首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Weston DJ  Bauerle WL 《Tree physiology》2007,27(8):1083-1092
Effects of moderate heat on growth and photosynthesis were investigated in two clonal genotypes of Acer rubrum L., originally collected from the thermally contrasting habitats of Florida and Minnesota, USA, and known in the horticultural trade for sensitivity and insensitivity to heat, respectively. Under both common garden and warm greenhouse conditions (day/night temperature of 33/25 degrees C), the Florida genotype exhibited more growth than the Minnesota genotype. To determine the physiological parameters associated with this response, plants were acclimated to ambient (27/25 degrees C) or moderately elevated (33/25 degrees C) temperatures for 21 days before measurement of net photosynthesis at temperatures ranging from 25 to 48 degrees C. In vivo measurements of gas exchange and chlorophyll a fluorescence of ambient-acclimated plants revealed that, compared with the Minnesota genotype, the Florida genotype maintained a higher photosynthetic rate, higher stomatal conductance, more open PSII reaction centers, a greater PSII quantum yield and a lower quantum requirement for photosystem II (phi(PSII)) per mole of CO(2) fixed (phi(CO(2) )) throughout the measurement temperature range. When both genotypes were acclimated at 33/25 degrees C and measured at 33 degrees C, analysis of the response of net photosynthesis to calculated intercellular CO(2) concentration indicated that the maximal rate of Rubisco carboxylation (V(cmax)) decreased more in the Minnesota genotype than in the Florida genotype in response to elevated temperature. Additionally, phi(PSII)/phi(CO(2) ) at 33 degrees C was markedly higher for Minnesota plants under photorespiratory conditions, but similar to Florida plants under non-photorespiratory conditions. The results indicate that the higher net photosynthetic rate at 33/25 degrees C of the Florida genotype compared with the Minnesota genotype could be a result of several mechanisms, including the maintenance of a higher V(cmax )and a more efficient quantum requirement of PSII per mole of CO(2) fixed, which is likely the result of lower photorespiration.  相似文献   

2.
The extraction of glutamine synthetase (GS) from jack pine (Pinus banksiana Lamb.) tissue was facilitated by solubilization of the tissue with 1% or more Nonidet P-40 detergent. In contrast with procedures commonly used to extract GS from other plant tissues, highest recovery of GS was obtained when jack pine tissues were subjected to ultrasonic homogenization in the absence of PVP. Chromatography on DEAE-Sephacel showed that jack pine needles possess two isoforms of GS. Isoform GS(1), which is generally associated with the cytoplasm, eluted at 90 mM KCl and accounted for 80% of total GS activity. Isoform GS(2), which eluted at 280 mM KCl, is generally associated with the chloroplast and is thought to be active in the primary assimilation of ammonium in leaves. Thus GS(2) activity may be important if conifers are to avoid ammonium toxicity under circumstances, such as exposure to nitrous oxides, where nitrate reductase activity is induced in needles. In June, 72% of total GS activity was located in needles. Near the end of the growing season in August, however, only 1% of total GS activity was found in needles whereas 79% was found in roots.  相似文献   

3.
Sarjala T 《Tree physiology》1993,12(1):93-100
The influence of ammonium on glutamine synthetase activity (GS, EC 6.3.1.2) was studied in three species of ectomycorrhizal fungi, Paxillus involutus (Batsch:Fr) Fr, Piloderma croceum Erikss. and Hjortst. and Suillus variegatus (Fr) O Kuntze growing in pure culture, as well as in the roots and needles of nursery-grown, non-mycorrhizal and mycorrhizal Scots pine (Pinus sylvestris L.) seedlings inoculated with Paxillus involutus or Piloderma croceum as the symbiont. In response to increasing concentrations of ammonium in the nutrient solution, GS activity (expressed on a dry weight basis) increased slightly in Suillus variegatus but not in the other fungi. Glutamine synthetase activity increased in the roots and decreased in the needles of non-mycorrhizal seedlings as the ammonium concentration in the nutrient solution was increased from 0 to 1 mM, but no response was noted with further increases from 1 to 12 mM. Interspecies differences in GS activity were noted among the fungi growing in pure culture, but no significant interspecies differences were observed among the same fungi in the mycorrhizal state.  相似文献   

4.
We studied the influence of two irradiances on cold acclimation and recovery of photosynthesis in Scots pine (Pinus sylvestris L.) seedlings to assess mechanisms for quenching the excess energy captured by the photosynthetic apparatus. A shift in temperature from 20 to 5 degrees C caused a greater decrease in photosynthetic activity, measured by chlorophyll fluorescence and oxygen evolution, in plants exposed to moderate light (350 micromol m(-2) s(-1)) than in shaded plants (50 micromol m(-2) s(-1)). In response to the temperature shift, maximal photochemical efficiency of photosystem II (PSII), measured as the ratio of variable to maximal chlorophyll fluorescence (Fv/Fm) of dark-adapted samples, decreased to 70% in exposed seedlings, whereas shaded seedlings maintained Fv/Fm close to initial values. After a further temperature decrease to -5 degrees C, only 8% of initial Fv/Fm remained in exposed plants, whereas shaded plants retained 40% of initial Fv/Fm. Seven days after transfer from -5 to 20 degrees C, recovery of photochemical efficiency was more complete in the shaded plants than in the exposed plants (87 and 65% of the initial Fv/Fm value, respectively). In response to cold stress, the estimated functional absorption cross section per remaining PSII reaction center increased at both irradiances, but the increase was more pronounced in exposed seedlings. Estimates of energy partitioning in the needles showed a much higher dissipative component in the exposed seedlings at low temperatures, pointing to stronger development of non-photochemical quenching at moderate irradiances. The de-epoxidation state of the xanthophyll cycle pigments increased in exposed seedlings at 5 degrees C, contributing to the quenching capacity, whereas significant de-epoxidation in the shaded plants was observed only when temperatures decreased to -5 degrees C. Thermoluminescence (TL) measurements of PSII revealed that charge recombinations between the second oxidation state of Mn-cluster S2 and the semireduced secondary electron acceptor quinone Q(B)- (S2Q(B)-) were shifted to lower temperatures in cold-acclimated seedlings compared with control seedlings and this effect depended on irradiance. Concomitant with this, cold-acclimated seedlings demonstrated a significant shift in the S2 recombination with primary acceptor Q(A)- (S2Q(A)-) characteristic TL emission peak to higher temperatures, thus narrowing the redox potential gap between S2Q(B)- and S2Q(A)-, which might result in increased probability for non-radiative radical pair recombination between the PSII reaction center chlorophyll a (P680+) and Q(A)- (P680+)Q(A)-) (reaction center quenching) in cold-acclimated seedlings. In Scots pine seedlings, mechanisms of quenching excess light energy in winter therefore involve light-dependent regulation of reaction center content and both reaction center-based and antenna-based quenching of excess light energy, enabling them to withstand high excitation pressure under northern winter conditions.  相似文献   

5.
Development of transgenic plants with tolerance to environmental stress is an important goal of plant biotechnology. Late-embryogenesis-abundant(LEA) proteins accumulate in seeds during late embryogenesis, where they protect cellular membranes and macromolecules against drought. In this work, we transferred the Tamarix androssowii LEA gene into hybrids of Populus davidiana×P. bolleana. We compared relative rates of height growth, chlorophyll fluorescence kinetic parameters, and leaf Na+ levels of six TaLEA-containing lines with non-transferred plants(NT), all grown under 0.8% NaCl stress condition. Survival percentages of transgenic lines were all higher than for NT controls after rehydration and the survival percentage of SL2 was five-fold higher than for NT controls. Seedling height increased 48.7% in SL2(from the onset of induced stress to the end of the growing season), 31% more than for the NT controls. Chlorophyll fluorescence kinetic parameters showed a marked increase in photosynthetic capacity in SL2 and SL5. Na+ levels in young leaves of transgenic lines were lower than in control NT leaves, but higher in yellow and withered leaves, indicating improved salt tolerance in transgenic lines.  相似文献   

6.
本文研究了多重复干旱循环对1年生北美短叶松(PinusbanksianaLamb.)和黑云杉(Piceamariana[Mil]B.S.D.)苗木的气体交换速率及水分利用效率的影响。结果表面,多重干旱循环对它们的气体交换(Cs,Pn,Tr)有显著影响(P<0.5),而对其水分利用效率(WUE)影响不大(P>0.1)。尽管北美短叶松的气孔对轻度干旱胁迫不如黑云杉敏感,但是它对中度及严重干旱胁迫的敏感程度却高于黑云杉。在轻度及中度干旱胁迫下,北美短叶松的光合作用主要受非气孔因素的影响,而黑云杉则主要受气孔因素的影响。解除干旱胁迫后,黑云杉的气孔敏感性、光合能力及水分利用效率的恢复都要比北美短叶松更快.我们认为,延迟脱水是北美短叶松的主要耐旱机理,而忍耐脱水则是黑云杉重要的耐旱途径。轻度的干旱胁迫锻炼可以帮助北美短叶松在更严重的干旱胁迫下保持固有而较强的耐旱能力。然而,通过多重复干旱循环锻炼后黑云杉在改善耐旱能力的强度方面则大于北美短叶松  相似文献   

7.
Niinemets U  Kull O 《Tree physiology》2001,21(12-13):899-914
We used chlorophyll fluorescence techniques to investigate responses of Photosystem II (PSII) quantum yield to light availability in the short term (quantum flux density integrated over the measurement day, Qd) and in the long term (Qd averaged over the season, Qs) in a mixed deciduous forest comprising shade-tolerant and water-stress-sensitive Tilia cordata Mill. in the lower canopy and shade-intolerant and water-stress-resistant Populus tremula L. in the upper canopy. In both species, intrinsic efficiency of PSII in the dark-adapted state (Fv/Fm) was lower during the day than during the night, and the difference in Fv/Fm between day and night increased with increasing Qs. Although the capacity for photosynthetic electron transport increased with increasing Qs in both species, maximum quantum efficiency of PSII in the light-adapted state (alpha) decreased with increasing Qs. At a common Qs, alpha was lower in T. cordata than in P. tremula primarily because of a higher fraction of closed PSII centers, and to a smaller extent because of limited, non-radiative, excitation energy dissipation in the pigment bed in T. cordata. Across both species, photochemical quenching (qP), which measures the openness of PSII centers, varied more than fivefold, but the efficiency of excitation energy capture by open PSII centers (Fv'/Fm'), which is an estimate of non-radiative excitation energy dissipation in PSII antennae, varied by only 50%. Chlorophyll turnover rates increased with increasing irradiance, especially in T. cordata, possibly because of increased photodestruction. Diurnal measurements of PSII quantum yields (PhiPSII) indicated that, under similar environmental conditions, PhiPSII was always lower in the afternoon than in the morning, and the fraction of daily integrated photosynthetic electron transport lost because of diurnal declines in PhiPSII (Delta) increased with increasing Qd. At a common Qd, mean daily PSII center reduction state, the fraction of light in excess (1 - fractions of light used in photochemistry and dissipated as heat) and Delta were higher in T. cordata than in P. tremula. This was attributed to greater stomatal closure during the day, which led to a greater reduction in the requirement for assimilative electron flow in T. cordata. Across both species, Delta scaled negatively with the fraction of light utilized photochemically, demonstrating the leading role of PSII center openness in maintaining high PSII efficiency. Because photosynthesis (A) at current ambient carbon dioxide concentration is limited by CO2 availability in high light and mainly by photosynthetic electron transport rates in low light, overall daily down-regulation of PhiPSII primarily influences A in low light. Given that foliar water stress scales positively with Qs in both species, we conclude that the inverse patterns of variation in water and light availabilities in the canopy result in a greater decline in A than is predicted by decreases in stomatal conductance alone.  相似文献   

8.
Ladjal M  Epron D  Ducrey M 《Tree physiology》2000,20(18):1235-1241
Changes in photosystem II (PSII) thermotolerance during drought and recovery were studied under controlled conditions in three Mediterranean cedar species (Cedrus brevifolia Henry, C. libani Loudon and C. atlantica Manetti). The temperature at which the quantum yield of PSII photochemistry was reduced by 15% of its value at 25 degrees C was 3 to 4 degrees C higher in drought-treated plants than in well-watered plants. The drought-induced increase in PSII thermotolerance was already evident 8 days after water had been withheld from the seedlings, when net CO(2) assimilation was still at 80% of its initial value, and was visible for up to 12 days after re-watering. When seedlings of the three species were exposed to temperatures above 45 degrees C for 5 h, both maximal quantum yield of PSII photochemistry and net CO(2) assimilation rate were significantly reduced in unconditioned seedlings, whereas drought-preconditioned seedlings were almost unaffected by the heat treatment. Drought-preconditioned seedlings still exhibited a higher tolerance to heat stress than unconditioned seedlings 60 days after re-watering, although the transient, drought-induced osmotic adjustment had fully disappeared. Among species, C. atlantica was the most heat sensitive, whereas the heat treatment had no significant effect on the parameters measured in C. brevifolia.  相似文献   

9.
Xu X  Peng G  Wu C  Korpelainen H  Li C 《Tree physiology》2008,28(11):1751-1759
We investigated sex-related photosynthetic responses to drought in the dioecious species, Populus cathayana Rehd. Plants were subjected to two watering regimes (100% and 30% of field capacity) in a semi-controlled environment. Drought significantly decreased leaf area (LA), total number of leaves (TNL), specific leaf area (SLA), relative water content, net photosynthetic rate (P(n)), transpiration (E), stomatal conductance (g(s)), intercellular CO(2) concentration (C(i)), light saturation point (L(SP)), apparent quantum yield (Phi), carboxylation efficiency (CE), light-saturated photosynthetic rate (P(max)), maximum efficiency of PSII (F(v)/F(m)) and maximum effective quantum yield of PSII (Yield), and increased the total chlorophyll concentration (TC), CO(2) compensation point (Gamma), non-photochemical quenching coefficient, peroxidase (POD) activity and carbon isotope composition (delta(13)C). Moreover, differences between males and females were detected in many of these responses. In the drought treatment, males exhibited significantly higher LA, TNL, TC, concentration of carotenoids (Caro), P(n), E, g(s), C(i), L(SP), Phi, CE, P(max), F(v)/F(m), photochemical quenching coefficient, POD activity and delta(13)C, but a lower SLA, chlorophyll a/b ratio, carotenoids/total chlorophyll ratio and Gamma than females. However, Caro, L(SP), Gamma, Phi, CE and POD activity were apparently associated with sex-related resource demands, because significant differences in these traits were detected between the sexes under well-watered conditions. Our results indicate that drought stress limits photosynthetic capacity more in females than in males.  相似文献   

10.
生长素及其信号转导系统对植物的生长发育具有重要的影响。本研究从银腺杨'84K'(Populus alba × P. glandulosa cl. '84K')中分离了生长素受体基因PtrFBL1,利用PMDC32构建了PMDC32-PtrFBL1超量表达载体,并通过遗传转化获得了超量表达植株17个。对温室定植的3个转基因株系和对照植株的根系、生长量和光合指标等性状分析结果显示:转基因株系总根长和总根面积达到显著或极显著差异,而根系干质量、平均不定根系长度、平均不定根直径差异不显著;株高、平均节间长、地径和高径比皆高于对照,且大多数转基因株系达到显著差异;除气孔限制值(Ls)低于对照外,气孔导度(Cd)、水分利用效率(WUE)、光能利用效率(LUE)和叶绿素相对含量皆高于对照,且大多数转基因株系达到显著或极显著差异。以上结果表明,可能是FBL1超表达增加了转基因株系根系面积,提高了水分和养分的吸收利用,进而导致转基因株系光能吸收和转化效率提高,引起转基因株系生长加快。  相似文献   

11.
Tree species response to climate change-induced shifts in the hydrological cycle depends on many physiological traits, particularly variation in water relations characteristics. We evaluated differences in shoot water potential, vulnerability of branches to reductions in hydraulic conductivity, and water source use between Pinus contorta Dougl. ex Loud. var. latifolia Engelm. (lodgepole pine) and Pseudotsuga menziesii (Mirb.) Franco (interior Douglas-fir), and determined the consequences for seasonal changes in photosynthetic capacity. The Douglas-fir site had soil with greater depth, finer texture and higher organic matter content than soil at the lodgepole pine site, all factors that increased the storage of soil moisture. While the measured xylem vulnerability curves were quite similar for the two species, Douglas-fir had lower average midday shoot water potentials than did lodgepole pine. This implied that lodgepole pine exhibited stronger stomatal control of transpiration than Douglas-fir, which helped to reduce the magnitude of the water potential gradient required to access water from drying soil. Stable hydrogen isotope measurements indicated that Douglas-fir increased the use of groundwater during mid-summer when precipitation inputs were low, while lodgepole pine did not. There was a greater reduction of photosynthetic carbon gain in lodgepole pine compared with Douglas-fir when the two tree species were exposed to seasonal declines in soil water content. The contrasting patterns of seasonal variation in photosynthetic capacity observed for the two species were a combined result of differences in soil characteristics at the separate sites and the inherent physiological differences between the species.  相似文献   

12.
Seasonal ecophysiology, leaf structure and nitrogen were measured in saplings of early (Populus grandidentata Michx. and Prunus serotina J.F. Ehrh.), middle (Fraxinus americana L. and Carya tomentosa Nutt.) and late (Acer rubrum L. and Cornus florida L.) successional tree species during severe drought on adjacent open and understory sites in central Pennsylvania, USA. Area-based net photosynthesis (A) and leaf conductance to water vapor diffusion (g(wv)) varied by site and species and were highest in open growing plants and early successional species at both the open and understory sites. In response to the period of maximum drought, both sunfleck and sun leaves of the early successional species exhibited smaller decreases in A than leaves of the other species. Shaded understory leaves of all species were more susceptible to drought than sun leaves and had negative midday A values during the middle and later growing season. Shaded understory leaves also displayed a reduced photosynthetic light response during the peak drought period. Sun leaves were thicker and had a greater mass per area (LMA) and nitrogen (N) content than shaded leaves, and early and middle successional species had higher N contents and concentrations than late successional species. In both sunfleck and sun leaves, seasonal A was positively related to predawn leaf Psi, g(wv), LMA and N, and was negatively related to vapor pressure deficit, midday leaf Psi and internal CO(2). Although a significant amount of plasticity occurred in all species for most gas exchange and leaf structural parameters, middle successional species exhibited the largest degree of phenotypic plasticity between open and understory plants.  相似文献   

13.
To clarify the changes in plant photosynthesis and mechanisms underlying those responses to gradually increasing soil drought stress and reveal quantitative relationships between photosynthesis and soil moisture,soil water conditions were controlled in greenhouse pot experiments using 2-year-old seedlings of Forsythia suspensa(Thunb.) Vahl. Photosynthetic gas exchange and chlorophyll fluorescence variables were measured and analyzed under 13 gradients of soil water content. Net photosynthetic rate(PN), stomatal conductance(gs), and water-use efficiency(WUE) in the seedlings exhibited a clear threshold response to the relative soil water content(RSWC). The highest PNand WUEoccurred at RSWCof51.84 and 64.10%, respectively. Both PNand WUEwere higher than the average levels at 39.79% B RSWCB 73.04%. When RSWCdecreased from 51.84 to 37.52%,PN, gs, and the intercellular CO2 concentration(Ci)markedly decreased with increasing drought stress; the corresponding stomatal limitation(Ls) substantially increased, and nonphotochemical quenching(NPQ) also tended to increase, indicating that within this range of soil water content, excessive excitation energy was dispersed from photosystem II(PSII) in the form of heat, and the reduction in PNwas primarily due to stomatal limitation.While RSWCdecreased below 37.52%, there were significant decreases in the maximal quantum yield of PSII photochemistry(Fv/Fm) and the effective quantum yield of PSII photochemistry(UPSII), photochemical quenching(qP), and NPQ; in contrast, minimal fluorescence yield of the dark-adapted state(F0) increased markedly. Thus,the major limiting factor for the PNreduction changed to a nonstomatal limitation due to PSII damage. Therefore, an RSWCof 37.52% is the maximum allowable water deficit for the normal growth of seedlings of F. suspensa, and a water content lower than this level should be avoided in field soil water management. Water contents should be maintained in the range of 39.79% B RSWCB 73.04% to ensure normal function of the photosynthetic apparatus and high levels of photosynthesis and efficiency in F.suspensa.  相似文献   

14.
Zhang S  Dang QL 《Tree physiology》2005,25(5):523-531
One-year-old jack pine (Pinus banksiana Lamb.) and current-year white birch (Betula papyrifera Marsh.) seedlings were grown in ambient (360 ppm) or twice ambient (720 ppm) atmospheric CO2 concentration ([CO2]) and at three soil temperatures (Tsoil = 7, 17 and 27 degrees C initially, increased to 10, 20 and 30 degrees C two months later, respectively) in a greenhouse for 4 months. In situ foliar gas exchange, in vivo carboxylation characteristics and chlorophyll fluorescence were measured after 2.5 and 4 months of treatment. Low Tsoil suppressed net photosynthetic rate (Pn), stomatal conductance (g(s)) and transpiration rate (E) in jack pine in both CO2 treatments and g(s) and E in white birch in ambient [CO2], but enhanced instantaneous water-use efficiency (IWUE) in both species after 2.5 months of treatment. Treatment effects on g(s) and E remained significant throughout the 4-month study. Low Tsoil reduced maximal carboxylation rate (Vcmax) and PAR-saturated electron transport rate (Jmax) in jack pine in elevated [CO2] after 2.5 months of treatment, but not after 4 months of treatment. Low Tsoil increased actual photochemical efficiency of photosystem II (PSII) in the light (DeltaF/Fm') in jack pine, but decreased DeltaF/Fm' in white birch after 4 months of treatment. In response to low Tsoil, photosynthetic linear electron transport to carboxylation (Jc) decreased in jack pine after 2.5 months and in white birch after 4 months of treatment. Low Tsoil increased the ratio of the photosynthetic linear electron transport to oxygenation (Jo) to the total photosynthetic linear electron transport rate through PSII (Jo/J(T)) in both species after 2.5 months of treatment, but the effects became statistically insignificant in white birch after 4 months of treatment. High Tsoil decreased foliar N concentration in white birch. Elevated [CO2] increased Pn, IWUE and Jc but decreased Jo/J(T) in both species at both measurement times except Jc in white birch after 2.5 months of treatment. Elevated [CO2] also decreased g(s) and E in white birch at high Tsoil, Vcmax in both species and triose phosphate utilization in white birch at low Tsoil after 4 months of treatment, and DeltaF/Fm' in white birch after 2.5 months of treatment. Elevated [CO2] also increased foliar N concentration in both species. Low Tsoil caused no permanent damage to PSII in either species, but jack pine responded and acclimated to low Tsoil more quickly than white birch. Photosynthetic down-regulation and a decrease in photosynthetic electron transport to photorespiration occurred in both species in response to elevated [CO2].  相似文献   

15.
Leaves developing in different irradiances undergo structural and functional acclimation, although the extent of trait plasticity is species specific. We tested the hypothesis that irradiance-induced plasticity of photosynthetic and anatomical traits is lower in highly shade-tolerant species than in moderately shade-tolerant species. Seedlings of two evergreen conifers, shade-tolerant Abies alba Mill. and moderately shade-tolerant Picea abies Karst., and two deciduous angiosperm species, highly shade-tolerant Fagus sylvatica L. and moderately shade-tolerant Acer pseudoplatanus L., were grown in deep shade (LL, 5% of full irradiance) or in full solar irradiance (HL) during 2003 and 2004. Steady state responses of quantum yield of PSII (Phi(PSII)), apparent electron transport rate (ETR), nonphotochemical quenching (NPQ) and photochemical quenching (qP) were generally modified by the light environment, with slower declines in Phi(PSII) and qP and greater maximal ETR and NPQ values in HL plants in at least one season; however, no link between quantitative measures of plasticity of these traits and shade tolerance was found. Plasticity of nine anatomical traits (including palisade cell length, which was reduced in LL) showed no relationship with shade tolerance, but was less in conifers than in deciduous trees, suggesting that leaf life span may be a significant correlate of plasticity. When LL-acclimated plants were exposed to HL conditions, the degree and duration of photoinhibition (measured as a decline in maximum quantum yield) was greatest in F. sylvatica, much lower in P. abies and A. alba, and lowest in A. pseudoplatanus. Thus, as with the other traits studied, vulnerability to photoinhibition showed no relationship with shade tolerance.  相似文献   

16.
The influence of low light on tolerance to prolonged drought was tested on unshaded and shaded seedlings of ponderosa pine (Pinus ponderosa var. scopulorum Dougl. ex Laws.). Unshaded seedlings of P. ponderosa var. ponderosa were also drought stressed to compare varietal responses to drought. The maximum irradiance received by shaded seedlings was 10% of full light. Seedlings were progressively drought stressed until predawn water potentials (Psi(x)) were -5.0 MPa. Relative water content (RWC) and the reciprocal of Psi(x) were analyzed by means of an unusual application of the pressure-volume relationship for determination of RWC of the apoplast (RWC(a)), osmotic potential at full turgor (Psi(oft)), and ratio of fully turgid weight to dry weight. Major varietal differences in drought response were in RWC(a) and needle cellulose content. The shaded seedlings showed tissue damage at relative water contents < 60%, and were killed by water deficits from which unshaded seedlings recovered. Correspondingly, shaded plants had significantly higher cell volume/cell mass ratio, Psi(oft), less cellulose in needle tissue, and lower RWC(a) than unshaded plants. These differences suggest that low irradiance restricts drought adaptation in ponderosa pine.  相似文献   

17.
Hu L  Lu H  Liu Q  Chen X  Jiang X 《Tree physiology》2005,25(10):1273-1281
The mtlD gene encoding mannitol-1-phosphate dehydrogenase, which catalyzes the biosynthesis of mannitol from fructose, was cloned from Escherichia coli and transferred to poplar (Populus tomentosa Carr.) through Agrobacterium-mediated transformation. The transgenic plants were screened and selected on Murashige and Skoog (MS) medium containing 30-50 mg l(-1) kanamycin and verified by polymerase chain reaction (PCR) and Southern blotting. Expression of the gene led to synthesis and accumulation of mannitol in the transgenic plants. Gas chromatography and mass spectrometry (GC/MS) and capillary gas chromatography (GC) showed that transgenic plants accumulated much more mannitol in their tissues than the wild-type plants, whether cultured in vitro, or grown hydroponically or in the field. Increased salt tolerance of transgenic plants was observed both in vitro and in hydroponic culture. The transgenic buds rooted normally on MS medium containing 50 mM NaCl, whereas wild-type buds did not. In the 40-day hydroponic experiments, transgenic poplar plants survived in a 75-mM NaCl treatment, whereas the wild-type poplar plants tolerated only 25 mM NaCl. Under the same NaCl stress, stomatal conductance, transpiration rates and photosynthetic rates were all higher in transgenic plants than in wild-type plants, whereas cellular relative conductivity was lower. We demonstrated that the mtlD gene was expressed in transgenic poplar plants, resulting either directly or indirectly in mannitol accumulation and improved salt tolerance. The constant mannitol concentrations in transgenic plants during the NaCl treatments indicated that mannitol accumulation caused by the mtlD gene was not a consequence of NaCl stress. Height growth was reduced by about 50% in the transgenic plants compared with the wild-type plants in the absence of salt; however, relative growth rate was much less influenced by salt stress in transgenic plants than in wild-type plants. The stunted growth of the transgenic plants may in part explain their improved salt tolerance.  相似文献   

18.
Photosynthesis (A), water relations and stomatal reactivity during drought, and leaf morphology were evaluated on 2-year-old, sun- and shade-grown Prunus serotina Ehrh. seedlings of a mesic Pennsylvania seed source and a more xeric Wisconsin source. Wisconsin plants maintained higher A and leaf conductance (g(wv)) than Pennsylvania plants during the entire drought under sun conditions, and during the mid stages of drought under shade conditions. Compared to shade plants, sun plants of both sources exhibited a more rapid decrease in A or % A(max) with decreasing leaf water potential (Psi). Tissue water relations parameters were generally not significantly different between seed sources. However, osmotic potentials were lower in sun than shade plants under well-watered conditions. Following drought, shade plants, but not sun plants, exhibited significant osmotic adjustment. Sun leaves had greater thickness, specific mass, area and stomatal density and lower guard cell length than shade leaves in one or both sources. Wisconsin sun leaves were seemingly more xerophytic with greater thickness, specific mass, and guard cell length than Pennsylvania sun leaves. No source differences in leaf structure were exhibited in shade plants. Stomatal reactivity to sun-shade cycles was similar between ecotypes. However, well-watered and droughted plants differed in stomatal reactivity within and between multiple sun-shade cycles. The observed ecotypic and phenotypic variations in ecophysiology and morphology are consistent with the ability of Prunus serotina to survive in greatly contrasting environments.  相似文献   

19.
彰武松无性系早期生长的初步研究   总被引:2,自引:0,他引:2  
为研究彰武松早期生长特性,对彰武松优树和优良型樟子松进行嫁接对比试验。研究表明,彰武松树高生长量显著地高于优良类型樟子松,1995~1997年3年彰武松的平均树高生长量是优良类型樟子松的1566%;在不同立地条件、不同年份,彰武松的树高生长量也有显著差异;通过对早期生长的彰武松生理指标进行测定,反映出彰武松比樟子松更抗旱。  相似文献   

20.
Climatic constraints on diurnal variations in photosynthetic traits were investigated in oaks (Quercus pubescens Willd.) growing in the Swiss Alps. The measurement period included the summer of 2003, when central Europe experienced a record-breaking heat wave. During the summer, a combination of moderate heat and drought caused a reduction in photosynthetic CO(2) assimilation rate (P(n)) by mid-morning, which increased by the afternoon. More extreme drought and heat caused a sharp day-long reduction in P(n). These effects were closely related to changes in stomatal conductance (g(s)), but low g(s) was unaccompanied by low intercellular CO(2) concentrations (C(i)). Around midday, a combination of heat and drought increased C(i), indicating metabolic limitation of photosynthesis. Chlorophyll a (Chl a) fluorescence measurements revealed reversible down-regulation of photosystem (PS) II activity during the day, which was accentuated by heat and drought and correlated with diurnal variation in zeaxanthin accumulation. A combination of heat and drought reduced leaf Chl a + b concentrations and increased ratios of total carotenoids, xanthophyll-cycle carotenoids and lutein to Chl a + b. The combination of summertime heat and drought altered the 77 K Chl fluorescence emission spectra of leaves, indicating changes in the organization of thylakoid membranes, but it had no effect on the amounts of the major light-harvesting Chl-a/b-binding protein of PSII (LHCII), Rubisco, Rubisco activase, Rubisco-binding protein (cpn-60), phosphoribulokinase and chloroplast ATP synthase. The results demonstrate that Q. pubescens can maintain photosynthetic capacity under adverse summer conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号