首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Natural regeneration by strip-clearcut has rarely been used for restocking of evergreen broad-leaved forests in the East Asia. To contribute to a better understanding of the likely reasons for either the successful recovery of these forests or failure, the early response of stand structure and tree species diversity to strip-clearcut were studied in Okinawa Island, southwest Japan. The 4,000 m2 study area was divided into 10 adjacent sections of equal area with a 10 m × 10 m sampling plot in the center, of which five sections were strip-clearcut while the remaining five sections uncut. Eight-year secondary succession following strip-clearcut showed that the density of woody stems, tree species diversity increased significantly not only in the regenerating stands but also in the residual stands compared to the primary stands. The primary dominant target species, Castanopsis sieboldii, continued to dominate both the regenerating and residual stands although colonizing species invaded abundantly in the stands, occupying approximately one-third of total tree species in each treatment. The community similarity analyses showed that the species composition were similar between the primary stands and the regenerating stands or residual stands reflected the high similarity amongst the primary stands and the regenerating stands or the residual stands. The similar stand structure, high tree species diversity and greater community similarity after strip-clearcut provided no evidence of forest degeneration, suggesting that the regenerating stand might gradually develop into stand similar to that prior to strip-clearcut.  相似文献   

2.
  • ? To elucidate the application of natural regeneration to the restocking of evergreen broad-leaved forests in the subtropics, the characteristics of a 20-year-old evergreen broad-leaved forest restocked by natural regeneration after clearcut-burning were studied in Okinawa, Japan. Within a 0.87 ha clearcut area with four 10 m × 10 m sampling plots, two burned and two unburned ones, the tree composition, tree species diversity and vegetation changes were investigated.
  • ? The results showed that the species diversity, basal area and density of woody stems ? 1.0 m in height differed significantly among phanerophyte types, while they were not significantly different between the burned and unburned treatments. A vegetation census also revealed no obvious differences between the treatments.
  • ? The primary dominant species, Castanopsis sieboldii, continued to dominate the secondary forest with a broad height distribution.
  • ? The structural complexity and high tree species diversity of the regenerating forest after clearcut-burning provides no evidence of degeneration. We can predict that the regeneration forest may gradually develop into stands similar to pre-clearcut primary forest, and that natural regeneration may restore the high tree species diversity of the evergreen broad-leaved forests in Okinawa.
  •   相似文献   

    3.
    The extensive area of degraded tropical land and the calls to conserve forest biodiversity and sequester carbon to offset climate change demonstrate the need to restore forest in the tropics. Deforested land is sometimes replanted with fast-growing trees; however, the consequences of intensive replanting on biomass accumulation or plant and animal diversity are poorly understood. The purpose of this study was to determine how intensive replanting affected tropical forest regeneration and biomass accumulation over ten years. We studied reforested sites in Kibale National Park, Uganda, that were degraded in the 1970s and replanted with five native tree species in 1995. We identified and measured the size of planted versus naturally regenerating trees, and felled and weighed matched trees outside the park to calculate region-specific allometric equations for above-ground tree biomass. The role of shrubs and grasses in facilitating or hindering the establishment of trees was evaluated by correlating observed estimates of percent cover to tree biomass. We found 39 tree species naturally regenerating in the restored area in addition to the five originally planted species. Biomass was much higher for planted (15,675 kg/ha) than naturally regenerated trees (4560 kg/ha), but naturally regenerating tree regrowth was an important element of the landscape. The establishment of tree seedlings initially appeared to be facilitated by shrubs, primarily Acanthus pubescens and the invasive Lantana camara; however, both are expected to hinder tree recruitment in the long-term. Large and small-seeded tree species were found in the replanted area, indicating that bird and mammal dispersers contributed to natural forest restoration. These results demonstrate that intensive replanting can accelerate the natural accumulation of biomass and biodiversity and facilitate the restoration of tropical forest communities. However, the long-term financial costs and ecological benefits of planting and maintaining reforested areas need to be weighed against other potential restoration strategies.  相似文献   

    4.
    Managed forest stands are typically younger and structurally less diverse than natural forests. Introduction of non-native tree species might increase the structural changes to managed forest stands, but detailed analyses of tree- and stand-structures of native and non-native managed forests are often lacking. Improved knowledge of non-native forest structure could help clarify their multiple values (e.g. habitat for native biodiversity, bioenergy opportunities). We studied the structural differences between the introduced, non-native Pinus contorta and the native Pinus sylvestris and Picea abies over young forest stand ages (13–34 years old) in managed forests in northern Sweden. We found that P. contorta stands had greater mean basal areas, tree heights, diameters at breast height, and surface area of living branches than the two native species in young stands. The surface area of dead attached branches was also greater in P. contorta than P. abies. Although this indicates greater habitat availability for branch-living organisms, it also contributes to the overall more shaded conditions in stands of P. contorta. Only one older 87 years old P. contorta stand was available, and future studies will tell how structural differences between P. contorta and native tree species develop over the full forestry cycle.  相似文献   

    5.
    Pinus halepensis forests are among the forest ecosystems in the Mediterranean Basin most affected by fire. Their distribution across lowland areas, in particular along the wildland–urban interface, increases the need to understand their ecology and responses to fire regime for their effective management. Apart from the extremely flammable tree layer, in several stands of these forests there is an increased fuel load attributed to the well-developed understorey of evergreen sclerophyllous shrubs. Taking into consideration that, in contrast with the long period required for full development of post-fire-regenerating pines, these shrubs resprout vigorously within the first post-fire weeks, it is important to explore the temporal trend of fuel accumulation to determine the risk of a second fire across a burned landscape. Two post-fire chronosequences of, in total, 12 P. halepensis stands were considered for sampling in Central Greece. The first chronosequence corresponds to pine stands characterized by the dominance of evergreen sclerophyllous shrubs in the understorey (Type 1) whereas the second chronosequence corresponds to pine stands where the cover of such shrubs was lower (Type 2). This study helps in understanding the fuel dynamics according to the type of P. halepensis forest stand and to anticipate future biomass growth. The proposed equations are simple tools, enabling land managers to estimate understorey total fuel load easily by visually recording the cover and height of the evergreen sclerophyllous shrub component, to justify understorey fuel reduction measures.  相似文献   

    6.

    The anticipated increase in extreme disturbance events due to climate change is likely to expose Norway spruce (Picea abies (L.) Karst.) dominated forests in northern Europe to new conditions. Empirical data on the resilience of such natural (unmanaged) forests to disturbance and the long-term patterns of regeneration in its aftermath are currently scarce. We performed a quantitative assessment of natural forest stands in north–western Latvia to identify and characterise the patterns of stand structure 44 years after a stand-replacing disturbance and investigated the effects of legacies on regeneration. The spatial distribution of tree species and their dimensions were assessed in 71 circular sample plots (500 m2 each) in natural forest areas, where Norway spruce dominated prior to the windthrow and salvage logging was not carried out. Spatial indices (species mingling index, size differentiation index, and aggregation index) were used to characterise stand structure and diversity. The different initial states (age and coverage of surviving trees) of stands affected eventual tree species dominance, size differentiation, degree of mingling and aggregation. Our results demonstrate a close relationship between disturbance legacies and spatial indices. The pre-storm understory and canopy survivors decreased species mingling, whereas survivors increased size differentiation. The size differentiation increased also with a higher degree of species mingling. Leaving differential post-storm legacies untouched promotes a higher structural and species diversity and therefore supports the management approach of preserving canopy survivors.

      相似文献   

    7.
    《Southern Forests》2013,75(4):221-237
    The relationship between tree height (h) and tree diameter at breast height (dbh) is an important element describing forest stands. In addition, h often is a required variable in volume and biomass models. Measurements of h are, however, more time consuming compared to those of dbh, and visual obstructions, rounded crown forms, leaning trees and terrain slopes represent additional error sources for h measurements. The aim of this study was therefore to develop h–dbh relationship models for natural tropical forest in Tanzania. Both general forest type specific models and models for tree species groups were developed. A comprehensive data set with 2 623 trees from 410 different tree species collected from a total of 1 191 plots and 38 sites covering the four main forest types of miombo woodland, acacia savanna, montane forest and lowland forests was applied. Tree species groups were constructed by using a k-means clustering procedure based on the h–dbh allometry, and a number of different non-linear model forms were tested. When considering the complexity of natural tropical forests in general and in particular variations of h–dbh relationships due to high species diversity in such forests, the model fit and performance were considered to be appropriate. Results also indicate that tree species group models perform better than forest type models. Despite the fact that the residual errors level associated with the models were relatively high, the models are still considered to be applicable for large parts of Tanzanian forests with an appropriate level of reliability.  相似文献   

    8.
    Commercial thinning enables forest managers to meet timber production objectives. Thinning reduces tree density to alleviate competition for resources and favour growth of selected tree species. However, in doing so, thinning can homogenize the composition of mixed-species forests and raise biodiversity issues. There is increasing evidence that species richness can lead to higher productivity through a complementarity effect. Hence, thinning that would maintain species diversity of mixed-species forests could enhance stand productivity and help forest managers to reconcile timber production objectives and biodiversity issues. The objective of this study was to compare post-thinning stand production, experimentally over 10 years, in mixed and monospecific stands of black spruce (Picea mariana [Mill.] B.S.P.) and jack pine (Pinus banksiana Lamb.). The post-thinning stand production curve of the mixed stand converged toward that of the unthinned mixed stand while the production curves of the thinned and unthinned monospecific stands remained parallel. The convergent productivity of the mixed stand could be explained by a positive interaction between effects of thinning and niche complementarity. We propose that thinning that maintains species diversity of mixed stands could help forest managers who are implementing ecosystem management to reconcile timber production objectives with biodiversity issues.  相似文献   

    9.
    To test the direct regeneration hypothesis and support natural disturbance-based forest management we characterized the structure and composition of boreal mixedwood forests regenerating after large wildfires and examined the influence of pre-fire stand composition and post-fire competing vegetation. In stands which had been deciduous (Populus sp.)-dominated, conifer (white spruce)-dominated, or mixed pre-fire we measured regeneration stocking (presence in 10 m2 plots), density and height 10–20 years post-burn in five wildfires in Alberta, Canada. Most plots regenerated to the deciduous or mixed stocking types; plots in the older fire and in stands that were pure conifer pre-fire had higher amounts of conifer regeneration. Surprisingly, regeneration in pre-fire ‘pure’ white spruce stands was most often to pine, although these had not been recorded in the pre-fire inventory. Pre-fire deciduous stands were the most resilient in that poplar species dominated their post-fire regeneration in terms of stocking, density and height. These stands also had the highest diversity of regenerating tree species and the most unstocked plots. High grass cover negatively affected regeneration density of both deciduous and conifer trees. Our results demonstrate the natural occurrence of regeneration gaps, pre- to post-fire changes in forest composition, and high variation in post-fire regeneration composition. These should be taken into consideration when developing goals for post-harvest regeneration mimicking natural disturbance.  相似文献   

    10.
    11.

    ?Context

    Selective logging followed by natural regeneration is rarely employed for restocking subtropical evergreen broad-leaved forests in East Asia compared with the use of clear-cutting.

    ?Aims

    To clarify the succession of these forests, the effects of selective logging on stand structure, species diversity, and community similarity were studied in a mature and regenerating forest in Okinawa, Japan.

    ?Methods

    Four study plots were established, and trees ≥1.2 m height were identified by species name, tree height, and diameter at breast height.

    ?Results

    The results showed that the species composition of regenerating forest was similar to mature forest; however, the former had a greater species density and Shannon–Wiener index than the latter. Castanopsis sieboldii and Distylium racemosum, the predominant trees in the mature forest, continued to dominate the regenerating forest, with a broad layer distribution. High Sørensen and Jaccard community similarity indices for mature and regenerating forest indicated that the regeneration occurred in a progressive succession.

    ?Conclusion

    The similar species composition and stand structure for both mature and regenerating forest, and the higher species diversity for the latter, provided no evidence of forest degeneration and suggested that the regenerating forest may develop into a stand similar to preselective logging forest.  相似文献   

    12.
    The conversion of anthropogenic into more natural, self-regenerating forests is one of the major objectives of forestry throughout Europe. In this study, we present investigations on permanent plots with different silvicultural treatment in NE German pine stands. Management of old-growth pine stands on acidic and nutrient-poor sandy sites differs in fencing, thinning, and planting of certain tree species. The investigations were carried out on the community, population, and individual level of the pine forest ecosystems. Thus, vegetation changes, size and height of tree populations, and height increment of tree individuals were observed over a time span of 6 years. Special attention was paid to short-lived tree species such as, e.g., Frangula alnus and Sorbus aucuparia, as well as to Fagus sylvatica as one of the most typical forest tree species of Central Europe. Vegetation changes are interpreted as a consequence of natural regeneration of formerly degraded forest sites, involving an increase in nutrient availability. High browsing pressure can be considered as a key factor for the inhibition of tree seedlings and growth of saplings. Some Sorbus aucuparia individuals, however, succeeded in growing out of the browsing height also in unfenced stands. Few found specimens of Fagus sylvatica proved that this species is able to establish spontaneously on these relatively dry, acidic sites under continental climate influence. Such natural regeneration processes, also including spontaneous rejuvenation of trees, can be integrated into silviculture as passive forest conversion management. An active management like thinning of stands, planting of trees, and fencing can accelerate forest conversion with regard to height growth and species number of trees.  相似文献   

    13.
    Natural disturbance emulation has emerged as a key management approach to maintaining biodiversity in logged boreal forests. Forest managers’ success in emulating understory forest ecosystem functions, e.g., for the provision of habitat even for large mammals, has not been tested due, in many cases, to incomplete records of silviculture. We examined regenerating areas of previously conifer-dominated forests in northwestern Ontario, Canada, 10 and 30 years after logging and 10 and 30 years after fire to test if understory development and moose (Alces alces) forage abundance differed between the two disturbance types and artificial or natural regeneration approaches. In addition, we counted moose pellet groups as a measure of moose use of the region. Specific treatments included: (1) naturally regenerating, fire-origin forests, (2) post-harvest, regenerating forests with natural establishment of trees, and (3) post-harvest, regenerating forests with mechanical or chemical site preparation and planting and/or herbicide spraying. We hypothesized that the understory in post-harvest stands would support higher forage availability for moose compared to similarly-aged, fire-origin stands. Abundance of hardwoods, shrubs, and herbaceous plants was greater in naturally-regenerated post-harvest stands than in fire-origin and artificially regenerated post-harvest stands at both 10 and 30 years post-disturbance. However, post-harvest, naturally regenerating stands were not significantly associated with higher moose use, rather evidence of moose use increased as a function of the amount of naturally regenerating logged forest in the surrounding landscape. This study suggests that, relative to fire, the intensity of post-harvest silviculture influences habitat suitability for moose. The effect likely cascades to other ungulates, such as woodland caribou (Rangifer tarandus caribou), and vegetation management needs to be considered at scales greater than the stand level in order to achieve habitat management for large mammals.  相似文献   

    14.
    江西德兴天然次生林林下幼苗更新特征   总被引:1,自引:0,他引:1  
    为了解实生和萌生幼苗个体数量及比例在各类植被中的变化情况,本文以江西德兴常绿阔叶林不同林分为研究对象,对各林型中幼苗的种类组成、数量、多样性与更新方式进行调查研究。结果表明:7种林分类型的乔木更新情况不同,德兴常绿阔叶林更新幼苗共35种,分属17科23属。更新苗数量最低的是拟赤杨+马尾松林,仅为1 250株/hm^2,更新苗最多的林分类型为米槠+甜槠林,为6 500株/hm^2;甜槠+木荷林更新幼苗种类高达25种,居7种林分之首,马尾松+木荷林下幼苗仅有10种;从演替更新年龄结构来看,马尾松+木荷林和丝栗栲+木荷林所在的群落,林下更新苗属于增长型锥体。其它5种林型属于下降型锥体。  相似文献   

    15.
    We examined the regeneration and structure of mixed conifer forests under single-tree harvest management in western Bhutan. Sixteen 900 m2 (30 m × 30 m) plots were sampled at four Forest Management Units (FMUs; Chamgang, Gidakom, Paro-Zonglela, and Haa-East) representing the forest type, including half the plots in single-tree harvest stands and half in unlogged stands. In addition, we solicited information on traditional forest management practices from informants using survey questionnaires and collected tree species data from felling records from respective local forest offices. Rural timber demand is concentrated on the removal of straight and well-formed bluepine trees for beams, planks, and scaffolding. Single-tree harvest, however, has not significantly altered stand structures from unlogged stands. Similarly, tree regeneration is not different when comparing single-tree harvest and unlogged stands, except at Chamgang FMU, where seedling densities were generally higher in harvested stands than in unlogged stands. These results indicate that single-tree harvest is not detrimental to regeneration and utilization of mixed conifer forests in western Bhutan.  相似文献   

    16.
    Defining the spatial arrangement and length of the cutting cycle in a logged area is crucial for reconciling potential conflicts between timber yields and maintenance of ecosystem services in natural forests. In this study, we investigated long-term impacts of clear-fell logging on timber production and tree species diversity in a subtropical forest on the Ryukyu Islands, using an individual-based simulation model. We assumed six logging scenarios defined by combinations of forest type and regeneration processes, which acted as surrogates for spatial scales of clear-fell logging. These scenarios were simulated under cutting cycles ranging from 20 to 150 years. Short-cutting cycles resulted in dominance by the sprouting species Castanopsis sieboldii. The compositional shift was accelerated by the lack of seed dispersal from surrounding forest areas. The simulations demonstrated that a sustainable logging regime maintaining both yield and tree species diversity requires a cutting cycle longer than 50 years. The simulation results also suggest that the trade-off between the recovery of tree species diversity and timber production is favored more in stands surrounded by mature forest than in isolated stands or stands surrounded by immature forest. Ecological risk assessments based on model simulations provide an alternative to current forest management practices that rely on empirical knowledge.  相似文献   

    17.
    The aim of this study was to evaluate the influence of forest structure (mainly resulting from human uses) and forest type (the identity of the dominant tree species) on biodiversity. We determined the diversity of two taxonomical groups: the understory vegetation and the edaphic carabid beetle fauna. We selected eight types of forest ecosystems (five replicates or stands per forest type): pine (Pinus sylvestris) plantations of three age classes (10, 40 and 80 years since reforestation), an old-growth relict natural pine forest, and four types of oak (Quercus pyrenaica) stands: mature forests with livestock grazing and firewood extraction, mature forests where uses have been abandoned, “dehesa” ecosystems and shrubby oak ecosystems. The results obtained by a global PCA analysis indicated that both tree size and dominant species influenced the ordination of the 40 forest stands. In general, carabids were more sensitive to changes in forest heterogeneity and responded more clearly to the analysed structural variables than the understory vegetation, although the species richness of both groups was significantly correlated and higher in case of oak forests. Pine forest ecosystems were characterised by the lowest species richness for both taxonomical groups, the lowest plant diversity and by the lowest coefficients of variation and, consequently, low structural heterogeneity. As a result, it was very difficult to discriminate the effects of the spatial heterogeneity and the dominant tree species on biodiversity.  相似文献   

    18.
    How can we accommodate the diversity in tree species and sizes in mixed-species/size/age stands in the sustainable management of natural forests and woodlands in Africa for diverse timber and non-timber forest products and services, and during rehabilitation of degraded forests? The evergreen moist tropical to warm-temperate forests, from the equator to 34°S, generally function through relative shade tolerance. The tropical, strongly seasonal, drier deciduous woodlands generally function through adaptation to fire and/or grazing/browsing. Silvicultural systems, when implemented, are often not aligned with the ecological characteristics of the particular forest systems or the specific targeted species. This paper presents the concept of using the basic disturbance–recovery processes, with recovery development via stand development stages, as the basis for the development of silvicultural systems suitable for maintenance of forest complexity. Grain analysis and stem diameter distributions, analysed from resource inventories, are used to determine the specific shade- or fire-tolerance characteristics of key economical and ecological tree species. The gained knowledge of the ecosystem and species characteristics (including modes of regeneration, i.e. from seed or vegetative regrowth) and processes is used to simulate the ecological disturbance–recovery processes through the development of mixed silvicultural systems, such as a single-tree selection system, a group felling system and a coppice management system in the same forest. Very similar concepts are used to develop rehabilitation strategies to recover the processes towards regrowth stands of diverse species and structure: through stands of introduced plantations and invader tree species; and through early regrowth stages in deciduous woodlands and evergreen forests, after fire, slash-and-burn traditional agriculture, charcoal production or open-cast mining.  相似文献   

    19.
    Coffea arabica shrubs are indigenous to the understorey of the moist evergreen montane rainforest of Ethiopia. Semi-forest coffee is harvested from semi-wild plants in forest fragments where farmers thin the upper canopy and annually slash the undergrowth. This traditional method of coffee cultivation is a driver for preservation of indigenous forest cover, differing from other forms of agriculture and land use which tend to reduce forest cover. Because coffee farmers are primarily interested in optimizing coffee productivity, understanding how coffee yield is maximized is necessary to evaluate how, and to what extent, coffee production can be compatible with forest conservation.Abiotic variables and biotic variables of the canopy were recorded in 26 plots within 20 forest fragments managed as semi-forest coffee systems near Jimma, SW Ethiopia. In each plot, coffee shrub characteristics and coffee yield were recorded for four coffee shrubs. Cluster and indicator species analyses were used to differentiate plant communities of shade trees. A multilevel linear mixed model approach was then used to evaluate the effect of abiotic soil variables, shade tree plant community, canopy and stand variables, coffee density and coffee shrub size variables on coffee yield.Climax species of the rainforest were underrepresented in the canopy. There were three impoverished shade tree communities, which differed in tree species composition but did not exhibit significant differences in abiotic soil variables, and did not directly influence coffee yield. Coffee yield was primarily determined by coffee shrub branchiness and basal diameter. At the stand level a reduced crown closure increased coffee yield. Yield was highest for coffee shrubs in stands with crown closure less than median (49 ± 1%). All stands showed a reduced number of stems and a lower canopy compared to values reported for undisturbed moist evergreen montane rainforests.Traditional coffee cultivation is associated to low tree species diversity and simplified forest structure: few stems, low canopy height and low crown closure. Despite intensive human interference some of the climax species are still present and may escape local extinction if they are tolerated and allowed to regenerate. The restoration of healthy populations of climax species is critical to preserve the biodiversity, regeneration capacity, vitality and ecosystem functions of the Ethiopian coffee forests.  相似文献   

    20.
    The quantitative liana inventories made in five peninsular Indian independent forest sites, distributed in the Western Ghats, Eastern Ghats and on the Coromandel coast, were examined particularly with reference to site altitude and forest stature. Liana diversity totaled 148 species in 101 genera of 47 families, in a total sample of 47 ha. The coefficient of variability in species distribution among the five sites was used to identify an oligarchy in liana species by taking 55 abundant species from the species pool. Ordination analysis, based on presence–absence as well as relative density of liana species indicated a geographical differentiation among the five sites in both the ordinations with respect to site altitude. Liana density (stems>1.6 cm diameter) decreased with increasing altitude, whereas richness was highest at intermediate elevations. The mean liana density across the forest sites showed a weak negative correlation with forest stature. The lianas encountered in the five study sites fell under six climber types, of which twining was the chief climbing mechanism, both in terms of species diversity and density, and tendril climbers were more abundant in dry evergreen forests than in the wet evergreen forests. In liana diaspore dispersal modes, the majority of evergreen forest species possessed animal dispersal guilds, whereas wind-dispersal was prevalent in semi-evergreen and dry evergreen forests.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号