首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microspectrophotometric, microinterferometric and microplanimetric techniques were used to investigate whether the maturation of bull spermatozoa is associated with any detectable changes in the major chemical components of the spermatozoal head. Round spermatids, caput, corpus, cauda epididymidal and ejaculated spermatozoa were obtained from six bulls with lowered fertility and three bulls with normal fertility. There was no quantitative change in DNA, in total dry mass or in optical area associated with the passage of spermatozoa between these areas of the epididymis. A marked reduction in relative Feulgen reactivity during spermiogenesis was found and was significantly more pronounced in spermatozoa from bulls with normal fertility than in spermatozoa from bulls of lowered fertility. It was suggested that this reduction signifies qualitative alterations of the spermatozoal deoxyribonucleoprotein complex and may be related to the fertility status of the bull.  相似文献   

2.
The ultrastructure of Sertoli cells in the seminiferous tubules of water buffaloes before and during sexual maturity was studied by transmission electron microscopy, with emphasis on the intranucleolar vesicular elements. Sertoli cells of animals under 12 months of age were distinguished from the germ cells by the presence of electron dense membrane bound bodies within their cytoplasm. These cells, referred to as basal indifferent supporting cells, were probably involved in the phagocytosis and elimination of degenerating spermatocytes, which failed to differentiate into spermatids and spermatozoa in animals under one year of age. In 12 month old animals, a few Sertoli cells exhibiting the vesicular elements appeared in the nucleolar region while in animals over 15 months of age Sertoli cells could be positively identified by the characteristic cytoplasm containing microtubules, elongated and electron dense mitochondria, extensive granular endoplasmic reticulum and the presence of spermatids in various stages of spermiogenesis. The vesicular elements in the nucleolar region of the Sertoli cells were most prominent at this stage. Ultrastructural features of the Sertoli cells revealed an abundance of ribosome-like particles surrounding the vesicles of varying size. Some of these vesicular elements contained amorphous material suggesting that they represent the products sequestered in the nuclear region for transport to the cytoplasm and that the process of spermiogenesis may be dependent on the ability of Sertoli cells to generate these products at sexual maturity.  相似文献   

3.
The region-specific expression of seminal proteins in testis and excurrent duct system determines the quality and function of the spermatozoa. In the present study, localization and expression of some of the seminal proteins such as insulin-like growth factor receptor 1β (IGF-1Rβ), phosphatidylethanolamine-binding protein 4 (PEBP4), α-tubulin and tissue factor pathway inhibitor 2 (TFPI2) were carried out in testis, excurrent duct system and spermatozoa of buffalo. IGF-1Rβ was localized in the cells of the seminiferous tubules of the testis, except in primary spermatocytes. The PEBP4 was localized only in the elongated spermatid, whereas α-tubulin and TFPI2 proteins were localized in all cells of the seminiferous tubule including spermatocyte. In the buffalo spermatozoa, IGF-1Rβ, PEBP4, α-tubulin and TFPI2 were localized in the acrosome region, the post-acrosomal region till the tail end, post-acrosome to the entire tail region and the equatorial region, respectively. The study indicates that IGF-1R, α-tubulin and PEBP4 proteins regulate spermatogenesis, whereas TFPI2 may be involved during the zona binding process of the buffalo spermatozoa.  相似文献   

4.
The seasonal changes of the cytoskeletal protein expressions were immunohistochemically investigated in the testes of Japanese black bear, Ursus thibetanus japonicus. A strong immunoreaction for α-smooth muscle actin is restricted to the vascular smooth muscle cells and the peritubular cells which surround the seminiferous tubules by several layers throughout the year. Weak immunoreactions for B4 antigen and desmin were observed in the vascular smooth muscle cells and in a part of peritubular cells throughout the year. A strong immunoreaction for vimentin was also detected in the fibroblasts and Leydig cells, in addition to the vascular smooth muscle and epithelial cells and the peritubular cells throughout the year. A strong α-tubulin immunoreaction was detected in the elongating spermatids during the acrosome phase of spermiogenesis in May and June. The cytoplasm of several Sertoli cells was faintly immunoreacted for vimentin in the basal and lateral region, while an intense α-tubulin reaction was seen in the entire cytoplasm in May, April and June. In November, January and March, the immunoreactions for vimentin and α-tubulin strongly accumulate in a perinuclear region of Sertoli cells when developmental spermatids are not seen in the seminiferous tubules. These accumulations in the immunoreactions for vimentin and α-tubulin seem to be caused by the reduction in size of Sertoli cells cytoplasm with season. However, the seasonal changes of distributions in the cytoskeletal proteins are obscure in the bear testes. These results suggest that the contents of cytoskeletal proteins may not change in relation to the morphological differences with season in the testes of the seasonal breeders.  相似文献   

5.
The aim of this experiment was to study the expression pattern of taste receptor family 1 subtypes 1 (T1R1) and 3 (T1R3) during epididymal development of Congjiang Xiang pig, and to explore the possible role of these taste receptors in mammalian male reproductive function and its potential medical value. In this study, the differential expressions of T1R1 and T1R3 in epididymis at 4 key developmental periods (neonatal (15 d), peri-puberty (30 d), puberty (60 d) and sexual maturity (180 d)) of Congjiang Xiang pigs were analyzed. RT-qPCR, immunohistochemistry (IHC) and Western blot were used to detect the changes and distribution of the two taste receptors in epididymis of Congjiang Xiang pigs at different ages. The results of RT-qPCR showed that the expression of TAS1R1 and TAS1R3 mRNA increased gradually from neonatal (15 d) to sexual maturity (180 d), and there was a significant difference between each period (P<0.01). The results of Western blot showed that the expression of T1R1/T1R3 protein was the highest on the 180 d and the lowest on the 15 d. The average protein abundance of T1R1/T1R3 was as follows: 180 d > 30 d > 60 d > 15 d. The results of IHC showed that T1R1 and T1R3 proteins were distributed in the epididymis of Congjiang Xiang pigs at 4 periods, in which T1R1 protein was mainly concentrated in epithelial cell membrane, especially in basal and narrow cells, while T1R3 protein was strongly positive in stereocilia, annular vacuoles and spermatozoa. In summary, the expression of T1R1/T1R3 in the epididymis of Congjiang Xiang pigs increased gradually from 15 d to the peak of sexual maturation, which was related to the differential expression of T1R1/T1R3 in epithelial basal cells, narrow cells and stereocilia of epididymis. These special expression patterns were time related to the physiological function of epididymis, so it is speculated that T1R1/T1R3 are involved in the regulation of sperm maturation and storage in epididymis.  相似文献   

6.
T1R1和T1R3在从江香猪附睾发育中的表达模式   总被引:1,自引:0,他引:1  
为研究味觉受体第一家族亚型1(T1R1)和3(T1R3)在从江香猪附睾发育过程中的表达模式,探讨味觉受体在哺乳动物雄性生殖机能中可能发挥的作用及潜在医学价值,本试验以从江香猪附睾组织为研究对象,分析附睾发育4个关键时期:初情前(15 d)、初情时(30 d)、初情后(60 d)和性成熟期(180 d)T1R1与T1R3的差异表达。采用实时荧光定量PCR、免疫组织化学(IHC)和Western blot检测两个味觉受体在不同日龄从江香猪附睾组织中转录、翻译水平的变化及其分布情况。RT-qPCR结果表明:TAS1R1与TAS1R3 mRNA在从江香猪附睾初情前(15 d)至性成熟期(180 d)表达量逐渐增加,且任意两个时期间差异极显著(P<0.01)。Western blot结果显示,T1R1/T1R3蛋白在180 d表达量最高,在15 d表达量最低,两者之间差异显著(P<0.05),平均表达丰度依次为180 d > 30 d > 60 d > 15 d。IHC结果显示,T1R1和T1R3蛋白在各日龄组从江香猪附睾组织均有分布,其中T1R1蛋白主要在上皮细胞膜上,尤其是基细胞和窄细胞;而T1R3蛋白主要在微绒毛、环状空泡和精子呈强阳性表达。综上,本研究发现不同日龄从江香猪附睾的T1R1/T1R3表达从15 d逐渐增加,至性成熟达到峰值,这一表达变化与附睾上皮基细胞和窄细胞及微绒毛的T1R1/T1R3的差异表达有关,这些特殊的表达模式与附睾生理功能存在时间关联,故推测T1R1和T1R3参与附睾内精子成熟和储存的调节过程。  相似文献   

7.
Dietary cobalt (265 ppm Co) induced polycythemia and consistent degenerative and necrotic lesions in the seminiferous tubules of rats. Cyanosis and engorgement of testicular vasculature on day 35 and thereafter was followed on day 70 by degenerative and necrotic changes in the germinal epithelium and Sertoli cells. Spermatogonia, primary spermatocytes and round spermatids were markedly affected, while elongated spermatids, spermatozoa, and sertoli cells were more resistant. Damaged tubules, often present side by side with normal tubules, contained multinucleated giant cells composed of degenerated and necrotic spermatocytes and/or spermatids, sloughed germinal and Sertoli cells, and calcified necrotic debris. Necrotic tubules were frequently collapsed and devoid of epithelium except for occasional spermatogonia and surviving Sertoli cells. Lesions were not observed in the Leydig cells, cauda epididymis or seminal vesicles.  相似文献   

8.
Spermatozoa are unique cells because of their morphological and physiological characteristics. They are produced during the process called spermatogenesis. Spermatogenesis consists of three phases: spermatocytogenesis, spermiogenesis and spermiation, during which spermatozoa undergo several changes. Spermatogenesis takes place within the seminiferous tubules containing two types of cells—the germ cells and the Sertoli cells—that alongside the Leydig cells, which play an important role when it comes to normal fertility. Everything is regulated by the hypothalamic–pituitary–gonadal axis and specific hormones due to multi-hormonal feedback systems. Spermatozoa possess morphological and physiological features, which are sometimes completely different from what is observed in various somatic cells. What is more, canine spermatozoa have specific characteristics making them special compared to the spermatozoa of other mammalian species. The metabolic energy production, which is crucial for the appropriate functioning of spermatozoa, can be fuelled by different metabolic pathways utilizing different chemical substrates. Inseparable from the oxidative phosphorylation process is the production of reactive oxygen species, which are both essential and toxic to spermatozoa. Furthermore, epididymis is a very important structure, responsible for the transport and maturation of spermatozoa, which are then stored in the last segment of epididymis—the epididymal cauda. Moreover, the retrieval of spermatozoa from the epididymides is crucial for the development of assisted reproduction techniques and sperm cryopreservation methods. The information gained from the research on domestic dogs might be transferred to their wild relatives, especially those species categorized as endangered.  相似文献   

9.
10.
用组织学和免疫组织化学方法调查达乌尔黄鼠精子形成季节性变化和细胞色素芳香化酶(P450 arom)在精巢和附睾中的免疫位置。黄鼠繁殖期与非繁殖期精巢大小、重量、生精小管直径存在显著差异;黄鼠繁殖期精巢中存在从精原细胞到有尾精子各期生殖细胞,非繁殖期精巢中只存在精原细胞和初级精母细胞。另外,繁殖期黄鼠附睾管中存在大量有尾精子,而非繁殖期附睾中未见精子存在。繁殖期P450 arom在黄鼠精巢的间质细胞、支持细胞、精子细胞和附睾头部输出小管上皮细胞都有发现,而在非繁殖期没有发现它的活力。这些结果表明达乌尔黄鼠精子形成、成熟是伴随着精巢复发和退行呈现显著季节性变化,雌激素在精子形成和成熟过程中起着重要的生理性作用。  相似文献   

11.
The epididymis is the site of post-testicular sperm maturation, which constitutes the acquisition of sperm motility and the ability to recognize and fertilize oocytes. The role of miRNA in male reproductive system, including the control of different steps leading to proper fertilization such as gametogenesis, sperm maturation and maintenance of male fertility where the deletion of Dicer in mouse germ cells led to infertility, has been demonstrated. The identification of miRNA expression in a region-specific manner will therefore provide valuable insight into the functional differences between the regions of the epididymis. In this study, we employed RNA-seq technology to explore the expression pattern of miRNAs and establish some miRNAs of significant interest with regard to epididymal sperm maturation in the CY epididymis. We identified a total of 431 DE known miRNAs; 119, 185 and 127 DE miRNAs were detected for caput versus corpus, corpus versus cauda and caput versus cauda region pairs, respectively. Our results demonstrate region-specific miRNA expression in the CY epididymis. The GO and KEGG enrichment for the predicted target genes indicated the functional values of miRNAs. Furthermore, we observed that the expression of miR-200a was downregulated in the caput, compared with cauda. Since the family of miR-200 has previously been suggested to contribute to the distinct physiological function of sperm maturation in epididymis of adult rat, we speculate that the downregulation of miR-200a in CY caput epididymis may play an important role of sperm maturation in the epididymis of CY. Therefore, our findings may not only increase our understanding of the molecular mechanisms regulated by the miRNA functions in region-specific miRNA expression in the CY epididymis, it could provide a valuable information to understand the mechanism of male infertility of CY.  相似文献   

12.
Oestrogens are involved in regulation of spermatogenesis and sperm maturation and are essential for male fertility. To study the role of oestrogens on epididymal function in the domestic cat, we analyzed the localization patterns of oestrogen receptors (ERs) within the epididymis of juvenile, pubertal and adults using immunohistochemistry. Cat epididymal tissues obtained during routine castrations were fixed in chilled Bouin's solution and processed for immunohistochemistry with ER-specific antibodies. For a certain receptor type, ER localization was influenced by donor age. In the juvenile epididymis, ERα was localized in the nuclei of epithelial cells of efferent ducts and undifferentiated epithelium of the ductus epididymis. During puberty, ERα localization in the undifferentiated epithelium of the epididymis shifted from the nuclei to the cytoplasm and plasma membrane. Oestrogen receptor-α level was highest in the pubertal and adult epididymis, especially within the cytoplasm and in plasma membranes of caput epithelial cells. This finding was suggestive of a role in fluid reabsorption within the efferent ducts and the epididymis. In corpus and cauda regions, ERα was less abundant, suggesting a minor role for oestrogens in sperm storage areas. Interestingly, localization of ERβ was neither influenced by age nor location within the epididymis and was ubiquitous throughout. Results demonstrate that oestrogen actions within the epididymis may be predominantly mediated through ERα during sexual maturation in the domestic cat.  相似文献   

13.
精子在附睾中的成熟过程是哺乳动物雄配子获得受精能力的关键。谷胱甘肽过氧化物酶-5(glutathione peroxidase-5,GPx5)作为附睾特异性表达的抗氧化酶具有强抗氧化作用,可调节附睾微环境中的活性氧浓度,保护精子免受脂质过氧化损伤,以维持精子DNA完整性。GPx5还可能对精子活力和顶体反应产生一定影响。GPx5基因的染色体定位及其外显子数存在一定的种间差异,其在不同物种、部位和发育期的表达具有特异性,受雄激素、PEA3因子和ETV4家族等调节。作者就哺乳动物附睾特异GPx5基因的结构与定位、表达特性、功能及其调节机制的研究进展进行综述,以期为进一步研究精子抗氧化机制和提高雄性动物繁殖力提供理论依据。  相似文献   

14.
Estrogen and its receptors are essential for sexual development and reproduction. Oestrogen receptor alpha (ERα) is a nuclear receptor activated by the hormone oestrogen. In male, ERα is encoded by the gene ESR1 (oestrogen receptor1) responsible for better fertility. ESR1 is involved in the reabsorption of luminal fluid during the transit of spermatozoa from the testis to the head of the epididymis which is important for their survival and maturation during epididymal storage. The absence of ESR1 leads to reduced epididymal sperm content, reduced sperm motility and fertilizing ability. The present study was undertaken to investigate the expression and presence of ESR1 gene in fertile and low-fertile male goat breeds. We identified ESR1 gene through various molecular tools. Genotyping was carried out by high resonance melting analysis using Roche Light Cycler 480(LC-480) system and found three different genotypes. Genotypic frequency-AA (blue-0.67), BB(Red-0.2), AB(Green-0.08) with allele frequency A(0.71 and B (0.29). The predominance of this gene in head of epididymis in fertile bucks was confirmed by SDS-PAGE, Western blotting and immunohistochemistry. From the results, we corroborated that the present study provides a useful and effective way to predict male fertility in goat breeds, which in turn increases the percentage of fertility in flock leading to more number of offspring in a kidding season.  相似文献   

15.
16.
17.
We previously identified a novel gonad-specific expression gene (Gse) and investigated its expression during gametogenesis in the mouse testis and ovary. In this study, we generated a polyclonal antibody to GSE protein and determined the profiles of the protein's expression in germ cells and preimplantation embryos in detail using immunocytochemical and immunofluorescence staining. In a Western blot analysis, the anti-GSE antibody recognized long and short isoforms (approximately 27.6 kDa and 23.1 kDa) of the protein in the mouse testis and the long isoform in the ovary. In the mouse testis, GSE protein was expressed in spermatocytes I in the pachytene stage, round spermatids, and elongated spermatids. In the mouse ovary, the protein was located in the cytoplasm and nucleus of all oocytes regardless of the stage of the ovarian follicles. In preimplantation embryos from the pronuclear to blastocyst stage, however, GSE protein was mainly detected in the nuclei of cells. At the blastocyst stage, the protein was confirmed to have accumulated in the inner cell mass (ICM), whereas it had mostly disappeared from the trophectoderm (TE). These findings suggest that GSE protein may play a role in the establishment of nuclear totipotency and may be associated with early lineage specification.  相似文献   

18.
In this present study was observed that the spermatids underwent morphological differentiation and modifications, which primarily comprised nuclear elongation, during the process of spermiogenesis in the domestic duck. The acrosome was formed and the flagellum developed concomitantly with nuclear modifications. Thus, various modifications could be observed during this process, especially changes in the distribution of cytoplasmic organelles. Long cisternae of the rough endoplasmic reticulum present in the spermatid cytoplasm dissociated into vesicles and the distal centriole initiated the development of the flagellum in the cellular portion opposite to the acrosome. The ultrastructure of the spermatids of the domestic duck did not show the characteristic development of pre-acrosomal granules, but the acrosomal granule could be directly visualized in this species.  相似文献   

19.
Background: During sperm maturation, there is a reorganization of fatty acids from plasmatic membrane of the spermatozoa, which allows higher membrane integrity and acquisition of sperm motility. However, the fatty acid profile during sperm maturation remains unclear in dogs. Thus, the aim of this study was to identify the fatty acids from the epididymal spermatozoa and plasma during the sperm maturation, and observed changes in the motility and plasmatic membrane parameters. Twenty one adult dogs were used, subsequently to bilateral orchiectomy and epididymal storage, sperm samples were collected from the different segments of the epididymis. Samples were evaluated for conventional microscopy, computer-assisted motility analysis, sperm plasma membrane permeability and the fatty acid analysis(lipids were extracted, transmethylated and analyzed by chromatography).Results: Caput and corpus sperm showed lower values for the motility variables evaluated and plasmatic membrane integrity, indicating different levels of the fatty acids organization. Saturated, monounsaturated and polyunsaturated fatty acids were in higher concentrations in the spermatozoa from epididymis cauda. Highlighting the presence of caprylic, stearic and docosahexaenoic acids.Conclusions: These findings demonstrate the influence of the fatty acid profile during sperm maturation, assigning physical and chemical changes in sperm cells, essential for fertilization.  相似文献   

20.
During the last decades, physiological effects of oestrogens have been increasingly explored by scientists and biotechnologists. Estrogens exert a wide range of effects on a large variety of cell types. Oestrogen and its receptors are essential for sexual development and reproduction. Estrogen receptor alpha is a nuclear receptor activated by the hormone oestrogen. In male, ERα is encoded by the gene estrogen receptor gene 1 (ESR1), responsible for better fertility. The ESR1 is involved in the reabsorption of luminal fluid during the transit of spermatozoa from the testis to the head of the epididymis which is important for their survival and maturation during epididymal storage. The absence of ESR1 leads to reduced epididymal sperm content, reduced sperm motility and fertilizing ability. Therefore, this is a good startby to study the expression pattern of estrogen receptor 1 gene in high‐fertile (G1) and low‐fertile (G2) bucks of Jamunapari and Barbari breeds identified on the basis of seminal quality traits and fertility trials. RNA was extracted from the tissues by TRIzol method. The identification and expression pattern of caprine ESR1 gene was analysed by real‐time PCR (Roche LC‐480). Our work shows that the relative quantification by RT‐PCR indicates more fold in head of epididymis as compared to spleen of caprine ESR1 gene. Furthermore, the RT‐PCR indicated that fertile bucks of Jamunapari breed have more fold value as compared to Barbari breed in respect of reproductive organ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号