancy with no significant impact on efficiency of piglet production.  相似文献   

10.
The objective of this study was to determine the effects of maternal treatment with porcine somatotropin (pST) during early gestation on embryonic survival, fetal development, and internal environment for fetal growth. Sixty-two crossbred gilts received daily injections of either 3 mL of a placebo (control, n = 31) or 6 mg of pST (n = 31) from d 10 to 27 of gestation. Representative gilts were slaughtered on d 28, 37, and 62 of gestation. The remaining gilts were allowed to farrow. It was found that embryonic survival was not influenced by pST treatment (P > 0.10). However, pST affected the growth and composition of the maternal (endometrium) and fetal (chorion) parts of the placenta. Thus, endometrial RNA concentration tended to be increased by pST at d 37 (P = 0.15), and it was increased at d 62 (P < 0.05) of gestation, which is indicative of increased capacity for protein synthesis. At birth, placental chorion weight (P < 0.10) and contents of DM and protein (P < 0.05) were increased due to pST treatment, but no effects were detectable up to d 62 of gestation. Maternal pST treatment was effective at increasing nutrient supply to the embryo as suggested from elevated glucose concentrations in amniotic and allantoic fluids (P < 0.05) at d 28 of gestation. With regard to prenatal growth, embryonic DNA concentration was slightly elevated at d 28 (P < 0.10), but pST did not induce any changes in average embryonic, fetal, or neonatal weights. However, within litters, the birth weights of piglets in the 25% lowest weight group (LW) were increased by pST treatment vs control LW pigs (1,241+/-55 vs 1,099+/-59 g, P < 0.10). Thirty-eight neonates from 15 litters divided among the three weight groups were examined for body composition. The weight of the intestinal tract was increased above average after maternal pST treatment (P < 0.01). Additionally, the amounts of tissues such as bone (P = 0.12) and s.c. fat (P = 0.06), and of protein, fat (P = 0.10), and ash (P < 0.05) were increased, whereas the relative body composition remained unchanged by pST (P > 0.10). On average, muscle protein concentration was elevated due to pST (P < 0.01), and, in LW piglets, plasma IGF-I concentration was increased (P < 0.10). The results suggest that maternal somatotropin is a critical factor in early pregnancy capable of influencing placental nutrient transfer and placental growth. It thereby selectively improves the growth conditions for the smaller littermates.  相似文献   

11.
Twenty-five crossbred gilts and 25 crossbred sows were used in an experiment to estimate the riboflavin requirement of lactating swine. During gestation the females were fed a 12% crude protein, corn-soybean meal diet that was marginal in riboflavin content, i.e., 2.3 mg/kg. After farrowing, litter size was equalized across lactation diets within each parity category. The basal, 14% crude-protein corn-soybean meal lactation diet was supplemented to provide five levels of dietary riboflavin: 1.25, 2.25, 3.25, 4.25 and 5.25 mg/kg. Five gilts and five sows were fed each dietary treatment. Each dam was provided her assigned diet ad libitum during the 24-d lactation; piglets were not provided supplemental feed. The erythrocyte glutathione reductase activity coefficient (EGRAC), an indicator of riboflavin status, was measured on blood samples obtained from the dams and their piglets on d 1 and d 24 postpartum. On d 1, the mean EGRAC of gilts was slightly higher than that of sows, while piglet EGRAC was similar regardless of maternal age. On d 24 gilts and their piglets had higher average EGRAC (P less than .01) than did sows and their piglets. Thus, there was a treatment x dam age interaction (P less than .05). Lactation performance criteria gave further evidence of similar treatment x age group interactions. Gilts fed the diet containing 1.25 ppm riboflavin had higher piglet mortality, consumed less feed and lost more weight (P less than .05) for each criterion than did sows fed the same diet. Despite these observations, the broken-line estimates of the riboflavin requirement, based on EGRAC, for gilts and sows were 16.3 and 16.2 mg/d, respectively. The EGRAC values for piglets closely paralleled those of their dams regardless of treatment, suggesting that there is no mechanism to protect the nursing piglets from a maternal dietary deficiency of riboflavin.  相似文献   

12.
Two experiments were conducted, involving 68 third-litter sows and 20 first-litter gilts in Exp. 1 and 82 first-litter gilts in Exp. 2. On d 108 of gestation, the dams were moved into individual crates, stratified by parity and breed, and randomly assigned within strata, to one of two treatments: (1) fed a basal 16% protein corn-soybean meal diet, 1.8 and 2.7 kg once daily before farrowing and for the first 7 d of lactation, respectively, and then ad libitum until pigs were weaned at 28 d of age, and (2) fed the basal diet plus 1 g of L-ascorbic acid (vitamin C)/dam daily from d 108 of gestation through d 7 of lactation and on the same feeding schedule as for treatment 1. In Exp. 1, no effect of vitamin C supplementation was observed in sows or gilts on total pigs born/litter, number of live pigs/litter or average live pig weight at birth, 7 or 28 d of age, or on plasma vitamin C concentration of dams at d 108 of gestation or d 7 of lactation or of pigs at birth, 7 or 28 d of age. However, there was a lower (P less than .01) plasma vitamin C concentration of the dams at d 7 of lactation than at d 108 of gestation. Plasma vitamin C concentration also declined (P less than .01) as pigs aged. In Exp. 2, with all gilts, vitamin C supplementation again showed no effect on any of the reproductive traits measured in Exp. 1. It is concluded that daily supplementation of 1 g of vitamin C to either sows or gilts from d 108 of gestation through d 7 of lactation has no beneficial effect on the reproductive or lactation performance of swine.  相似文献   

13.
Two doses of Streptozotocin (50 and 100 mg/kg body weight) were administered to two groups of pregnant gilts at d 80 of gestation to determine the influence of two levels of maternal diabetes on the gilts, their developing progenies and the body composition of the pigs. All the experimental animals received 1.82 kg of gestation diet/day throughout gestation. Serum glucose concentration increased to hyperglycemic levels in low-dose and high-dose groups; insulin concentrations decreased (P less than .01) in the high-dose, but not in the low-dose group (P greater than .05). Maternal free fatty acids (FFA) increased (P less than .05) in both treatment groups when compared with the control. However, birth weight of the litter and litter size were not affected. The liver weight increased (P less than .01) in the progeny of high-dose but not the low-dose group. Total liver DNA and RNA were not altered by the treatments, however; total liver protein and protein:DNA ratio increased (P less than .01) in the progeny of high-dose gilts. Pigs from high-dose and low-dose groups showed increases (P less than .01) in liver glycogen concentrations and percentage liver lipid. Body chemical composition data showed increases in percentage dry matter and percentage lipid (P less than .05 and P less than .01, respectively) in the progeny of high-dose but not in the low-dose group. It was concluded that streptozotocin administered to gestating gilts increased the maternal nutrient supply to the developing pigs, which resulted in higher energy status of the pigs at birth.  相似文献   

14.
Supplementing diets with n-3 fatty acids from fish oil has been shown to improve reproductive performance in dairy cattle and sheep, but there is little published literature on its effects in sows. The aim of this study was to evaluate the reproductive performance of sows fed fish oil as a source of n-3 PUFA prefarrowing and during lactation. From d 107.7 ± 0.1 of pregnancy, 328 sows ranging in parity from 0 to 7 (parity 1.95 ± 0.09, mean ± SE) were fed either a diet containing tallow (control) or an isocaloric diet containing 3 g of fish oil/kg of diet (n-3). Diets were formulated to contain the same amount of DE (13.9 MJ/kg), crude fat (54 g/kg), and CP (174 g/kg). Sows were fed their treatment diet at 3 kg daily for 8 d before farrowing and continued on treatment diets ad libitum until weaning at 18.7 ± 0.1 d of lactation. After weaning, all sows were fed a gestation diet without fish oil until their subsequent farrowing. There was no effect (P > 0.310) of feeding n-3 diets prefarrowing on piglet birth weight, preweaning growth rate, piglet weaning weight, or sow feed intake. However, n-3 sows had a larger subsequent litter size (10.7 ± 0.3 vs. 9.7 ± 0.3 total born; 10.2 ± 0.3 vs. 9.3 ± 0.3 born live; P < 0.05). In conclusion, this is the first study to demonstrate that feeding sows a diet containing n-3 PUFA from fish oil fed before farrowing and during lactation increased litter size in the subsequent parity independent of energy intake.  相似文献   

15.
A regional experiment was conducted at 8 experiment stations, with a total of 320 sows initially, to evaluate the efficacy of adding 13.35% ground wheat straw to a corn-soybean meal gestation diet for 3 successive gestation-lactation (reproductive) cycles compared with sows fed a control diet without straw. A total of 708 litters were farrowed over 3 reproductive cycles. The basal gestation diet intake averaged 1.95 kg daily for both treatments, plus 0.30 kg of straw daily for sows fed the diet containing ground wheat straw (total intake of 2.25 kg/d). During lactation, all sows on both gestation treatments were fed ad libitum the standard lactation diet used at each station. Response criteria were sow farrowing and rebreeding percentages, culling factors and culling rate, weaning-to-estrus interval, sow BW and backfat measurements at several time points, and litter size and total litter weight at birth and weaning. Averaged over 3 reproductive cycles, sows fed the diet containing wheat straw farrowed and weaned 0.51 more pigs per litter (P 相似文献   

16.
The objective of this study was to examine effects of increased gut fill and diverse developing environments on pregnant gilts' behavior and physiology. Gilts were cross-fostered at 1 d of age and transferred to either an indoor or outdoor production unit. Littermate gilts remained in their different environments during development and were moved into individual gestation crates in an indoor gestation unit. Of the 42 gilts, 19 were fed a control diet of fortified sorghum-soybean meal and 23 were fed the same diet with 25% beet pulp (high fiber). Control sows ate 2.0 kg/d and high-fiber sows ate 2.67 kg/d in a large pellet (thus resulting in approximately equal energy intake and differing total dietary intakes). Pregnant gilts had behavior and immune measures sampled at 30, 60, and 90 d of gestation. The day x diet interaction was significant (P = 0.01) for duration of standing: sows fed high-fiber diets stood less on d 30, but on d 60 and 90 they and the control sows stood for a similar duration. Sham chewing duration and frequency showed significant (P < 0.05) effects of gestation stage x diet x environment. Gilts reared outdoors and fed high fiber increased sham chewing over gestation, whereas all other treatment groups decreased this behavior over time. Outdoor-reared gilts had greater (P < 0.05) frequency and duration of drinking behavior than indoor-reared gilts. White blood cell numbers were higher (P < 0.05) for gilts fed high-fiber diets than for gilts fed the control diet. Immune (humoral and cellular systems) and reproductive measures (farrowing rate and litter size) and plasma cortisol concentrations were generally not influenced (P > 0.10) by diets and rearing environments, suggesting that in spite of significant changes in behavior and feed intake gilts' immune systems were not suppressed or enhanced. Behavioral data alone suggested that indoor-reared gilts showed fewer behavioral adaptations to the crates than outdoor-reared gilts. However, immune measures did not indicate that any treatments resulted in physiological effects indicative of stress.  相似文献   

17.
Gilts (n = 267) were allotted to flushing (1.55 kg/d additional grain sorghum), altrenogest (15 mg.gilt-1.d-1) and control treatments in a 2 x 2 factorial arrangement. Altrenogest was fed for 14 d. Flushing began on d 9 of the altrenogest treatment and continued until first observed estrus; 209 gilts (78%) were detected in estrus. The interval from the last day of altrenogest feeding to estrus was shorter (P less than .05) with the altrenogest + flushing treatment (6.6 +/- .2 d) than with flushing alone (7.6 + .3 d). Ovulation rates (no. of corpora lutea) were higher (P less than .05) in all flushed gilts (14.5 +/- .4 vs 13.4 +/- .4), whether or not they received altrenogest. Flushing also increased the total number of pigs farrowed (.9 pigs/litter; P = .06) and total litter weight (1.43 kg/litter; P = .01), independent of altrenogest treatment. Number of pigs born alive and weight of live pigs were higher for gilts treated with altrenogest + flushing and inseminated at their pubertal estrus than for gilts in all other treatment combinations. In contrast, gilts receiving only altrenogest had greater live litter weight and more live pigs born when inseminated at a postpubertal estrus than when inseminated at pubertal estrus. We conclude that flushing increased litter size and litter weight, particularly for gilts that were inseminated at their pubertal estrus. Increased litter size resulted from increased ovulation rates, which, in nonflushed gilts, limited litter size at first farrowing.  相似文献   

18.
Experimental objectives were to measure the effect of ovulation rate on litter size at 86 d of gestation and at farrowing in 110 unilaterally hysterectomized-ovariectomized (UHO) gilts and in 142 intact, control gilts and to evaluate postnatal survival and development of progeny. Surgery (UHO) was performed on gilts 8 to 12 d following first estrus. Control and UHO gilts were mated and then randomly assigned to be slaughtered at d 86 of gestation or allowed to farrow. Gilts scheduled to farrow were observed by laparoscopy on d 40 of gestation to count corpora lutea (CL). Ovulation rate (number of CL) was similar for control (12.1 CL) and UHO (11.9 CL) gilts, thus indicating that compensatory ovarian hypertrophy had occurred in UHO gilts and resulted in a near doubling of ova per uterine horn relative to control gilts. Average litter size at 86 d of gestation and farrowing was greater (P less than .01) for control than UHO gilts. At farrowing, litter size for control and UHO gilts was 9.0 +/- .3 and 5.7 +/- .3 pigs, respectively. Fetal losses were greater and pig weights at birth were less in litters by UHO gilts. Postnatal pig survival, growth rate to 14 d of age and 14-d individual pig weight did not differ for progeny of control and UHO gilts, and performance of UHO pogeny did not appear to compromise the usefulness of this animal model. Regression of litter size on ovulation rate was .41 +/- .15 pigs/CL for UHO and .60 +/- .12 pigs/CL for control gilts at d 86 of gestation. Regression was .07 +/- .17 pigs/CL for UHO and .42 +/- .14 pigs/CL for control gilts at farrowing.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
A cooperative regional study (S-145) involving 586 farrowings was conducted at five state experiment stations (Georgia, Mississippi, South Carolina, Tennessee and Virginia) to determine the influence of feeding elevated Ca and P levels during growth and development on general reproductive efficiency and longevity of confined, housed females kept for three consecutive parities. Two dietary Ca and P levels (100 vs 150% of 1979 NRC-recommended amounts) were fed ad libitum from weaning to 100 kg. A diet containing .8% Ca and .6% P was limit-fed to all gilts and to all sows during gestation and lactation. Growth rate and feed efficiency from weaning to 100 kg were similar (P greater than .10) for gilts fed 100 vs 150% Ca and P levels. A similar total number of litters (292 vs 294) was farrowed by each previous treatment group. From the previously-fed-100% Ca and P group, 78 and 65% of the sows that completed the first parity completed the second and third farrowing, respectively. Similarly, from the previously-fed-150% Ca and P group, 81 and 57% completed the second and third farrowing, respectively. Across all locations, total pigs born, live pigs born, stillborns, birth weight, number and weight of pigs at 21 d of age, sow weight at 110 d of gestation and at weaning did not differ (P greater than .10) between the two previously fed sow groups. There were significant location and farrowing effects, but most two-way interactions with Ca and P levels were not significant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Previous research indicates that the neonatal pig does not alter feed intake in response to changes in the energy density of manufactured liquid diets. Also, the limited response of IGF-I to exogenous porcine ST (pST) previously observed in young pigs may be influenced by the source of dietary energy. Our objectives were to 1) determine the effect of a high-fat (HF; 25% fat and 4,639 kcal/kg ME; DM basis) or low-fat (LF; 2% fat and 3,481 kcal/kg ME; DM basis) manufactured liquid diet on pig performance; and 2) determine whether the limited response to exogenous pST in young pigs depends on the source of dietary energy. Two replicates of 60 pigs (n = 120; barrows and gilts distributed evenly), with an initial BW of 4,207 +/- 51 g, were weaned from the sow at 10 d of age and used in a randomized complete block design. Pigs were assigned by BW to one of six pens. Diets were formulated to provide a constant lysine:ME ratio and were fed on a pen basis for a duration of 9 d. On d 5, barrows and gilts within a pen were assigned randomly to receive either 0 or 120 microg of pST.kg BW(-1).d(-1) for 4 d. Pigs gained 336 +/- 9 g/d, which resulted in an ending BW of 7,228 +/- 120 g, regardless of dietary treatment (P > 0.15). Pigs fed the LF diet consumed 17% more DM per pen daily than pigs fed the HF diet (2,777 +/- 67 vs. 2,376 +/- 67 g/d, P < 0.01), but calculated ME intake did not differ between dietary treatments (P > 0.20). The G:F was 24% greater in HF- than in LF-fed pigs (P < 0.01). Plasma urea N concentrations were higher in the HF-fed pigs (11.0 +/- 0.6 mg/dL) than in pigs fed the LF diet (6.2 +/- 0.6 mg/dL; P < 0.05). Treatment with pST increased circulating IGF-I (P < 0.01) and decreased PUN (P < 0.01) concentration 32 and 25%, respectively, regardless of dietary treatment (P > 0.30). Circulating leptin averaged 1.8 +/- 0.1 ng/mL and was not affected by dietary treatment (P > 0.35) or pST (P > 0.40). These results suggest that the ST/IGF axis is responsive in the young pig and the increase in circulating IGF-I and growth is independent of the source of dietary energy. Also, young pigs respond to a lower energy density liquid diet with increased feed intake, without altering growth performance, apparently utilizing a mechanism other than circulating leptin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号