首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fruit maturity stage at harvest influences the response to postharvest storage conditions and bioactive compounds content. In this work fruit from two purple eggplant cultivars (Monarca and Perla Negra) were harvested at 12, 15, 18, 20 and 23 d after fruit set (designated as stages I through V) and changes in size, dry weight, calyx area, cell wall material (AIR, alcohol insoluble residue), firmness, respiration, and antioxidants (peel anthocyanins and pulp carotenoids, ascorbic acid, phenolics and chlorogenic acid) were determined. In a second set of experiments the postharvest performance of fruit harvested at stages I (“baby” eggplants), III and IV (traditional harvest stages) during storage at 0 or 10 °C was assessed. Fruit growth continued until late ripening in contrast to calyx expansion and peel anthocyanin accumulation, which were relatively earlier events. Fruit dry weight decreased between stages I and III, remaining constant afterwards. “Baby” eggplants had higher antioxidant capacity, chlorogenic acid (ChA), carotenoids and ascorbic acid contents than late-harvested fruit. ChA predominated in pulp placental tissues at stage I, spreading throughout the fruit core at as ripening progressed. No marked differences in dry mass, antioxidant capacity or responses to postharvest storage regimes were found between fruit harvested at stages III and IV. Late pickings increased yields and led to less dense fruit, which had lower respiration rates. Within this harvest window, storage at 10 °C maximized quality maintenance. In contrast “baby” eggplants stored better at 0 °C. Understanding the developmental changes in bioactive compounds and postharvest performance may help in the maximization of fruit antioxidant properties as well as in the selection of the optimal handling conditions for each ontogenic stage.  相似文献   

2.
In Israel, alternaria black spot (ABS) disease, caused by Alternaria alternata, is the main postharvest factor that reduces quality and impairs storability of persimmon fruit Diospyros kaki cv. Triumph. The fungus infects the fruit in the orchard and remains quiescent until harvest, or renews its development just before harvest, following rain or high humidity; it then preferentially colonizes the stem-end of the fruit. Recent findings suggest the importance of ethylene and respiration during early fruit growth as factors influencing maturity, crack development, and occurrence of ABS in the stem end of the fruit. We tested the effects of the growth regulator Superlon, a mixture of gibberellin (GA4+7) and benzyl adenine (BA), applied at 40 μg mL−1 once a month during three consecutive months, on fruit physiological responses during growth and on ABS occurrence during storage at 0 °C. Superlon treatments during the early stages of fruit growth, i.e., starting 40 days after fruit set (daf), applied once monthly during three consecutive months, inhibited ethylene and CO2 production in the stem end. Treatments applied starting 100 daf enhanced cell proliferation under the fruit cuticle. Regardless of application timing, Superlon delayed chlorophyll degradation, and reduced fruit cuticle cracking and ABS susceptibility during the late stages of fruit growth and during storage. Present results suggest that the phytohormone, acting as a modulator of host physiological responses that result in delayed fruit maturation, is a main factor in enhanced resistance to ABS at harvest and during storage.  相似文献   

3.
Raspberries are fruit with high metabolism that makes them very perishable, impairing their storage and shelf-life. Chitosan coatings have the potential to improve their postharvest life by reducing water loss, respiration rate and decay incidence. The purpose of this work was to study the effect of different concentrations of chitosan, applied pre- or postharvest, on the retention of quality attributes of fresh raspberries. The chitosan concentrations tested were 0 (control), 0.5, 1.0 or 2.0%. The postharvest treatment was applied immediately after harvest, dipping the fruit in the solutions for 5 min. The pre-harvest treatment was done with one hand-spray application per week for three weeks, starting when the fruit were just turning pink. In both experiments the fruit were stored at 0 °C and 90% RH. Pre- or postharvest use of chitosan at 1 or 2% was effective in maintaining titratable acidity and retarding respiration and ethylene production, weight loss and decay incidence. Application by both means resulted in the highest chitosan concentrations accelerating a reduction of ascorbic acid contents. Firmness was maintained only when the fruit were treated pre-harvest at 2%. Thus, application of chitosan at 1 or 2% postharvest and 2% pre-harvest was able to retain key raspberry quality attributes for 15 and 12 days, respectively.  相似文献   

4.
Ethylene is related to senescence but also induces protective mechanisms against stress in plants. The citrus industry only applies the hormone to induce fruit degreening. The aim of this work was to determine the effect of ethylene on the quality of colored citrus fruit stored under commercial conditions to extend postharvest life, since it protects them from stress causing postharvest disorders such as chilling injury (CI) and non-chilling peel pitting (NCPP). The effect of conditioning mature Navelate and Lane Late sweet oranges (Citrus sinensis L. Osbeck) for 4 days with 2 μL L−1 ethylene at 12 °C, rather than at higher temperatures used for degreening, on the quality of fruit stored at 2 or 12 °C, was examined. The ethylene conditioning (EC) treatment did not increase color but reduced calyx abscission and NCPP in fruit of both cultivars stored at 12 °C, and also CI in Navelate fruit at 2 °C. Lane Late fruit did not develop CI but showed a new disorder in EC fruit held at 2 °C. This disorder began as scalded areas around the fruit stem end and extended over the fruit surface during storage. EC had no deleterious effect on the quality of Navelate oranges stored at either 2 or 12 °C. Similar results were found in Lane Late fruit although EC slightly increased off-flavor perception at 2 °C and the maturity index at 2 and 12 °C. Moreover, EC slightly increased the content of bioactive flavonoids in the pulp of Navelate fruit but significant differences between control and EC fruit were only found after prolonged storage at 2 °C. In Lane Late fruit, EC avoided the initial decrease in flavonoid content found in control samples. Results show, therefore, that EC at 12 °C may be a tool to extend postharvest life of NCPP and CI-sensitive oranges, and that the tolerance of citrus cultivars to the combined effect of EC and non-freezing low temperature (2 °C) should be tested to select the proper storage temperature.  相似文献   

5.
Ptilotus nobilis (Lindl.) F. Muell. has potential in the floriculture industries as a cut flower crop. Ethylene production and respiration rates, fresh weight changes and volatile scent production from cut inflorescences of P. nobilis cultivars Passion (dark pink flowers) and Purity (white-green flowers) were measured during vase life. Inflorescence weight loss was significant (P < 0.001) during vase life with wilting and colour loss being the primary reasons for loss of vase life. Inflorescences ready for the cut market stored and at 22 °C had vase lives of >12 d. Ethylene production by inflorescences was low to negligible. Treatment with silverthiosulphate (STS) and ethylene had no effects on vase life. Evidently, ethylene did not play a role in determining the postharvest longevity of cut P. nobilis flowers. Respiration rates of inflorescences were high at harvest (>700 mg CO2 kg−1 FW h−1) and declined gradually thereafter during vase life. Total volatile emissions followed a similar pattern. For Passion, respiration rates of immature florets were significantly greater (P = 0.02) than florets from other developmental stages while the calyx produced the most CO2. For Purity, respiration rates of florets of different maturities did not differ and the reproductive tissue produced the most CO2. Only fully opened mature florets with their stigma and anthers revealed, emitted significant quantities of volatiles (P < 0.001) and primarily from the calyx tissue for both cultivars. The individual volatiles differed somewhat for the two cultivars. However, both produced significant quantities of benzaldehyde, 3,5-dimethoxytoluene and benzyl alcohol. These compounds have previously been associated with desirable floral scent.  相似文献   

6.
Separate experiments were conducted with three major commercial avocado (Persea americana Mill.) cultivars grown in Florida: ‘Simmonds’ (early-season, West Indian race); ‘Booth 7’ (mid-season, Guatemalan-West Indian hybrid); and ‘Monroe’ (late-season, Guatemalan-West Indian hybrid). Fruit were harvested at preclimacteric stage and left untreated (Control) or treated 24 h after harvest with aqueous 1-methylcyclopropene (1-MCP) at 1.39 (treatment M1) or 2.77 μmol L−1 a.i. (treatment M2) (75 or 150 μg L−1) for 1 min at 20 °C. Whole fruit ripening was monitored at 20 °C/92% ± 3% R.H. and based on whole fruit firmness, respiration and ethylene evolution. Fruit volatiles were assessed at preclimacteric (24 h after harvest), mid-ripe (half of initial fruit firmness) and ripe maturity stages, from 100 g of chopped pulp using a purge and trap system. Untreated, firmer fruit ‘Monroe’ (268 N at harvest) ripened within 12 d of harvest while softer fruit ‘Simmonds’ (118 N) ripened within only 6 d. 1-MCP treatment extended ripening time from 33% (M1) to 83% (M2). All fruit softened normally, indicating the potential benefits of aqueous 1-MCP as a postharvest treatment for avocado when applied at these concentrations. Volatile profiles differed among the three cultivars with several compounds detected in only one cultivar, results that may contribute to a potential identification of the origin of the cultivar based on fruit volatile composition. The West Indian cultivar ‘Simmonds’ had much higher emission of hexanal (preclimacteric fruit) and cis-3-hexenal and cis-3-hexen-1-ol (ripe fruit) than the Guatemalan-West Indian hybrids ‘Booth 7’ and ‘Monroe’. On the other hand, these latter hybrids had much higher levels of alkanes than ‘Simmonds’. Treatment with 1-MCP increased emissions of alkanes during ripening of ‘Booth 7’ and ‘Monroe’. Total volatiles of avocado decreased during ripening mainly due to the significant reduction of sesquiterpenes, the main group of volatiles in all cultivars at harvest (‘Simmonds’, 53%; ‘Booth 7’, 78%; ‘Monroe’, 66%). β-Caryophyllene was the major compound at harvest, but decreased to less than 2% in ripe fruit, at which point most sesquiterpenes were not detected. Among the 10 sesquiterpenes commonly found in the avocado cultivars in this study, only α-Copaene had significantly higher emissions in mid-ripe fruit treated with the higher concentration of 1-MCP (2.77 μmol L−1 a.i.), suggesting that ethylene participates in the regulation of this sesquiterpene.  相似文献   

7.
A number of fruit including plums develop a pronounced conspicuous layer of epicuticular wax responsible for their attractive visual appearance. During harvest, packaging and transport, this protective layer may be damaged or removed. The resulting appearance generates the impression of poor fruit quality. The aim of this research was to analyse and compare the influence of this wax bloom on storability using a new non-invasive technology and three modifications of the fruit surface. Weight loss was recorded of plums with the natural wax layer, polished by hand or wax removed chemically and stored at 20 °C room temperature or in a refrigerator at 5 °C. With 9.2 mg epicuticular wax/fruit or 302 μg/cm2 surface, European plums were classified as highly waxy, which contributed to for their conspicuous wax bloom. The disappearance of the wax bloom viz. increase in glossiness, measured non-destructively with a special sensor, was associated with a doubling of luster levels from 150–250 arbitrary units (a.u.) to 300–600 a.u. after polishing, simulating postharvest handling. Luster levels decreased with time with the polished surface, but not with the natural wax layer, confirming the concomitant greatest weight loss during the 20 days storage of polished fruit. Weight loss was lowest in plums with the natural wax layer, refrigerated at 5 °C, while those stored at 20 °C lost more weight irrespective of surface treatment. This case study explains the relatively short shelf-life and effects of water loss of the plums under different temperatures and surface conditions with wax, polish and chemically treated. This affordable compact light-weight sensor technology offers the opportunity to detect the degree of glossiness and may be used for sorting a number of affected fruit.  相似文献   

8.
The effect of exogenous oxalic acid treatment on ripening attributes of banana fruit during storage was investigated. Banana fruit were dipped into solutions of 0 (control) or 20 mM oxalic acid for 10 min and then stored at room temperature (23 ± 2 °C) and 75–90% relative humidity. The application of oxalic acid reduced fruit deterioration during storage. The oxalic acid treatment also reduced the rates of respiration and ethylene production, and delayed the decreases in firmness, hue angle, and maximal chlorophyll fluorescence (Fv/Fm) of banana fruit during storage. Furthermore, fruit treated with oxalic acid exhibited higher superoxide dismutase activity and antioxidant capability with a lower production of reactive oxygen species at the late storage period compared with non-oxalic acid-treated fruit. Overall, the oxalic acid treatment was effective in inhibiting postharvest ripening of banana fruit and exhibited the potential for commercial application to store the bananas at room temperature. It can be concluded that the delay in banana fruit ripening associated with oxalic acid treatment could be due to inhibition of respiration and ethylene production rates, and reduction of oxidative injury caused by reactive oxygen species through increased antioxidant activity.  相似文献   

9.
The effects of postharvest application of aminoethoxyvinylglycine (AVG) and 1-methylcyclopropene (1-MCP) on ethylene production and fruit quality, and thus on transportation and shelf-life, were evaluated in melting-flesh peaches. AVG (150 mg L−1) significantly reduced ethylene production, and the effect was enhanced in combination with 1-MCP (1 μL L−1). However, fruit treated with AVG alone softened to untreated control levels 2 d after harvest (DAH). Treatment with 1-MCP significantly reduced the rate of softening until 2 DAH, but the fruit rapidly softened thereafter, and reached untreated control levels by 4 DAH. A combination of AVG and 1-MCP significantly reduced fruit tissue softening throughout ripening. The effect of each chemical on flesh firmness indicated that 1-MCP affected fruit response in the early stages of ripening up to 4 DAH, and AVG significantly reduced softening in the latter stages from 4 to 9 DAH. Peaches treated with AVG and 1-MCP retained their ground color during ripening, but the effect of each chemical on color is unclear. The present study indicates that combined treatment with AVG and 1-MCP significantly delays the ripening of melting-flesh peaches.  相似文献   

10.
‘Black Splendor’ (BS) and ‘Royal Rosa’ (RR) plums were treated preharvest with methyl jasmonate (MeJA) at three concentrations (0.5, 1.0 and 2.0 mM) along the on-tree fruit development: 63, 77 and 98 days after full blossom (DAFB). Both control and treated fruit were harvested at the commercial ripening stage and stored in two temperature conditions: 9 days at 20 °C or at 2 °C + 1 day at 20 °C for 50 days. Preharvest MeJA at 2.0 mM significantly accelerated whereas 0.5 mM delayed the postharvest ripening process for both cultivars, since ethylene production, respiration rate and softening were reduced significantly at the two storage conditions for 0.5 mM. In these fruit, total phenolics, total antioxidant activity (hydrophilic fraction, HTAA) and the antioxidant enzymes peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) were found at higher levels in treated than control plums during postharvest storage, which could account for the delay of the postharvest ripening process and the extension of shelf-life.  相似文献   

11.
In Israel, black spot caused by Alternaria alternata is the main postharvest factor that impairs the quality and reduces the storability of persimmon fruit (Diospyros kaki cv. Triumph). The fungus infects the fruit in the orchard and remains quiescent until harvest. After harvest, the pathogen slowly colonizes the fruit during storage at 0 °C, which elicits black spot symptom development 2–3 months after storage entry. A commercial postharvest dip treatment in chlorine at 500 mg L?1, released from sodium troclosene tablets, effectively controlled black spot in fruit stored for up to 2 months. However, decay incidence increased as the length of storage was extended beyond 2.5 months. The long incubation period that precedes black spot symptom development after harvest enabled the development of a series of integrative approaches for application at the pre- and postharvest stages, in combination with the commercial chlorine dip treatment, to improve the control of black spot disease. Preharvest treatments included treatment with the cytokinin-like N1-(2-chloro-4-pyridyl)-N3-phenylurea (CPPU) 30 d after fruit set, or a single spray with the curative fungicide polyoxin B 14 d before harvest, and when one of these was applied in combination with the postharvest chlorine dip treatment, the black spot infected area was reduced by 3 and 60%, respectively, compared with the chlorine dip alone. At the postharvest stage, fogging during storage, or post-storage on-line spraying with sodium troclosene, when applied in combination with the postharvest chlorine dip, improved the percentage of marketable fruit by 2 or 10%, respectively, compared with the chlorine dip alone. The results indicate that postharvest pathogens that show a slow colonization pattern might enable the integration of pre- and postharvest disease control methods to improve quality and reduce postharvest disease development.  相似文献   

12.
This study aimed to investigate the application of microbubble technology for delaying banana ripening. A preparation of 1-MCP designed for use as a form of aqueous micro bubble (MBs) solutions was formulated. Banana fruit were immersed in 500 nL L−1 of aqueous 1-MCP microbubbles (1-MCP-MBs) or fumigated with 500 nL L−1 1-MCP, then stored at 25 °C for 8 days. 1-MCP-MBs were more effective in delaying postharvest ripening than conventional 1-MCP fumigation. 1-MCP-MBs reduced the respiration rate and ethylene production compared to the control and 1-MCP fumigated fruit. Moreover, 1-MCP-MBs delayed yellowing and maintained firmness of banana fruit during storage. These results indicate that 1-MCP-MBs can be used as an alternative method for delaying the postharvest ripening of banana fruit, and its application for other commodities needs to be further elucidated.  相似文献   

13.
14.
To investigate the effects of postharvest application of 1-MCP on ethylene production and fruit softening, activities of ethylene biosynthesis and fruit softening enzymes were measured during postharvest ripening of plum (Prunus salicina Lindl. cv. Tegan Blue) fruit after being exposed to 1-MCP (0, 0.5, 1.0 or 2.0 μL L−1) at 20 ± 1 °C for 24 h. Following the treatments, fruit were allowed to ripen at ambient temperature (20 ± 1 °C), and ethylene production in fruit, activities of ACS and ACO, ACC content and fruit softening enzymes (PE, EGase, exo-PG and endo-PG) in fruit skin and pulp were recorded at different intervals. Postharvest application of 1-MCP significantly delayed and suppressed the climacteric ethylene production with reduction in the activities of ethylene biosynthesis enzymes (ACS, ACO) and ACC content, and fruit softening enzymes (PE, EGase, exo-PG and endo-PG) in the skin as well as in pulp tissues. The reduction was more pronounced with increased concentrations of 1-MCP. 1-MCP treated fruit showed different rates of fruit softening and activities of ethylene biosynthesis enzymes in the skin and pulp tissues which warrant further investigation on regulation of gene expression related to these enzymes with the inhibitory effect of 1-MCP.  相似文献   

15.
Harvested papaya fruit are perishable due to rapid ripening and softening and susceptibility to biotic or abiotic stresses. Hot water treatment (HWT) can preserve fruit quality by reducing decay. The present study investigated effects of HWT on controlling fungal pathogens of papaya fruit and the possible mechanism by which HWT induced disease resistance. HWT (54 °C, 4 min) of papaya fruit had a pronounced effect on reducing the carrier rate of Colletotrichum gloeosporioides (C. gloeosporioides) in fruit peel, significantly inhibited the incidence of anthracnose and stem-end rot, effectively delayed fruit softening, but slightly promoted the rate of fruit coloring. HWT reduced the anthracnose index and fruit ripeness to a certain extent and induced changes in the wax arrangement on the surface of treated fruit, causing the wax to melt. The cracks and most stomata appeared to be partially or completely plugged by the melted wax, thereby providing a mechanical barrier against wound pathogens. HWT induced the expression of CpPGIP and promptly induced the expression of CpNPR1, and then regulated the expression of the CpPR1 gene, which may enhance the resistance of the fruit to anthracnose disease and reduce the decay rate. Together, these results confirm that HWT could reduce disease incidence and induce resistance, and thus maintain postharvest quality during storage and prolong the shelf-life of papaya fruit.  相似文献   

16.
Capsicum annuum L. paprika and cayenne chilli pepper fruit were grown for red spice production and harvested at various colour stages on the same day. Fruit of each stage were allowed to change colour at room temperature with or without the addition of 100 μl l−1 ethylene. Fruit appearance and colour development, and respiration and ethylene production were measured during the colouring period. Ethylene treatment had no effect on colour development or pungency for both cultivars, even though it easily crossed the cuticle, epidermis and flesh tissues into the fruit cavity. Green or deep green harvested fruit failed to fully colour red, while fruit that were harvested at or after the colour break stage visually completed their red colour development within 7–9 days. However, the colour intensity of spice powder was low for all fruit that had not developed a deep red colour prior to harvest. For paprika no difference between deep red fruit that were succulent or that had partially dried on the plant was found, but chilli fruit that had partially dried before harvest produced the most intense colour. American Spice Trade Association (ASTA) extractable red colour was the best measure of spice colour quality, compared to reflected lightness (L*), chroma (C*) and hue angle (h°) colour measurements. Pungency did not change between ripeness stages for chilli and was absent in paprika. Paprika and chilli fruit showed climacteric behaviour as long as they were attached to the plant, but when detached were non-climacteric.  相似文献   

17.
Penicillium expansum is the main postharvest pathogen of pome fruit and is a necrotrophic fungus that requires wounds to infect the fruit. Therefore, injuries caused during harvest and postharvest handling provide an optimal locus for infection. In this study, the effect of wound response in apples harvested at three different maturity stages and stored at two different temperatures (20 and 0 °C) infected with P. expansum (pathogen) and Penicillium digitatum (non-host pathogen) was evaluated. The effect of wounding and pathogen inoculation on lignin content was also quantified. At 20 °C, less decay incidence and severity were observed when time between wounding and inoculation increased, and these differences were more important in fruit from immature and commercial harvests. However, at 0 °C, wound response was too slow to prevent P. expansum infection. Lignin content was highest in fruit from the immature harvest. Our results indicated that maturity and storage temperature play an important role in apple wound response. This is the first report demonstrating that P. digitatum, a non-host pathogen, was able to develop rots in over-mature apples.  相似文献   

18.
In Israel, alternaria black spot (ABS), caused by Alternaria alternata, is the main postharvest factor that reduces quality and impairs storability of persimmon fruit Diospyros kaki cv. Triumph. The fungus infects the fruit in the orchard and remains quiescent until harvest, or starts development just before harvest, following rain or high humidity. During 2–3 months of storage at 0 °C, the pathogen colonizes the fruit, eliciting ABS symptoms. Susceptibility of the fruit to A. alternata attack is characterized by colonization in the upper, stem-end tissue, in contrast to lack of development at the bottom end. Comparison between the physiology of the stem-end and the bottom-end tissues showed greater production of ethylene and CO2 in the former during early stages of fruit growth, and greater cracked areas and reduced chlorophyll levels in the later stages of growth, before harvest. Increasing fruit weight by increasing irrigation in the orchard enhanced the cracked area and susceptibility to ABS during growth and at harvest. Wound inoculation enhanced ABS colonization in both ends of the fruit, but more significantly in the upper stem end. The present results suggest that the differential susceptibility to ABS during storage is caused by a differential ripening process, and possibly, by increased maturity at the stem end, leading to cracking and increased ABS development.  相似文献   

19.
From harvest to consumption, tomato (Solanum lycopersicum L.) fruit are exposed to several exogenous factors that enhance product deterioration. Phospholipase D is a key enzyme involved in membrane deterioration that occurs during fruit ripening and senescence. Hexanal, an inhibitor of phospholipase D has been successfully used for pre- and postharvest treatment of fruit, vegetables and flowers. In this study, effectiveness of pre- and postharvest application of an aqueous hexanal formulation and an enhanced freshness formulation (EFF) containing hexanal and other ingredients were evaluated by monitoring changes in quality parameters during postharvest storage of greenhouse tomatoes. Tomatoes subjected to preharvest spray with EFF containing 1 mM hexanal twice a week had better colour, and firmness than untreated fruit and hexanal formulation treated fruit. EFF treated tomatoes also showed low hue angle values indicative of enhanced red colour. Preharvest spray with 1 mM hexanal twice a week resulted in higher levels of ascorbic acid and soluble solids in fruit than those subjected to EFF treatment, and the control. Postharvest dip application of harvested tomatoes in 2 mM hexanal as EFF resulted in enhanced brightness and hue angle values, reduced red colour, increased fruit firmness and ascorbic acid content after 21 days of storage, indicative of better quality. The results suggest that hexanal has the potential to enhance shelf-life and quality of greenhouse tomatoes.  相似文献   

20.
Skin background colour is an important quality aspect in the grading of ‘Jonagold’ apples, with consumers usually preferring fruit with a green background colour. However, apple handlers are usually faced with large fruit-to-fruit variability of background colour within a population of fruit. In this study, a stochastic modelling approach was used to describe how the initial fruit-to-fruit variability in the background colour of ‘Jonagold’ apples present at harvest, propagates throughout the postharvest chain. Two hundred and twenty ‘Jonagold’ apple fruit were harvested and stored at 1 °C or 4 °C, under different controlled atmosphere (CA) conditions for 6 months, followed by 2 weeks exposure to shelf-life conditions, during which the background colour and ethylene production of the individual fruit were measured. A kinetic model was developed to describe the postharvest loss of skin greenness, by assuming that the loss was principally due to chlorophyll breakdown, the rate of which was dependent on the endogenous ethylene concentration. Stochastic model parameters were identified, and by treating these parameters as fruit-specific, the model could account for more than 95% of the variability of the data. By treating the stochastic model parameters as random factors, the Monte Carlo method was used to model and describe the propagation of the fruit-to-fruit variability of the background colour within a population of fruit. The model developed in this study might allow better management of variability in quality along the postharvest chain, by predicting how the initial fruit-to-fruit variability within a batch of apples will propagate throughout the postharvest chain, as a function of storage and shelf-life conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号