首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Euphorbia heterophylla populations endued with resistance to both imazethapyr (an acetolactate synthase inhibitor) and fomesafen (a protoporphyrinogen oxidase inhibitor) were first detected in Brazil in 2004. The objectives of this study were to determine the number and dominance of genes conferring imazethapyr and fomesafen resistance in E. heterophylla and to establish the types of inheritance of the resistance traits. It was hypothesised that two dominant nuclear genes control this herbicide resistance and each gene confers resistance to a single herbicide. We crossed a susceptible (S) and a multiple-resistant (R) E. heterophylla biotype and generated F1 families which, in turn, were self-fertilised to produce F2 families. Backcrosses of the F1 families with the S- and R parental biotypes resulted in BCs and BCr families respectively. The F1, F2, BCs and BCr families and the S and R parental biotypes were subjected to imazethapyr and fomesafen wherein each herbicide was used as a selecting agent. F1 plants and the S- and R parental biotypes were used to evaluate the dominance of the resistance trait in multiple-dose bioassays with imazethapyr and fomesafen. The observed frequencies of resistant plants in the F1, F2, BCs and BCr families did not significantly differ from the expected frequencies for a resistance trait regulated by two dominant genes in which each gene confers resistance to a single herbicide. The lack of difference in herbicide response between the F1 family and the R parental biotype was taken as evidence for completely dominant resistance to imazethapyr and fomesafen. Herbicide resistance in E. heterophylla presents with dominant monogenic nuclear inheritance for each herbicide mode of action. Our findings underscore the necessity and urgency of adopting integrated strategies to control E. heterophylla and to inhibit the evolution of new herbicide-resistant strains.  相似文献   

2.
为了明确M97抗条锈性遗传规律,在苗期用7个小麦条锈菌系对M97与感病品种铭贤169的杂交后代F1、F2、F3和BC1代进行抗条锈性遗传分析,并对M97抗Sun11-4的抗条锈基因进行SSR分子标记。M97对Sun11-4和Sun11-11的抗病性均由1对显性基因控制,对CY29、CY30、CY33的抗病性由1显1隐2对基因共同控制,对CY31的抗病性由2对显性基因独立或重叠作用控制。以接种Sun11-4的F2代分离群体构建作图群体,筛选到Xwmc222、Xwmc147、Xbarc229和Xwmc339等4个与抗病基因连锁的SSR标记,其遗传距离分别为3.4、4.8、7.6和12.1 cM。将该抗病基因定位于小麦1DS染色体,且该基因不同于已知的抗条锈基因,暂命名为YrM97。用YrM97两侧遗传距离最近的2个标记Xwmc222和Xwmc147对42个黄淮麦区主栽小麦品种进行分子检测,仅有9.5%的品种具有与YrM97相同的标记位点。  相似文献   

3.
Reliable in‐season and in‐field tools for rapidly quantifying herbicide efficacy in dicotyledonous weeds are missing. In this study, the maximum quantum efficiency of photosystem II (Fv/Fm) of susceptible and resistant Papaver rhoeas and Stellaria media populations in response to treatments with acetolactate synthase (ALS) inhibitors were examined. Seedlings (4–6 leafs) were transplanted into the field immediately after the application of the ALS inhibitors florasulam, metsulfuron‐methyl and tribenuron‐methyl. The Fv/Fm values were assessed 1–7, 9 and 14 days after treatment (DAT). Based on the Fv/Fm values of all fluorescing pixels in the images of herbicide‐treated plants, discriminant maximum‐likelihood classifiers were created. Based on this classifier, an independent set of images were classified into ‘susceptible’ or ‘resistant’ plants. The classifiers’ accuracy, false‐positive rate and false‐negative rate were calculated. The Fv/Fm values of sensitive P. rhoeas and S. media plants decreased within 3 DAT by 28–43%. The Fv/Fm values of the resistant plants of both species were 20% higher than those of the sensitive plants in all herbicide treatments. The classifier separated sensitive and resistant plants 3 DAT with accuracies of 62–100%. False‐positive and false‐negative classifications decreased with increasing DAT. We conclude that by the assessment of the Fv/Fm value in combination with the classification sensitive and resistant P. rhoeas and S. media populations could be separated 3 DAT. This technique can help to select effective control methods and speed up the monitoring process of susceptible and resistant weeds.  相似文献   

4.
Sprangletop (Leptochloa chinensis L. Nees) is a serious grass weed in direct‐seeded rice cropping systems in Thailand. One population of sprangletop, BLC1, was found to be resistant to fenoxaprop‐p‐ethyl at 62‐fold the concentration of a susceptible biotype, SLC1. This study elucidated the inheritance of resistance to fenoxaprop‐p‐ethyl in this sprangletop BLC1 genotype. The reaction to the herbicide at 0.12–2.4 mg ai L?1 was determined in the seedlings of self‐pollinated resistant BLC1, susceptible SLC1 and SLC1 that had been allowed to cross‐pollinate with BLC1. At 0.24 mg ai L?1, all the seedlings of SLC1 were killed, while 99% of BLC1 survived, along with 5% of the cross‐pollinated SLC1 seedlings, which were considered to be putative F1 hybrids. The root and shoot lengths of the F1 hybrids in 0.24 mg ai L?1 of fenoxaprop‐p‐ethyl, relative to those in the absence of the herbicide, were close to or the same as the resistant parent, indicating that the resistance is a nearly complete to complete dominant trait. One‐hundred‐and‐forty‐one of the F2‐derived F3 families were classified by their response to the herbicide at 0.24 and 0.48 mg ai L?1 into 39 homozygous susceptible : 72 segregating : 30 homozygous resistant, fitted with a 1:2:1 ratio at χ2 = 1.21 and P = 0.56, indicating that the resistance to fenoxaprop‐p‐ethyl in the sprangletop BLC1 genotype is controlled by a single gene.  相似文献   

5.
Timely detection of herbicide resistance at an early stage of crop cultivation is essential to help farmers find alternative solutions to manage herbicide resistance in their fields. In this study, maximum quantum yield of PS II [Fv/Fm = (FmFo)/Fm] was measured at the 4–5 leaf stage to discriminate between herbicide‐resistant and susceptible biotypes of Echinochloa species. The differences in Fv/Fm between herbicide‐resistant and susceptible Echinochloa spp. were consistent with the whole‐plant assay based on I50 (herbicide doses causing a 50% inhibition of Fv/Fm) and GR50 (herbicide doses causing a 50% reduction in plant fresh weight) values and R/S ratios (herbicide resistance index), regardless of the mode of action of the tested herbicides. A PS II inhibitor caused the fastest inhibition of Fv/Fm, compared with ACCase and ALS inhibitors, after herbicide treatment. The required time for discrimination between herbicide‐resistant and susceptible Echinochloa spp. was 64 h after PS II inhibitor treatment, much shorter than those of ACCase and ALS inhibitor‐treated plants, which required 168 and 192 h respectively. The leaf chlorophyll fluorescence assay provided reliable diagnostics of herbicide resistance in Echinochloa spp. with significant time savings and convenient measurement in field conditions compared with the conventional whole‐plant assay.  相似文献   

6.
Early blight of tomato (Lycopersicon esculentum) caused by Alternaria solani has the potential to become one of the most serious diseases throughout the tomato‐producing regions of Greece. Controlled environment experiments were conducted to study the virulence of A. solani isolates and the susceptibility of commercial tomato cultivars and hybrids to early blight. The isolates used, derived from naturally infected tomato plants during the period 1997/1998, differed significantly (P>0.05) in the rate of mycelial growth as well as in their ability to sporulate in vitro. No correlation (R2= 0.33) was found between mycelial growth and conidia production. Isolates of A. solani were virulent to young tomato plants (cv. Ace 55VF), although they differed significantly (P>0.05) in the intensity of symptoms produced on leaves, stems, petioles and flowers. Defoliation was linearly related (R2= 0.87) to the percentage of leaf area with symptoms. Twenty‐three tomato cvs. or F1 hybrids were evaluated for their susceptibility to early blight. The cultivars or hybrids were arbitrarily categorized as immune, highly tolerant, tolerant, moderately tolerant, susceptible and highly susceptible based on a percent disease index range: 0%, 1‐9%, 10‐24%, 25‐49%, 50‐74% and 75% or more respectively. None of the cultivars or hybrids tested was immune or tolerant to A. solani infection.  相似文献   

7.
Aegilops umbellulata, a non‐progenitor diploid species, is an excellent source of resistance to various wheat diseases. Leaf rust and stripe rust resistance genes from A. umbellulata were transferred to the susceptible wheat cultivar WL711 through induced homoeologous pairing. A doubly resistant introgression line IL 393‐4 was crossed with wheat cultivar PBW343 to develop a mapping population. Tests on BC2F7 RILs indicated monogenic inheritance of seedling leaf rust and stripe rust resistance in IL 393‐4 and the respective co‐segregating genes were tentatively named LrUmb and YrUmb. Bulked segregant analysis placed LrUmb and YrUmb in chromosome 5DS, 7.6 cM distal to gwm190. Aegilops geniculata‐derived and completely linked leaf rust and stripe rust resistance genes Lr57 and Yr40 were previously located in chromosome 5DS. STS marker Lr57/Yr40MAS‐CAPS16 (Lr57/Yr40‐CAPS16), linked with Lr57/Yr40 (T756) also co‐segregated with LrUmb/YrUmb. Seedling infection types differentiated LrUmb from Lr57. Absence of leaf rust‐susceptible segregants among F3 families of the intercross (IL 393‐4/T756) indicated repulsion linkage between LrUmb and Lr57. YrUmb expressed a consistently low seedling response under greenhouse conditions, whereas Yr40 expressed a higher seedling response. Based on the origin of LrUmb/YrUmb from the U genome and Lr57/Yr40 from the M genome, as well as phenotypic differences, LrUmb and YrUmb were formally named Lr76 and Yr70, respectively. These genes have been transferred to Indian wheat cultivars PBW343 and PBW550, and advanced breeding lines are being tested in state and national trials.  相似文献   

8.
A rapid glasshouse‐based bioassay method to screen large numbers of cotton plants for responses to Fusarium oxysporum f. sp. vasinfectum (Fov) was developed. Different Fov inoculum concentrations and methods of inoculation were assessed using resistant and susceptible cotton cultivars. Cotton seeds were planted directly into Fov‐inoculated soil. Studies of seed germination, seedling establishment, seedling mortality and fusarium wilt symptoms (i.e. stunting, foliar symptoms and vascular browning) were performed to optimize the bioassay parameters. Growing seedlings in Fov‐inoculated soils at 5 × 104 or 1 × 105 CFU g?1 soil, in individual seedling tubes with 12 h at 28–30°C and 12 h at 15–18°C, gave consistent results when assessing Fov disease responses 6 weeks after inoculation. When fusarium wilt resistance ranks (FWRRs) and vascular browning index (VBI) means of 18 Australian and other cotton cultivars from the Fov glasshouse bioassay were compared against their fusarium field performance ranks (F‐ranks), assessed on adult plants for cotton cultivar release, Pearson’s correlation was highly significant for both comparisons. The level of congruence between field and glasshouse data indicated that this protocol should be an effective tool for large‐scale screening for Fov‐resistance responses in diverse germplasm and breeding populations and for advancing genetic research to develop molecular markers for Fov resistance in cotton.  相似文献   

9.
BACKGROUND: Spinosad, a relatively new, effective and safe pesticide, has been widely used in pest control over the last 10 years. However, different levels of resistance to this insecticide have developed in some insects worldwide. RESULTS: After continuous selection for 27 generations, a strain (SpRR) of the housefly developed 247‐fold resistance to spinosad compared with the laboratory susceptible strain (CSS). The estimated realised heritability (h2) of spinosad resistance was 0.14. There was no significant difference in the LD50 values and slopes between reciprocal progenies F1 and F1′, and values of 0.33 (F1) and 0.30 (F1′) were obtained for the degree of dominance. Chi‐square analysis from responses of self‐bred (F2) and backcrosses (BC1 and BC2) were highly significant, suggesting that the resistance was probably controlled by more than one gene. Synergists piperonyl butoxide (PBO), diethyl maleate (DEM) and S,S,S‐tributyl phosphorotrithioate (DEF) affected the toxicity of spinosad at a low level, and demonstrated that metabolic‐mediated detoxification was not an important factor in conferring resistance to spinosad in the SpRR strain. CONCLUSION: It was concluded that spinosad resistance in the housefly was autosomal and incompletely dominant, and the resistance was probably controlled by more than one gene. These results provide the basic information for designing successful management programmes for the control of houseflies. Copyright © 2011 Society of Chemical Industry  相似文献   

10.

BACKGROUND

Cultivated bread wheat (Triticum aestivum L.) spontaneously hybridizes with wild/weedy related Aegilops populations, but little is known about the actual rates at which this hybridization occurs under field conditions. It is very important to provide reliable empirical data on this phenomenon in order to assess the potential crop–wild introgression, especially in the context of conducting risk assessments for the commercialization of genetically modified (GM) wheat, as gene flow from wheat to Aegilops species could transfer into the wild species genes coding for traits such as resistance to herbicides, insects, diseases or environmental stresses.

RESULTS

The spontaneous hybridization rates between wheat and A. geniculata and A. triuncialis, which are very abundant in the Mediterranean area, have been estimated for the first time in the northern part of the Meseta Central, the great central plateau which includes the largest area of wheat cultivation in Spain. Hybridization rates averaged 0.12% and 0.008% for A. geniculata and A. triuncialis, respectively. Hybrids were found in 26% of A. geniculata and 5% of A. triuncialis populations, at rates that can be ≤3.6% for A. geniculata and 0.24% for A. triuncialis.

CONCLUSION

The detection of Aegilops spp.–wheat hybrids in Aegilops populations indicates that gene flow can occur, although wheat is considered a crop with a low-to-medium risk for transgene escape. These data on field hybridization rates are essential for GM wheat risk assessment purposes. © 2023 Society of Chemical Industry.  相似文献   

11.
The plasmodiophoromycete Polymyxa betae is an obligate root parasite that transmits Beet necrotic yellow vein virus (BNYVV), the cause of sugar beet rhizomania disease. Currently, control of this disease is achieved through the use of cultivars with monogenic (Rz1) partial resistance to the virus. To improve the level and durability of this resistance, sources of resistance to the virus vector, P. betae, were sought. Over 100 accessions of the wild sea beet (Beta vulgaris ssp. maritima) from European coastal regions were evaluated for resistance in controlled environment tests. Quantification of P. betae biomass in seedling roots was achieved using recombinant antibodies raised to a glutathione‐s‐transferase expressed by the parasite in vivo. Several putative sources of resistance were identified and selected plants from these were hybridized with a male‐sterile sugar beet breeding line possessing partial virus resistance (Rz1). Evaluation of F1 hybrid populations identified five in which P. betae resistance had been successfully transferred from accessions originating from Mediterranean, Adriatic and Baltic coasts. A resistant individual from one of these populations was backcrossed to the sugar beet parent to produce a BC1 population segregating for P. betae resistance. This population was also tested for resistance to BNYVV. Amplified fragment length polymorphism and single‐nucleotide polymorphism markers were used to map resistance quantitative trait loci (QTL) to linkage groups representing specific chromosomes. QTL for resistance to both P. betae and BNYVV were co‐localized on chromosome IV in the BC1 population, indicating resistance to rhizomania conditioned by vector resistance. This resistance QTL (Pb1) was shown in the F1 population to reduce P. betae levels through interaction with a second QTL (Pb2) found on chromosome IX, a relationship confirmed by general linear model analysis. In the BC1 population, vector‐derived resistance from wild sea beet combined additively with the Rz1 virus resistance gene from sugar beet to reduce BNYVV levels. With partial virus resistance already deployed in a number of high‐yielding sugar beet cultivars, the simple Pb1/Pb2 two‐gene system represents a valuable additional target for plant breeders.  相似文献   

12.
Abstract

Metsulfuron methyl (Ally‐Dupont), a sulphonylurea herbicide, was tested at rates of 0.5–2.0 g a.i./ha for the control of Striga hermonthica (Del.) Benth. in two cultivars of sorghum in pot experiments. There was good to excellent Striga control at 1.0–2.0 g a.i./ha applied either pre‐emergence or post‐emergence to CSH‐1 or N‐13 sorghum. The herbicide was unacceptably toxic to the Striga‐susceptible CSH‐1 cultivar when applied pre‐emergence, thus eroding any benefits of Striga control. In the Striga‐tolerant N‐13 cultivar there were considerable increases in the growth of infected plants. The herbicide was better tolerated from post‐emergence applications by both cultivars, and CSH‐1 plants recovered enough growth from Striga infection to produce grain yields at 1–5 and 2.0 g a.i./ha. Herbicide application at 4 weeks after planting sorghum was less damaging than at 2 weeks. Herbicide safening with 1,8‐naphthalic anhydride did not provide any additional benefits with post‐emergence application. The efficacy of the pre‐emergence herbicide was similar with surface or incorporated application.  相似文献   

13.
A genetic cross between a Triticum isolate (pathogenic on wheat) and a Setaria isolate (pathogenic on foxtail millet) of Magnaporthe oryzae yielded several F1 cultures that were virulent on both wheat and foxtail millet at the primary leaf stage. To estimate whether these cultures survive in nature, they were sprayed onto 1-, 2-, and 3-week-old wheat and foxtail millet. As the age of the inoculated plants increased, the lesion number and size were greatly reduced. The F1 cultures were almost nonpathogenic on both wheat and foxtail millet at the 3-week-old stage. Cytological analysis revealed that the low pathogenicity of the F1 cultures on older plants was primarily associated with a reduced ability to penetrate the cuticle. When placed on wounded leaf surfaces, the F1 cultures produced large lesions on 4-week-old wheat and foxtail millet. These results indicate that hybridization between species-specific pathotypes results in a reduction of aggressiveness. We therefore suggest that, even if such hybrids were produced in nature, they might not survive in the natural environment.  相似文献   

14.
The effects of sub‐lethal dose of herbicide and nitrogen fertilizer on crop–weed competition were investigated. Biomass increases of winter wheat and a model weed, Brassica napus, at no‐herbicide treatment with increasing nitrogen were successfully described by the inverse quadratic model and the linear model respectively. Increases in weed competitivity (β0) of the rectangular hyperbola and parameter B in the dose–response curve for weed biomass, with increasing nitrogen were also successfully described by the exponential model. New models were developed by incorporating inverse quadratic and exponential models into the combined rectangular hyperbola with the standard dose–response curve for winter wheat biomass yield and the combined standard dose—response model with the rectangular hyperbola for weed biomass, to describe the complex effects of herbicide and nitrogen on crop–weed competition. The models developed were used to predict crop yield and weed biomass and to estimate the herbicide doses required to restrict crop yield loss caused by weeds and weed biomass production to an acceptable level at a range of nitrogen levels. The model for crop yield was further modified to estimate the herbicide dose and nitrogen level to achieve a target crop biomass yield. For the target crop biomass yield of 1200 g m?2 with an infestation of 100 B. napus plants m?2, the model recommended various options for nitrogen and herbicide combinations: 140 and 2.9, 180 and 0.9 and 360 kg ha?1 and 1.7 g a.i. ha?1 of nitrogen and metsulfuron‐methyl respectively.  相似文献   

15.
In winter wheat in the USA, Aegilops cylindrica is one of the most troublesome weeds, while the pathogen Oculimacula spp. causes foot rot disease. Imazamox‐resistant (IR) and foot rot‐resistant (FR) wheat cultivars represent effective tools to control the weed and prevent disease infection. However, resistance allele (RA) movement between wheat and A. cylindrica facilitates the introgression process under herbicide and disease selection pressure. Field experiments using IR and FR A. cylindrica plants intermixed with susceptible plants were conducted to measure the proportion of the RAs in the progeny and RA movement with and without herbicide and disease selection. Yield components of A. cylindrica plants were determined across treatments. The herbicide RA proportion in the progeny was greater when plants were treated with the herbicide imazamox in both years. Disease RA proportion was greater with disease occurrence only in one year. Herbicide RA movement from resistant to susceptible plants was greater with herbicide than without it only in one year. Plants carrying the RAs had greater total spikelet weight and 1000‐spikelet weight compared with susceptible plants with or without selection. However, susceptible plants produced more spikelets than the resistant ones in the absence of selection. If plants within an A. cylindrica population acquire the herbicide RA, its proportion will increase each generation under selection. These findings contribute to the understanding of crop allele introgression into related species and the evolution of increased weediness, with weed management implications.  相似文献   

16.
BACKGROUND: Auxinic herbicides are widely used for selective control of many broadleaf weeds, e.g. wild mustard. An auxinic‐herbicide‐resistant wild mustard biotype may offer an excellent model system to elucidate the mechanism of action of these herbicides. Classical genetic analyses demonstrate that the wild mustard auxinic herbicide resistance is determined by a single dominant gene. Availability of near‐isogenic lines (NILs) of wild mustard with auxinic herbicide resistance (R) and herbicide susceptibility (S) will help to study the fitness penalty as well as the precise characterization of this gene. RESULTS: Eight generations of backcrosses were performed, and homozygous auxinic‐herbicide‐resistant and auxinic‐herbicide‐susceptible NILs were identified from BC8F3 families. S plants produced significantly more biomass and seed compared with R plants, suggesting that wild mustard auxinic herbicide resistance may result in fitness reduction. It was also found that the serrated margin of the first true leaf was closely linked to auxinic herbicide resistance. Using the introgressed progeny, molecular markers linked to auxinic herbicide resistance were identified, and a genetic map was constructed. CONCLUSION: The fitness penalty associated with the auxinic herbicide resistance gene may explain the relatively slow occurrence and spread of auxinic‐herbicide‐resistant weeds. The detection of the closely linked markers should hasten the identification and characterization of this gene. Copyright © 2012 Society of Chemical Industry  相似文献   

17.
Susceptibility to SMY 1500 (4-amino-6-tert-butyl-3-ethylthio-1.2.4-triazin-5(4H)-one) was studied in durum wheat (Triticum durum Desf.) cultivars in growth-chamber assays. Weight reduction, photosynthesis inhibition and herbicide levels were determined at various times after a 24-h herbicide treatment in two cultivars of durum wheat, one cultivar of spring wheat (Triticum aestivum L). and in the weed Bromus diandrus (Roth). Measurements of weight reduction distinguished between plants tolerant and plants susceptible to SMY 1500. Tolerant cultivars showed a lower herbicide content and photosynthesis inhibition than susceptible plants after the 24-h treatment. Thereafter, herbicide levels and photosystem II inhibition decreased faster in tolerant plants. Comparison with previous work showed that plants tolerated doses of SMY 1500 about four times higher than of its analogue, metribuzin. Herbicide content in leaves just after treatment, and rate of detoxification may explain the selectivity of SMY 1500 in these cereals.  相似文献   

18.
Seeds of four winter wheat cultivars, Slejpner, Galahad, Avalon and Penman, were sown at depths ranging from 6–75 mm in soil in pots, and isoproturon or chlorotoluron was then applied to the soil surface. For chlorotoluron-treated plants (both pre- and post-emergence) the dose required to produce a 50% effect (ED50) was unaffected by depth of planting. In contrast, for isoproturon applied pre-emergence, the ED50 for both Avalon and Slejpner was strongly affected by sowing depth. Although chlorotoluron was much more active in a second experiment when applied post-emergence to Slejpner wheat, the ED50 for both herbicides increased with greater depth of sowing. Protection of wheat from isoproturon damage by deeper planting was enhanced if the adsorption capacity of the soil was raised from Kd 0.5 to 2.0 by incorporation of activated charcoal in the soil. Isoproturon entry into plants (as measured by the effect on rate of photosynthesis) was slower in those that had been sown deeper and were growing in more adsorptive soils, but there was no obvious relationship between these observations and isoproturon distribution in the soil profile. In nutrient culture the four wheat cultivars responded similarly to a range of doses of isoproturon. The chlorotoluron-sensitive cultivars, Slejpner and Galahad, were damaged by much lower doses of chlorotoluron than were Avalon and Penman. Bromus sterilis L. responded similarly to wheat with regard to its interaction with isoproturon and planting depth. Alopecurus myosuroides Huds., however, was less damaged by isoproturon when the zone above the seed was protected from the herbicide by growing the shoot through a plastic straw.  相似文献   

19.
小麦抗赤霉病3B-QTL和6B-QTL的遗传互作模式分析   总被引:1,自引:0,他引:1  
为明确来自抗赤霉病的小麦品种望水白的2个主效抗扩展3B-QTL和6B-QTL的抗性遗传和互作模式,基于分子标记辅助选择方法,构建了回交分离群体,以病小穗数(NDS)和病轴长(LDR)为鉴定指标,采用单花滴注接种法对携带3B-QTL和6B-QTL的BC_3F_1、BC_3F_2、BC_3F_3世代以及抗感对照进行了抗赤霉病扩展的表型鉴定和评价。结果表明,3B-QTL和6B-QTL在烟农19和矮抗58不同的背景中,杂合基因型与纯合望水白基因型之间的NDS和LDR差异显著;携带3B-QTL和6B-QTL株系的抗扩展性与只含有单个3B-QTL的株系无显著差异,但显著高于只携带单个6B-QTL株系的抗性,抗感分离比经卡方检验符合4∶3∶9的分离比例,遵循2个独立孟德尔遗传因子控制的隐性遗传模式,且3B-QTL隐性上位于6B-QTL。研究表明,望水白的3B-QTL和6B-QTL抗扩展效应强且稳定,可以作为抗赤霉病基因资源在育种实践中充分利用。  相似文献   

20.
Compared with natural seed dispersal, human‐mediated seed dispersal could spread herbicide resistance genes on a much larger scale. Herbicide‐resistant weed seeds have been reported as contaminants in commercial grain. We investigated the contamination of seeds of Lolium species with target‐site mutations conferring resistance to acetolactate synthase (ALS)‐inhibiting herbicides in wheat imported from the USA, Canada and Australia into Japan. We also investigated the establishment of ALS‐inhibiting herbicide‐resistant Lolium species in 12 seaports in Japan that are major entry points for international commodities. We found herbicide‐resistant Lolium spp. seeds from all classes of wheat samples. Resistant individuals became established at six of eight ports where more than 50 kt of imported wheat is unloaded every year. The establishment of resistant Lolium spp. individuals was common at major grain landing ports. Monitoring over 3 years at one port revealed that the frequency of resistant individuals did not fluctuate between years. Many resistant individuals were distributed in front of the entrance of a fodder company, but a few resistant individuals were found in areas 2 km away from the port. The results indicate that gene flow is rare through pollen or seed movement from resistant plants to peripheral populations. Further extensive and long‐term monitoring is necessary to perform a comprehensive risk assessment of herbicide‐resistant plants entering Japan through major commercial ports.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号