首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this note, it is shown that the integrated likelihood for the Royle–Nichols model with a Poisson mixing distribution can be expressed as a finite rather than an infinite sum of terms. The advantages which so accrue are discussed and explored by means of two examples. The finite sum formulation of the likelihood is also shown to hold for negative binomial and zero-inflated mixing distributions. Results based on these two mixing distributions proved disappointing however and their use is not recommended unless extensive data are available.  相似文献   

2.
This study aims to provide basic data to support accurate estimation of carbon stocks and reveal the physicochemical factors that influence the carbon cycle in saline–alkali soils. Soil samples were collected during initial freezing, complete freezing, initial thawing and complete thawing stages. Levels of soil organic carbon (SOC), soil inorganic carbon (SIC), moisture, salinity, pH and available nitrogen were determined, and variations were observed during the freezing and thawing periods. Correlation analysis and regression analysis of carbon contents and physicochemical properties were performed. The results showed that freeze–thaw cycles have significant effects on carbon contents. The SOC content initially decreased in the freezing stage and then increased in the thawing stage. However, the SIC content initially increased in the freezing stage, decreased in the initial thawing stage and finally increased in the complete thawing stage. The migration and transformation of SOC and SIC were observed both temporally and spatially. SOC was positively correlated with available nitrogen, moisture and salinity and negatively correlated with pH; while SIC was negatively correlated with available nitrogen, moisture and salinity and positively correlated with pH. Among the factors evaluated, available nitrogen and salinity exerted the greatest effects on SOC and SIC contents, respectively.  相似文献   

3.
The objective of this study was to examine the effect of soil pH on zinc (Zn) sorption and desorption for four surface soils from the Canterbury Plains region of New Zealand. Zinc sorption by the soils, adjusted to different pH values, was measured from various initial solution Zn concentrations in the presence of 0.01 M calcium nitrate [Ca(NO3)2]. Zinc desorption isotherms were derived from the cumulative Zn desorbed (µg g?1 soil) after each of 10 desorption periods by sequentially suspending the same soil samples in fresh Zn‐free 0.01 M Ca(NO3)2. Zinc sorption and desorption varied widely with soil pH. Desorption of both native and added Zn decreased continuously with rising pH and became very low at pH values greater than 6.5. The proportion of sorbed Zn that could be desorbed back into solution decreased substantially as pH increased to more than 5.5. However, there were differences between soils regarding the extent of the hysteresis effect.  相似文献   

4.
Field experiments were conducted at two locations in order to formulate phosphorus and potassium fertilizer recommendations of groundnut (Arachis hypogea) based on Mitscherlich–Bray equation. The treatments comprised four levels of phosphorus (0, 30, 60, and 90 kg phosphorus pentoxide (P2O5) ha?1) and three levels of potassium (0, 30, and 60 kg potassium oxide (K2O) ha?1) in all possible combinations. Theoretical maximum yield of groundnut was calculated by plotting log y (pod yield) versus 1/x (amount of nutrients applied). Fertilizer recommendation for various soil fertility levels and yield target were developed, and their validities were tested by conducting two field verification trials on the same soil. The results showed that although general recommended fertilizer dose resulted in highest yield of groundnut at both the locations, but value cost ratio and rate of increase in income were lowest with this fertilizer treatment, and 90% of maximum yield treatment was superior in terms of economics of fertilizer and risk factor.  相似文献   

5.
To reduce water loss in light-textured soils, hydraulic conductivity should be reduced by mixing the soils with some soil conditioners, e.g. sodium-bentonite. The objectives of this study were to investigate the effects of irrigation water with different bentonite concentrations (0, 0.05, 0.1, 0.15 and 0.2%) on hydraulic gradient (i) and relative saturated hydraulic conductivity (K rs) in a laboratory soil column with a loamy sand soil. Addition of sodium-bentonite to the soil increased i throughout each experiment. Furthermore, addition of bentonite reduced K rs, and a 0.2% bentonite–water concentration after infiltration of 48 mm of bentonite–water mixture (BWM), reduced the K rs value to 56% of K s. K rs was reduced as the concentrations of bentonite increased and its value reached ~0.5 to 0.6 as the infiltration of BWM increased. The lowest value of K rs and the greatest reduction rate occurred at a bentonite concentration of 0.2%. It is concluded that BWM can be used as a channel liner. Using a 0.2% bentonite concentration resulted in a reduction in the seepage ratio from 1.0 to 0.08.  相似文献   

6.
The effects of organic manure supplementation on rice–pulse cropping system productivity were studied. Three pulses, viz., blackgram, greengram and pea were grown after rice on the same plots to explore the feasibility of growing second crops with carry-over residual soil moisture and residual soil fertility. The study revealed that during the rainy season, 30%–35% higher rice grain yield was obtained when both inorganic and organic sources of nutrients were applied compared with the full dose of inorganic fertilizer, and the rice grain yield was 65%–78% higher than obtained following farmers’ practices. In the post-rainy season, pea crop recorded the highest grain yield of 490 kg ha-1 under the treatment combination of Sesbania and inorganic fertilizer. Organic carbon, and available N, P, K also enhanced yield by 20%–29%, 5.0%–29.4% to 7.9%–39.9% and 22.4%–60.3%, respectively when 25% N was applied through different organic sources of nutrients (green manure/press mud/farmyard manure).  相似文献   

7.
Abstract

The Shoemaker–McLean–Pratt (SMP) buffer test is commonly used in Pennsylvania and throughout the United States to determine the lime requirement (LR) of acid soils. The buffer contains potassium chromate, a carcinogen, and all waste must be collected for disposal in a hazardous waste facility. An alternative to the SMP buffer is the Mehlich buffer. Although the Mehlich buffer contains barium chloride (BaCl2), also a hazardous and regulated compound, calcium chloride (CaCl2) has been shown to be an effective substitute. The goal of this study was to compare the SMP buffer and the modified Mehlich buffer (CaCl2 substituted for BaCl2) for estimating LR on PA soils and to determine if the modified Mehlich buffer could provide an effective alternative to the SMP test. Twenty‐two agriculturally important Pennsylvania soils with pH values ranging from 4.5 to 6.4 were collected, and the actual LR of each soil was determined by incubating soils for 3 months with calcium carbonate. The modified Mehlich buffer was a more accurate predictor of the lime required to raise soils to either pH 6.5 (r2=0.92) or 7.0 (r2=0.87) in comparison to the SMP buffer (r2=0.87 and 0.82, respectively). Comparison of calibration equations for Mehlich buffer versus lime requirement derived in this study were similar to those developed on soils from other states and geographic regions.  相似文献   

8.
Abstract

A small‐plot field experiment on microelement pollution (Aluminum (Al), Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Lead (Pb), Zinc (Zn)) was initiated in 1994 at Tass‐puszta Model Farm of Gyöngyös College, Hungary. The experimental plants were winter wheat (Triticum aestivum L. emend. Fiori et Pool.) in 1995, maize (Zea mays L.) in 1996, and sunflower (Helianthus annuus L.) in 1997. Plant samples were taken each year during the vegetation period at phenophases characterized by intensive nutrient uptake. The Al content of crops was not influenced by Al load of the soil. Arsenic accumulation was not considerable in the grain with the highest As load. Cadmium accumulation was significant both in vegetative and reproductive parts of crops with increasing Cd loads of the soil. The Cd content was about 10–40 times higher in treated sunflower seeds than in the control; as a result the seeds were not suitable for consumption. Cadmium can accumulate in the reproductive tissue, so it is a real risk in the food chain. In the first year, Cr(VI) had a toxic effect on wheat, but it was not mobile in the soil–plant system. Vegetative parts of winter wheat accumulated significant amounts of Hg, but maize and sunflower seeds did not accumulate Hg. Lead, Cu, and Zn showed only moderate enrichment in crops following increasing loads in the soil.  相似文献   

9.
A transition period of at least 2 years is required for annual crops before the produce may be certified as organically grown. There is a need to better understand the various management options for a smooth transition from conventional to organic production. The purpose of this study was to evaluate the effects of different organic amendments and biofertilizers (BFs) on productivity and profitability of a bell pepper–french bean–garden pea system as well as soil fertility and enzymatic activities during conversion to organic production. For this, the following six treatments were established in fixed plots: composted farmyard manure (FYMC, T1); vermicompost (VC, T2); poultry manure (PM, T3) along with biofertilizers (BF) [Rhizobium/Azotobacter + phosphorus solubilizing bacteria (Pseudomonas striata)]; mix of three amendments (FYMC + PM + VC + BF, T4); integrated nutrient management (FYMC + NPK, T5); and unamended control (T6). The yields of bell pepper and french bean under organic nutrient management were markedly lower (25.2–45.9% and 29.5–46.2%, respectively) than with the integrated nutrient management (INM). Among the organic treatments, T4 and T1 produced greater yields of both bell pepper (27.96 Mg ha?1) and french bean (3.87 Mg ha?1) compared with other treatments. In garden pea, however, T4 gave the greatest pod yield (7.27 Mg ha?1) and was significantly superior to other treatments except T5 and T1. The latter treatment resulted in the lowest soil bulk density (1.19 Mg m?3) compared with other treatments. Similarly, soil organic C was significantly greater in all the treatments (1.21–1.30%) except T2 compared to T6 (1.06%). Plots under INM, however, had greater levels of available nitrogen–phosphorus–potassium (NPK) than those under organic amendments. T1 plots showed greater dehydrogenase and acid phosphatase activities compared with other treatments. However, T4 and T5 plots had greater activities of β-glucosidase and urease activities, respectively. The cost of cultivation was greater under organic nutrient management (except T2) compared with INM. The latter treatment gave greater gross margin and benefit/cost (B/C) ratio for all vegetables, except that T2 gave greater B/C ratio in garden pea compared with other treatments. We conclude that T1 and T4 were more suitable for enhancing the productivity of bell pepper–french bean–garden pea system, through improved soil properties, during transition to organic production.  相似文献   

10.
The effect of microwave and microwave–chemical pre-treatments on densification characteristics and physical quality of pellets made from wheat and barley straw grinds were investigated. The ground wheat and barley straw samples were immersed in water, sodium hydroxide or calcium hydroxide solution at different concentrations (1 and 2% w/v) and then exposed to microwave radiation at three power levels (295, 603 and 713 W). Chemical composition and bulk and particle densities of samples were determined after pre-treatments. Pre-treated grinds were compressed in a plunger–die assembly with a force of 4000 N and compression and relaxation test data were recorded. The specific energy required for compression and ejection of pellets produced from untreated and pre-treated wheat and barley straw grinds was calculated. The tensile strength of the pellets was also evaluated to investigate the hardness of the pellets. Chemical composition analysis showed that microwave and chemical pre-treatment was significantly able to disintegrate the lignocellulosic structure of wheat and barley straw grinds. Data analysis also indicated that the pellets made from microwave–chemical pre-treated biomass grinds had a significantly higher density and tensile strength than the untreated or samples pre-treated by microwave and distilled water.  相似文献   

11.
Wang Genxu  Li Yuanshou  Wang Yibo  Wu Qingbo 《Geoderma》2008,143(1-2):143-152
Bearing a total organic carbon (TOC) content of 9.3–10.7 kg C/m2, alpine grassland soils of the Qinghai–Tibet plateau's permafrost region bear a greater organic carbon pool than do grassland soils in other regions of China or than tropical savannah soils. The easily released light fraction organic carbon (LFOC) accounts for 34–54% of the TOC and is particularly enriched in the topsoil (0–0.10 m). The LFOC in the organic carbon pool of alpine cold meadow and alpine cold steppe soils decreased at exponential and quadratic rates, respectively, as the vegetative cover decreased. When the vegetative cover of alpine cold meadows decreased from > 80 dm2/m2 to 60 dm2/m2, the topsoil TOC and LFOC dropped by 20.4% and 38.4%, respectively. Similarly, when the vegetative cover of alpine cold meadow decreased from 50 dm2/m2 to 30 dm2/m2 and < 15 dm2/m2, the topsoil LFOC content dropped by 60% and 86.7%, respectively. Under climatic warming, the degradation of permafrost and vegetation have resulted in serious soil organic carbon (SOC) loss from the carbon pool. Land cover changes that occurred between 1986 and 2000 are estimated to have resulted in a 1.8 Gg C (120 Mg C/yr) loss in SOC, and a concomitant 65% decrease in the LFOC, in the 0–0.30 m soil layer in the Qinghai–Tibet plateau's permafrost regions. Since the region's ecosystems are quite sensitive to global climate changes, if global warming persists, alpine cold grassland ecosystems are expected to further degrade. Hence, the influence of global climatic change on soil carbon emissions from alpine grasslands should receive more attention.  相似文献   

12.
Abstract

It was hypothesized that supplying potassium (K) in concentrated complex fertilizer (CCF) form with nitrogen (N) (NK CCF) to all fertilizer microsites, rather than in NK‐blended fertilizer form to a fraction of the total fertilizer microsites, should enhance the rate of K uptake by perennial ryegrass. Two complementary pot experiments were conducted to test this hypothesis. The results demonstrated that plants fertilized with an NK CCF absorbed K at faster rates than those fertilized with an NK blend and that use of K2SO4 in place of KCl as the K source lowered the rate of K uptake by plants regardless of fertilizer form. Form of fertilizer (i.e., CCF or blend), however, had no effect on NH4 + or NO3 ? uptake. Unfortunately, the positive effects of the CCF on K absorption were only manifest during the second 2 weeks of regrowth and did not result in significant improvements in dry matter production by the end of the 5‐week regrowth periods.  相似文献   

13.
14.

Purpose

Adsorption and desorption are important processes that influence the transport, transformation, and bioavailability of atrazine in soils. Equilibrium batch experiments were carried out to investigate the adsorption–desorption characteristics of atrazine. The objectives of this study were to (1) determine and quantify the main soil parameters governing atrazine adsorption and desorption phenomena; (2) find the correlativity between the identified soil parameters; and (3) investigate the universal desorption hysteresis traits.

Materials and methods

Fifteen soils with contrasting physico-chemical characteristics were collected from 11 provinces in eastern China. The equilibrium time was 24 h both for adsorption and desorption experiments. Atrazine was detected by Waters 2695/UV HPLC.

Results and discussion

Adsorption isotherms of atrazine could be well described by the Freundlich equation (r?≥?0.994, p?<?0.01). The total organic carbon (TOC) was the first independent variable that described 53.0 % of the total variability of K f, followed by the pH (9.9 %), and the clay (4.0 %) and silt (1.2 %) contents, separately; while the primary soil properties that affect desorption parameters included the TOC, pH, free Fe2O3 (Fed) and the sand content, with the biggest contribution achieved by the TOC (ranged from 48.5–78.1 %). The results showed that when the content ratio of clay to TOC (RCO) was less than 40, the atrazine adsorption was largely influenced by the organic matrix, while when the RCO was greater than 40, they were vital affected by the clay content.

Conclusions

Adsorption–desorption isotherms of atrazine in soils were nonlinear. The content of TOC, clay, and iron oxides, as well as the pH value were the key soil parameters affecting the adsorption–desorption of atrazine in soil, among which the RCO especially exhibited relevance. Additionally, the desorption hysteresis existed for atrazine retention in all 15 tested soils, and the hysteretic effect enhanced with the increasing time for desorption. This would be ascribed to the heterogeneity physical–chemical properties of these soils.  相似文献   

15.

Purpose

Enhancing desorption of hydrophobic organic contaminants from soils is a promising approach for the effective remediation of soils contaminated with organic compounds. The desorption efficiency of chemical reagent, such as surfactant, should be evaluated. In this study, the effect of mixed anionic–nonionic surfactants sodium dodecylbenzene sulfonate (SDBS)–Tween 80 on the distribution of polycyclic aromatic hydrocarbons in soil–water system was evaluated.

Materials and methods

Batch desorption experiments were employed to evaluate the distribution of polycyclic aromatic hydrocarbons (PAHs) and surfactants in soil–water system. PAHs and SDBS were determined by high-performance liquid chromatography, Tween 80 by spectrophotometry, and total organic carbon with a carbon analyzer.

Results and discussion

Sorption of PAHs to soil was increased at low surfactant concentration due to the effective partition phase on soil formed by sorbed surfactants. The mixture of anionic and nonionic surfactants decreased the sorption of surfactants to soil, increasing the effective surfactant concentration in solution and thus decreasing the sorption of PAHs on soil. Anionic–nonionic mixed surfactant showed better performance on desorption of PAHs from soil than single surfactant. The greatest desorption efficiency was achieved with low proportions of SDBS (SDBS/Tween80?=?1:9).

Conclusions

SDBS–Tween 80 mixed surfactant showed the highest desorption rate with low proportion of SDBS, which indicated that the addition of relative low amount of anionic surfactant could significantly promote the desorption efficiency of PAHs by nonionic surfactants. Results obtained from this study did provide useful information in surfactant-enhanced remediation of soil and subsurface contaminated by hydrophobic organic compounds.  相似文献   

16.
Abstract

Two soybean varieties were grown at different P levels to test tolerance to high levels of P. When Hawkeye and PI54619–5–1 soybeans, Glycine max (L.) Merr. Bragg, were grown in solution culture with NH4 H2 PO4 increasing from 10‐4 M to 3 × 10‐2 M, yields of Hawkeye were decreased more by the highest P levels than were those of PI54619–5–1. The high P also resulted in larger concentrations of Zn, Cu, and other heavy metals in Hawkeye man in PI54619–5–1. Phosphorous concentrations were generally higher for Hawkeye than for the PI54619–5–1 soybeans. PI54619–5–1 leaves contained less of most metals than the Hawkeye.  相似文献   

17.
In the present investigation, the long-term effect of pulse crop inclusion in the maize-wheat rotation was assessed for the nutrient availability and soil-plant nutrient cycling under different nutrient management practices. Including pulses in the maize-wheat rotation improved soil organic carbon (SOC) and plant available macronutrients being higher in maize-wheat-mungbean rotation. Inclusion of mungbean to maize-wheat rotation enhanced the nitrogen (33.9%), phosphorus (46.4%), potassium (36.3%), and sulphur (55.5%) uptake in maize crop; likewise, alternate-year chickpea inclusion increased the uptake of these nutrients by 18.2, 19.1, 21.7, 32.1%, respectively. Inorganic fertilization maintained the positive annual balance of nitrogen, phosphorus, and zinc. By contrast, the nutrient balance under organic nutrient management was mostly negative. The magnitude of negative balance of potassium and sulphur was higher in inorganic than that of organic nutrient management. The low nutrient supply (particularly nitrogen) in organic fertilization largely inhibited the yield of cereal crops but not that of pulses. In view of this, the inclusion of pulses in the cereal-cereal systems could cause substantial improvement in soil fertility and sustainability in Indo-Gangetic plains. We infer that supply of nutrients like nitrogen and phosphorus in organic, and potassium and sulphur in recommended inorganic fertilization merit special attention.  相似文献   

18.
The short-term sequential effects of different treatments on soil fertility and revegetation of mine spoils were examined in a lignite mine in northwestern Spain. Experimental plots were established both on old and recent spoils after tillage and treated with compost or nitrogen (N), phosphorus (P), potassium (K), + magnesium limestone before seeding with a grass–legume species mixture. Compost improved plant production and, contrary to NPK, maintained soil N levels and supplied enough P for the establishment and early growth of the vegetation. Severe magnesium (Mg), calcium (Ca), and K limitations in recent spoils were only alleviated by compost + magnesium limestone, allowing the rapid growth and coating of the soil surface. The amendment based on NPK + magnesium limestone improved plant production in the short term but caused proliferation of weeds. Results suggest that revegetation in combination with the appropriate amendments is a key issue for the reclamation of lignite mine spoils.  相似文献   

19.
Alberta’s oil sands are located in the boreal forest where surface mining requires reconstruction of these landscapes using waste saline and sodic overburden (SSOB) piles. The impact of these SSOB materials, however, on root development of planted boreal species is unknown. The objective of this study was to examine the effect of SSOB material on the root distributions of planted boreal species. Root distributions for planted mixedwood stands were measured using soil cores and compared with soil physical and chemical properties on three reclaimed sites. Soil pH ranged from 6.1 to 7.5 across all three reclaimed sites. Sodium adsorption ratio ranged from <30 in the SSOB at the youngest site to <4 at the oldest site while soil electrical conductivity ranged from <12 and <4 dS m−1 in the SSOB at the youngest and oldest site, respectively. Root length distributions were concentrated in the upper 30 cm of the soil profile and ranged from 0.96 to 7.99 cm cm−3. The roots were observed in the SSOB and accounted for 1.3% to 2.2% of the total root length in the profile. The root length density was also negatively correlated with Na and EC at all sites. The root distributions on these young reclaimed sites were similar to those from undisturbed boreal forest stands overlying saline soils, suggesting that root distributions on these reclaimed sites appear to be unaffected by the SSOB; however, further monitoring will be required as the stand matures to determine future impacts of the SSOB on forest productivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号