首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
To improve the properties of particleboard, boards were produced using a sealed press. With the sealed press, boards were processed under high-temperature and high-pressure steam. This increased the saturation temperature, causing a dramatic rise in temperature inside the board, faster curing of the binder, and a shorter pressing time. The boards were bonded with urea formaldehyde resin, melamine urea formaldehyde resin, or poly(methylene diphenyl diisocyanate) (PMDI). The sealed press improved the internal bond strength and thickness swelling of boards regardless of the binder used during the reduced pressing time. The increased bonding strength improved the board properties, allowing PMDI with a lower resin content to be used for bonding the boards.  相似文献   

2.
In this study, different properties of experimental particleboard produced using a sealed press were determined and were compared with those for particleboard produced using a conventional press. Three types of binder, namely urea formaldehyde (UF), melamine formaldehyde (MUF), and polymethylene diphenyl diisocyanate (PMDI), were used for board production. For the UF-bonded boards produced using the sealed press, the modulus of rupture and the internal bond strength (IB) decreased due to the high temperature and steam pressure used in comparison to the conditions in a conventional press. However, MUF- and PMDI-bonded boards had improved IB and thickness swelling (TS). For the PMDI-bonded boards, especially, the TS was further improved and IB was increased by using a sealed press. PMDI is known to possess superior properties and was confirmed to achieve good properties when used as a binder for particleboards produced using a sealed press.  相似文献   

3.
Abstract

Five-ply self-bonded boards were obtained by pressing beech veneers parallel to the grain without additional adhesives, steam or pre-treatment. Fifteen different combinations of pressing parameters were tested, including temperature (200°C, 225°C and 250°C), pressure (4, 5 and 6 MPa) and pressing time (240, 300 and 360 seconds). Due to severe pressing conditions, the new product showed a higher density and different properties compared to a conventionally glued laminated wooden board. The self-bonding quality was assessed through dry shear strength tests, through a three-point bending test and a water-soaking test at 20°C. The dimensions in the cross section of the boards were measured after soaking in water. Results show that the choice of pressing parameters affects all the mechanical and physical properties tested. A statistical analysis revealed that the pressing temperature is the most influential parameter. Boards pressed at 200°C delaminated rapidly in water, whereas boards pressed at 225°C delaminated only at core-positioned layers after 48 hours and boards pressed at 250°C did not delaminate at all in water. Compared to panels pressed at lower temperatures, boards pressed at 250°C had the highest density, a higher shear and bending strength and a lower water absorption.  相似文献   

4.
该研究以杂种毛白杨无性系(PopulustomentosaBL)4年生幼龄格为原料,应用喷蒸坟和传统热压两种方法来生产杨木刨花板.刨花板内施胶量为10%的脲醛树脂胶(UF),目标厚度分别取10,15,20,25mm,热压温度固定在180℃.喷蒸热压时所用饱和蒸汽的压力为03~05MPa,每种厚度下喷时间一定,取两个压时间;传统热压时每种厚度下各取4个热压时间.然后测定刨花板试件的力学强度和物理性能.在这部分里,主要讨论了责任中热压法生产的刨花板的静曲强度和内结合强度.结论为:相对于传统热压法,喷蒸热压可以明显缩短杨木刨花板生产所需的热压时间,而且使刨花板具有优异的内结合强度;但是,它对饱花板的静曲强度并没有显著影响  相似文献   

5.
复合工艺对竹/塑复合刨花板性能的影响   总被引:1,自引:0,他引:1  
利用聚乙烯(PE)粉末取代部分脲醛树脂(UF)胶黏剂,与竹刨花制备三层结构竹/塑复合刨花板。通过正交试验探讨PE添加量、UF施胶量、热压温度及热压时间对竹/塑复合刨花板主要物理力学性能的影响。结果表明:较优工艺组合为PE添加量6%、UF施胶量2%、热压温度205℃、热压时间12s/mm,竹/塑复合刨花板达到LY/T1842—2009《竹材刨花板》A类理化性能指标要求;2h吸水厚度膨胀率和甲醛释放量分别为2.6%和2.4mg/100g,与普通竹材刨花板对比,分别减少了54.4%和54.7%;静曲强度达到19.6MPa,提高了14.0%。采用PE粉末替代部分UF胶黏剂生产竹/塑复合刨花板可行,且具有广泛的应用前景。  相似文献   

6.
An air-injection press, which has holes punched in the heating plates, injects high-pressure air through the holes of one plate into particleboards and discharges the air and vapor through the other plate during press heating. The press can manufacture particleboards from high-moisture particles by preventing blowouts of the boards. In this study, the effects of pressing temperature were investigated by pressing boards at 190, 210, and 230°C. The internal bond strength increased from 0.43 to 0.60?MPa by raising the temperature from 190 to 210°C, but did not increase further when the temperature was raised to 230°C. Raising the temperature from 190 to 210°C also helped improve the thickness swelling. No relationship was found between the modulus of rupture and pressing temperature.  相似文献   

7.
To provide basic information on self-bonding in kenaf core binderless boards, a series of chemical analyses was conducted on binderless boards and their chemical changes during hot pressing were examined in our previous study. In this study, binderless boards were manufactured under conditions that may accelerate the supposed chemical changes to investigate their effect on the board properties. First, to investigate the influence of the chemical bonds formed by carbonyl compounds on self-bonding, the influence of acetic acid addition prior to board manufacturing was studied and the effect of methanol extractives (containing the carbonyl compounds) was also examined. Second, the influence of the condensation reaction in lignin was discussed from the viewpoint of board density. Last, to examine the influence of thermal softening of lignin, the influences of temperature condition and moisture content, as well as those of microwave pretreatment, were investigated. As a result, the estimated chemical changes were suggested to influence the binderless board properties.  相似文献   

8.
Self-bonding is the main factor of the performance expression of binderless boards, and therefore its clarification is considered to be an important issue. For this purpose, a series of chemical analyses were conducted on kenaf core binderless boards and their chemical changes during the hot-pressing process are discussed in this article. First of all, binderless boards were prepared from kenaf core powder at different pressing temperatures (without steam-explosion process) and were used for chemical analyses after they were reduced into powders and extracted with methanol. To investigate their chemical changes, lignin, holocellulose, and neutral sugar contents were determined, Fourier transform infrared (FTIR) spectra were recorded, and the nitrobenzene oxidation procedure was applied. As a result, it was found that parts of lignin and hemicelullose were decomposed during the hot-pressing process; however, the contribution of the resulting fractions to selfbonding was not observed. In addition, progress of condensation reactions in lignin and the formation of chemical bonds by low molecular weight conjugated carbonyl compounds in methanol extractives were observed. Thermal softening of lignin is also suggested to play an important role in the expression of board performance.  相似文献   

9.
热压法制备速生杉木集成材工艺   总被引:1,自引:0,他引:1  
采用脲醛树脂胶粘剂,运用热压胶合工艺,对速生杉木进行指接与侧拼胶合后制成集成材,并进行横向静曲强度和弹性模量测试:分析热压法制备速生杉木集成材的工艺可行性,讨论侧拼压力、胶合时间与热压温度对速生杉木集成材横向静曲强度与弹性模量的影响,为速生杉木集成材的热压法生产提供理论依据。试验结果表明,在本研究试验条件内,采用脲醛树脂作为胶粘剂,运用热压法制备速生杉木集成材是可行的。  相似文献   

10.
An air-injection press, which has holes punched in the heating plates, injects high-pressure air through the holes of one plate into boards during press heating. The air-injection press can manufacture boards from high-moisture-content particles by controlling blowouts of the boards. In this study, boards were manufactured from particles that had a moisture content of 25% by using the air-injection press, which reduced the required pressing time. Boards manufactured by injecting air through holes of 5 mm in diameter were of poor quality with a low internal bond strength of only 0.31 MPa. When the hole diameter was reduced to 1 mm, the internal bond strength increased to 0.44 MPa. A high air-injection pressure of 0.55 MPa also resulted in improved board properties over those for boards manufactured at lower pressures. This was probably because a large amount of binder was released from boards through the 5-mm holes, together with water vapor, during air injection; the small-diameter holes reduced the release of binder, resulting in better board properties.  相似文献   

11.
Manufacture and properties of ultra-low-density fiberboard   总被引:6,自引:0,他引:6  
Low-density fiberboards with densities ranging from 0.05 to 0.50g/cm3 were manufactured with steam injection pressing. Bond-type and foam-type isocyanate compound resin adhesives were used separately at 10% and 30% resin content levels. Two types of different-size fibers from softwood were used. Mechanical, dimensional, thermal, and sound insulation properties of the fiberboards were tested. The results are as follows: (1) Bond-type isocyanate adhesive showed higher mechanical and dimensional properties of low-density fiberboards than the foam-type adhesive. (2) Fiberboards produced from small fibers have better mechanical and dimensional properties than those made from large fibers. (3) Thermal conductivity of fiberboards depends more on the board density than on the type of resin or fiber dimension. At a board density lower than 0.2 g/cm3, the thermal conductivity is almost equivalent to those of thermal insulation materials such as polystyrene foam and rock wool, (4) Generally, the sound absorption coefficient of low-density fiberboards tends to increase at higher sound frequency. As the board thickness increases, low-frequency sounds are more readily absorbed by boards.Part of this report was presented at the 46th annual meeting of the Japan Wood Research Society, Kumamoto, April 1996  相似文献   

12.
This paper describes the features of binderless particleboard manufactured from sugarcane bagasse, under a high pressing temperature of 200–280 °C. Mechanical properties [i.e., modulus of rupture (MOR) and elasticity (MOE) in dry and wet conditions, internal bonding strength (IB)] and dimensional stability [i.e., thickness swelling (TS)] of the board were evaluated to investigate the effect of high pressing temperature. Recycled chip binderless particleboards were manufactured under the same conditions for comparison, and particleboards bonded with polymeric methylene diphenyl diisocyanate (PMDI) resin were manufactured as reference material. The target density was 0.8 g/cm3 for all of the boards. The results showed that the mechanical properties and dimensional stability of both types of binderless boards were improved by increasing the pressing temperature. Bagasse showed better performance than that of recycled chip as a raw material in all evaluations. Bagasse binderless particleboard manufactured at 260 °C had an MOE value of 3.5 GPa, which was equivalent to the PMDI particleboard, and a lower TS value of 3.7 % than that of PMDI particleboard. The MOR retention ratio under the dry and wet conditions was 87.0 %, while the ratio for the PMDI particleboard was only 54.6 %. The obtained results showed the possibility of manufacturing high-durability binderless particleboard, with good dimensional stability and water resistance, which previously were points of weakness for binderless boards. Manufacturing binderless boards under high temperature was effective even when using particles with poor contact area, and it was possible to express acceptable properties to allow the manufacture of particleboards. Further chemical analysis indicated a contribution of a saccharide in the bagasse to the improvement of the board properties.  相似文献   

13.
Comparison of the pressing behaviour of wood particleboard and strawboard   总被引:2,自引:0,他引:2  
To improve the understanding of strawboard manufacturing processes, mat pressing behaviour of wood particleboard and strawboard bonded with urea formaldehyde resins were experimentally investigated and compared in terms of mat compressibility, transverse permeability, mat pressure, core temperature, core gas pressure and vertical density profile. The results have shown that straw particles are much more compressible and therefore require less platen pressure for pressing. Compared to wood particle and refined straw particle mats, hammer milled straw mats have low permeability and subsequently show high core gas pressure and high maximum core temperature during hot pressing, in addition to large differential densities between surface and core layers in the final pressed boards. It is recommended that a slower press closing rate and longer press opening time be used to develop the strawboard pressing schedule.  相似文献   

14.
An air-injection press (AIP) was developed to prevent accidental blowouts of boards during production. In this study, the effects of the AIP on preventing blowouts were investigated by artificially creating a blowout-prone condition, and the press was shown to be effective in preventing blowouts. The modulus of rupture of the boards was almost constant irrespective of pressing time. Longer pressing time resulted in higher internal bond strength when pressed at 170 °C. The thickness swelling of the boards pressed at 170 or 190 °C was almost uniform irrespective of pressing time, and the manufactured boards showed performance similar to those manufactured with an ordinary press. The AIP prevented blowouts sufficiently even when the pressure of the injected air was reduced, and this reduction did not adversely decrease the performance of the boards. Air injection reduced formaldehyde emissions from the board.  相似文献   

15.
The physical and mechanical properties of boards treated with a preservative at different points during the manufacture process were evaluated to determine the best stage for the application of preservative. A copper boron tebuconazole amine water-based preservative was used in 3% PF-bonded strand boards to achieve five different retentions. Preservative addition was examined at different stages of the manufacture cycle, namely, green strand diffusion, dry strand vacuum treatment, glue-line spray addition, heat and cold quench of manufactured board, and by post-manufacture vacuum treatment. The treatment methods had marked effects on the mechanical properties of some of the boards when the boards with the highest preservative retention were compared with their respective untreated controls. The best results were achieved where the preservative was applied by vacuum treatment of dry strands or by diffusion of green strands before board manufacture. Increasing preservative retention had minimal effects on board properties with these two methods but significant deterioration was noted when the preservative was applied by spraying dry strands or by post-board-manufacture heat and cold quench. An increase of pressing temperature resulted in significant improvements to the mechanical properties of the spray-treated boards. Post-manufacture vacuum treatment of boards caused excessively high losses in internal bond strength.  相似文献   

16.
研究热压温度、板材密度和施胶量3个生产工艺参数对薄长刨花板静曲强度、弹性模量、内结合强度及吸水厚度膨胀率的影响,得出最佳生产工艺条件。经过对实验数据进行分析,得出热压温度、板材密度和施胶量对刨花板各项物理力学性能均有一定的影响,其中板材密度和热压温度对板材各项物理力学性能影响最大。高密度刨花板最佳工艺条件为:热压温度155℃,板材密度0.88g/cm^3,施胶量12%  相似文献   

17.
High-density and high-resin-content boards were produced by phenolic resin impregnation into board materials prepared by the water-vapor-explosion process (WVE) to develop high-durability wood composite boards for exterior use. Wet-dry cyclic tests and accelerated weathering tests were conducted, and the fundamental properties were determined to examine the effect of resin impregnation on board qualities. Bending and internal bond strength of resin-impregnated boards (I-board) satisfied the criterion for 18-type particleboard described in JIS A 5908. Thickness swelling (TS) after 24-h water immersion was approximately 2%. Resin impregnation improved the dimensional stability of the boards. In wet—dry cyclic testing, TS of I-board was the same as that of plywood. The retention ratio of modulus of rupture of I-board was large; thus, I-board had high bond durability. Color change of I-board was less than that of ordinary particleboard after a 500-h accelerated weathering test. I-Board had lower surface roughness than boards produced by a spray application method (S-board) and higher water repellency, although the difference in resin contents of the face layer was small. Thus, it is suggested that the surface properties and weatherability of I-board were improved by impregnation of phenolic resin. High-density and resin-impregnated boards made from the WVE elements are expected to withstand actual exterior use. Part of this report was presented at the 54th Annual Meeting of the Japan Wood Research Society, Sapporo, August 2004  相似文献   

18.
采用巨尾桉基材、胶合剂聚乙烯膜制备三层木塑复合材料,分析热压温度、热压时间、热压压力、施胶量这四个因素对复合材料胶合强度的影响。结果表明:在热压温度160℃、热压时间50s/mm、热压压力0.7MPa、施胶量为119g/m2的工艺条件下,巨尾桉/聚乙烯膜复合材料的胶合性能最优,能够达到II类胶合板标准。  相似文献   

19.
This study was carried out to elucidate the effect of defibration temperature in the range 171–202°C on the properties of 12-mm thick MDF boards made without synthetic resins from softwood fibers activated by laccase treatment for the generation of phenoxy radicals on the fiber surfaces. Laccase treatment generated radicals in the fibers. An increase in defibration temperature improved the reactivity of fibers during laccase-catalyzed oxidation. The number of radicals detected in the fibers after laccase treatment in water suspension and the fiber oxygen consumption during the treatments increased with an increase in defibration temperature, while a concurrent improvement was observed in the mechanical strength and thickness swell of dry-process MDF boards made from fibers refined at different temperatures and treated with laccase in the refiner blowline. The different fiber reactivities or board properties were not due to a presence of different amounts of lignin remaining on the fiber surfaces after acetone extraction. The probable reason for them was the fact that the amount of low-molecular weight lignin, a reactive substrate for laccase, increases with increasing defibration temperature. The adhesion occurring during pressing is thus likely to involve coupling or other reactions of radicals located on adjacent fibers, whereby interfiber covalent bonds are formed.  相似文献   

20.
The effectiveness of air injection for preventing the blowout of particleboards manufactured using a radio-frequency hot press was investigated by evaluating the board properties under artificially created conditions that were conducive to blowout. For evaluation, 10-mm-thick boards with densities of 0.7 and 0.8 g/cm3 and 20-mm-thick boards with a density of 0.7 g/cm3 were manufactured. Pressing times for the 10-mm-thick boards were 2, 4, 6, and 8 min, and those for the 20-mm-thick boards were 4, 6, 8, and 10 min. Without air injection, blowout occurred in all manufactured boards. With air injection, however, blowout did not occur in the 10-mm-thick boards with a density of 0.7 g/cm3. Moreover, air injection prevented blowout even when the board density and board thickness were increased to 0.8 g/cm3 (for 10-mm-thick boards) and 20 mm (the density was kept at 0.7 g/cm3), respectively. Air-injection radio-frequency pressing reduced the pressing time from 4 to 2 min for 10-mm-thick boards, and from 6 to 4 min for 20-mm-thick boards. Moreover, this reduction in the pressing time was achieved without a large reduction in the internal bond strength of the boards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号