首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The application of fractal geometry to describe soil degradation and dynamics is becoming a useful tool for better understanding of the performance of soil systems. In this study, four different land cover types, which represent a sequence of grass–desert shrub transition and a gradient of desertification, were selected, and soils at depths of 0–10, 10–20 and 20–40 cm were sampled in the Ordos Plateau of Inner Mongolia, PR China. The fractal theory was used to analyse the soil particle‐size distribution (PSD) and its variations. The results showed that (i) vegetation conversion and desertification significantly changed the soil PSD. During the desertification process, soil coarse fractions that ranged from 250 to 100 µm significantly increased, whereas fine fractions lower than 50 µm significantly decreased (p < 0·01); (ii) fractal model of the accumulative volume particle‐size distribution is appropriate, and fractal dimensions (Dm) of soil PSD significantly decreased along the sequence of grass–desert shrub transition; (iii) Dm is more sensitive to the desertification process, and therefore, we suggest Dm other than soil texture and soil organic carbon as a reliable parameter to reflect the soil environment change induced by desertification. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Fires in boreal forests frequently convert organic matter in the organic layer to black carbon, but we know little of how changing fire frequency alters the amount, composition and distribution of black carbon and organic matter within soils, or affects podzolization. We compared black carbon and organic matter (organic carbon and nitrogen) in soils of three Siberian Scots pine forests with frequent, moderately frequent and infrequent fires. Black carbon did not significantly contribute to the storage of organic matter, most likely because it is consumed by intense fires. We found 99% of black carbon in the organic layer; maximum stocks were 72 g m?2. Less intense fires consumed only parts of the organic layer and converted some organic matter to black carbon (> 5 g m?2), whereas more intense fires consumed almost the entire organic layer. In the upper 0.25 m of the mineral soil, black carbon stocks were 0.1 g m?2 in the infrequent fire regime. After fire, organic carbon and nitrogen in the organic layer accumulated with an estimated rate of 14.4 g C m?2 year?1 or 0.241 g N m?2 year?1. Maximum stocks 140 years after fire were 2190 g organic C m?2 and 40 g N m?2, with no differences among fire regimes. With increasing fire frequency, stocks of organic carbon increased from 600 to 1100 g m?2 (0–0.25 m). Stocks of nitrogen in the mineral soil were similar among the regimes (0.04 g m?2). We found that greater intensities of fire reduce amounts of organic matter in the organic layer but that the greater frequencies may slightly increase amounts in the mineral soil.  相似文献   

3.

Purpose

Plant residue decomposition, porosity status and biological activity in heavily polluted with Zn, Pb and Cd post-mining soils were investigated in relation to natural soil in the area. The study was carried out on soils from different ages and vegetation cover. This work aimed at studying the influence of heavy metal concentration on the humus layer formation with the help of micromorphological methods.

Materials and methods

Soil samples were collected from 5 sites situated in the Zn and Pb mining area and from one site located in the vicinity but unchanged by mining works. In each site, a representative area of about 100 m2 was selected and soil samples from 5 randomly selected plots were taken from surface and subsurface layers. Chemical, micromorphological and biological analyses were conducted in order to evaluate humus transformations occurring in studied soils and to establish the main factors affecting these processes. In images taken from thin sections, we separated and measured areas covered by decomposed organic matter, plant residues and pores.

Results and discussion

Mine soils had similar pH soil values (6.7–7.1); only one natural soil was moderately acid (pH = 5.6). The soils differed in SOM content, from 30.84 to 168 g kg?1. Mine soils were contaminated with heavy metals up to 10,980 mg Zn, 5436 mg Pb and 95.2 mg Cd·kg?1. The largest amount of the medium-sized and large plant residues (18.4 and 20.5%) were found in post-mining soil covered with xerothermic flora typical of metalliferous areas. The lowest amount of small residues was found in post-mining forest soil. The diversified accumulation of plant residues reflected the organic matter decomposition ratio varying from 1.64 (post-mining soil 15% covered with calamine flora) to 62.7% (natural soil covered with forest). In the natural soil, rounded pores prevailed, while in post-mining soils, planar pores dominated. Invertase activity ranged from 1.64 to 154.2 mg of inverted sugar, and carbon of microbial biomass ranged from 5.94 to 731.2 μg g?1. Both characteristics were related to the amount of organic matter regardless of the heavy-metal pollution.

Conclusions

The results showed that a decomposition ratio was lower in mining soils than in the natural soil, and large plant residues were accumulated in surface layers. Microbial activity was more influenced by plant cover density and diversity than by heavy metal concentration. The evolution in the organic matter form and pore shapes with the soil age and the vegetation cover was observed.
  相似文献   

4.
Maintenance and improvement of soil quality across spatially variable soils in continuous cropping systems are critical to sustaining agricultural productivity and environmental quality. The objectives of this project were (i) to study the effects of variable-rate application of animal manure on selected topsoil quality parameters across site-specific management zones (MZs) and (ii) to evaluate the variable-rate applications of manure using risk-assessment tools of nitrogen (N) leaching and phosphorus (P) runoff indices to understand its impact on environmental quality. This study was conducted in northeastern Colorado on continuous and furrow-irrigated maize fields. Experimental strips, 4.5 m wide and 540 m long, spanned across all MZs with treatments nested within MZs in the field. Variable rates of dairy and beef feedlot manure applied on irrigated and dryland fields respectively ranged from 0 to 67 Mg ha?1. Surface soil quality parameters evaluated before and after this study included bulk density, organic matter, water-holding capacity, electrical conductivity, and particle-size analysis. Results indicate that animal manure applications of 44 and 67 Mg ha?1 significantly (P ≤ 0.05) increased soil organic matter and decreased bulk density of low- and medium-productivity-level MZs and had no significant impact on surface soil organic matter and bulk density of the high-productivity-level MZs. Animal manure significantly (P ≤ 0.05) increased surface soil water-holding capacity and soil electrical conductivity across zones; however, the maximum manure-induced soil EC was 1.0 dS m?1, which was below levels regarded as potentially harmful for maize production. Soil texture was not affected by animal manure applications. Colorado N leaching and P index indicated no environmental hazard associated with variable rate application of animal manure across MZs. This study indicates that variable-rate application of animal manure across MZs has potential to improve or maintain soil quality parameters over time without impairing the environment.  相似文献   

5.
In Brazil, most Eucalyptus stands have been planted on Cerrado (shrubby savanna) or on Cerrado converted into pasture. Case studies are needed to assess the effect of such land use changes on soil fertility and C sequestration. In this study, the influence of Cerrado land development (pasture and Eucalyptus plantations) on soil organic carbon (SOC) and nitrogen (SON) stocks were quantified in southern Brazil. Two contrasted silvicultural practices were also compared: 60 years of short‐rotation silviculture (EUCSR) versus 60 years of continuous growth (EUCHF). C and N soil concentrations and bulk densities were measured and modelled for each vegetation type, and SOC and SON stocks were calculated down to a depth of 1 m by a continuous function. Changes in SOC and SON stocks mainly occurred in the forest floor (no litter in pasture and up to 0.87 kg C m?2 and 0.01 kg N m?2 in EUCSR) and upper soil horizons. C and N stocks and their confidence intervals were greatly influenced by the methodology used to compute these layers. C/N ratio and 13C analysis showed that down to a depth of 30 cm, the Cerrado organic matter was replaced by organic matter from newly introduced vegetation by as much as 75–100% for pasture and about 50% for EUCHF, poorer in N for Eucalyptus stands (C/N larger than 18 for Eucalyptus stands). Under pasture, 0–30 cm SON stocks (0.25 kg N m?2) were between 10 and 20% greater than those of the Cerrado (0.21 kg N m?2), partly due to soil compaction (limit bulk density at soil surface from 1.23 for the Cerrado to 1.34 for pasture). Land development on the Cerrado increased SOC stocks in the 0–30 cm layer by between 15 and 25% (from 2.99 (Cerrado) to 3.86 (EUCSR) kg C m?2). When including litter layers, total 0–30 cm carbon stocks increased by 35% for EUCHF (4.50 kg C m?2) and 53% for EUCSR (5.08 kg C m?2), compared with the Cerrado (3.28 kg C m?2), independently of soil compaction.  相似文献   

6.
[目的]揭示毛乌素沙地沙漠化逆转过程对土壤风蚀可蚀性的影响,为该区风蚀防治和生态重建提供科学参考。[方法]选取1986—2021年共8期遥感影像,以ENVI 5.3和ArcGIS 10.7为平台对毛乌素沙地不同时期土地沙漠化进行反演,同时构建研究区2021年沙漠化差值指数(DDI),并按照自然断裂法将毛乌素沙地土地分为非、轻度、中度、重度和极重度5种沙漠化类型代表沙漠化逆转的不同阶段。根据反演结果,应用空间代替时间的方法,对不同沙漠化类型土壤进行样品采集,并对土壤机械组成、土壤有机质含量、土壤结皮、植被因子等土壤风蚀可蚀性影响因子进行测试分析。[结果]毛乌素沙地1986—2021年沙漠化整体呈逆转趋势,沙漠化土地面积由1986年的47 877.81 km2缩减至2021年的45 914.06 km2,以56.11 km2/a的速率逆转。该区土地沙漠化可分为3个时期:1986—2001年为沙漠化发展期,土壤黏粒、粉粒百分含量、有机质含量呈降低趋势,土壤砂粒百分含量、结皮因子和植被因子值呈增加趋势;2001—2011年为沙漠...  相似文献   

7.
We investigated the fate of root and litter derived carbon in soil organic matter and dissolved organic matter in soil profiles, in order to explain mechanisms of short-term soil carbon storage. A time series of soil and soil solution samples was investigated at the field site of The Jena Experiment between 2002 and 2004. In addition to the main experiment with C3 plants, a C4 species (Amaranthus retroflexus L.) naturally labeled with 13C was grown on an extra plot. Changes in organic carbon concentration in soil and soil solution were combined with stable isotope measurements to follow the fate of plant carbon into the soil and soil solution. A split plot design with plant litter removal versus double litter input simulated differences in biomass input. After 2 years, the no litter and double litter treatment, respectively, showed an increase of 381 g C m?2 and 263 g C m?2 to 20 cm depth, while 71 g C m?2 and 393 g C m?2 were lost between 20 and 30 cm depth. The isotopic label in the top 5 cm indicated that 115 g C m?2 and 156 g C m?2 of soil organic carbon were derived from C4 plant material on the no litter and the double litter treatment, respectively. Without litter, this equals the total amount of 97 g C m?2 that was newly stored in the same soil depth, whereas with double litter this clearly exceeded the stored amount of 75 g C m?2. Our results indicate that litter input resulted in lower carbon storage and larger carbon losses and consequently accelerated turnover of soil organic carbon. Isotopic evidence showed that inherited soil organic carbon was replaced by fresh plant carbon near the soil surface. Our results suggest that primarily carbon released from soil organic matter, not newly introduced plant organic matter, was transported in the soil solution. However, the total flow of dissolved organic carbon was not sufficient to explain the observed carbon storage in deeper soil layers, and the existence of additional carbon uptake mechanisms is discussed.  相似文献   

8.
We have examined the effects of different types of slurry on CH4 and N2O emissions, Zn and Cu contents of rice, and nitrate content of the drainage water. The experiment included four treatments: (1) anaerobically digested cattle slurry (ADCS), (2) ADCS filtered to remove the coarse organic matter fraction, (3) anaerobically digested pig slurry (ADPS), and (4) chemical fertilizer (CF). The application rate was 30?g?NH4?CN?m?2. Different amounts of C were incorporated with fertilization: 725?g?C?m?2 in ADCS, 352?g?m?2 in filtered ADCS, and 75?g?m?2 in ADPS. The average CH4 emissions during a growing period were 304, 359, 452, and 579?mg?m?2?day?1 in the CF, ADPS, filtered ADCS, and ADCS treatments, respectively. The CH4 emission was significantly higher in ADCS than in CF and ADPS. Negligible N2O emissions were observed during the growing period. Comparable concentrations of Zn and Cu were observed in the rice grain among the treatments. In contrast, their concentrations in the stems and leaves were significantly higher in ADPS than in CF treated rice, although the values were lower than the upper limit of feed additives. Nitrate concentrations in the drainage water were consistently low (0.5?mg?N?L?1). The present study suggested that ADPS, containing a lower amount of C than ADCS, might be an organic fertilizer in paddy field with comparable environmental impacts to chemical fertilizers (CF), but long-term field studies are needed to better understand the effects of these organic fertilizers.  相似文献   

9.
A cross-disciplinary research project has been implemented because of increased awareness of the potential environmental effects caused by dispersion of metals from external applications into the environment. The work comprises a 4-year (1998–2002) field exposure of grades 304 and 316 stainless steels, and a laboratory percolation study simulating 20–25 years of chromium and nickel containing runoff water interactions with soil. Total metal annual release rates varied between 0.2 and 0.7 mg m?2 yr?1 for Cr, between 0.1 and 0.8 mg m?2 yr?1 for Ni and between 10 and 200 mg m?2 yr?1 for Fe. Most Cr and Ni is present in an ionic form as a result of the limited presence of organic matter at the immediate release situation. Metal ion concentrations in the runoff water are far below reported ecotoxic concentrations. Studies of the environmental interaction between runoff water from stainless steel and soil show the majority of released Cr and Ni to be retained and their concentrations in percolation water to be very low (0.5–1 μg L?1 and 1–5.5 μg L?1 for Cr and Ni, respectively). Speciation calculations showed Cr to be primarily complexed to dissolved organic carbon while Ni also was present in an ionic form in the solution phase. Soil extractions showed Cr and Ni to be very strongly retained within the soil.  相似文献   

10.
The Kyoto Protocol explicitly allows the storage of carbon (C) in ecosystems resulting from afforestation to be offset against a nation's carbon emissions and paves the way for carbon storage in soils to be eligible as carbon offsets in the future. More information is required about how afforestation affects carbon storage, especially in the soil. We report a study in which soil carbon storage in first‐rotation Mediterranean Pinus radiata plantations, established on former cereal fields and vineyards, was measured and modelled. Measurements were made on plantations of several ages, as well as repeat measurements at the same site after 5 years. We tested the ability of two widely used soil organic matter models (RothC and Century) to predict carbon sequestration in Mediterranean forest soils. Increases in the top 5 cm of soil of about 10 g C m?2 year?1 were observed after afforestation of former vineyards, but nitrogen (N) either remained the same or decreased slightly. During afforestation, most organic matter accumulated in the ectorganic layers at a rate of 19 g C m?2 year?1 in former vineyards and 41 g C m?2 year?1 in former cereal fields. The RothC and Century models were sensitive to previous land use and estimated a carbon sequestration potential over 20 years of 950 and 700 g C m?2, respectively. The accurate simulation of the dynamics of soil organic matter by RothC, together with measured above‐ground inputs, allowed us to calculate below‐ground inputs during afforestation. The Century model simulated total C and N, including the ectorganic horizons, well. Simulations showed a depletion of N in the below‐ground fractions during afforestation, with N limitation in the former vineyard but not on former cereal land. The approach demonstrates the potential of models to enhance our understanding of the processes leading to carbon sequestration in soils.  相似文献   

11.
The effect of different earthworm functional groups on the incorporation of maize (C4 plant) dung into a soil (C3 organic matter background) sown with ryegrass (C3 plant) was explored by using differences in the carbon (C) isotope ratios (12C and 13C) between plant and soil samples in a field mesocosm study. The abundance of earthworms increased with dung inputs, reaching over 4000 earthworms per m2, presumably because of the increased food resources used. The amount of dung C incorporated into the soil profile in the presence of earthworms was dependent on the amount of organic matter deposited on the soil surface (925–4620 g C m?2) and reached rates of 1200 g C m?2 annually in the treatment receiving repeat dung applications. Dung incorporation was largely concentrated in the surface 0–75 mm, although small amounts of dung‐derived C were observed to a depth of 300 mm. This was especially so in the presence of anecic earthworms, equating to an extra 70 g C m?2 annually for the 150–300 mm depth increment. It is important to note, in calculating C incorporation rates from earthworms, that only 10–20% of the soil surface in grazed pastures is covered by dung. After 444 days, less than 32% of the applied dung was detected within the upper 300 mm of the soil profile. This study emphasized the need for all three earthworm functional groups to be present within the soil in order to maximize the amount of surface dung that could be incorporated into soil organic matter.  相似文献   

12.
This paper reports observations on the behaviour of large cores of undisturbed clay-loam soil during the drainage of water under an imposed step in potential. Rates of outflow and the matric potential at various points in the core were recorded during drainage. The volumes of ‘macropore-channels’(large, continuous voids) were estimated to be 0.005 m3 m?3 in a subsoil sample, and 0.026 m3 m?3 in a topsoil sample from arable land. The calculated values of hydraulic conductivity were found to vary with the size of the step in potential imposed on the sample at the start of each drainage experiment. The available evidence suggested that the apparent Km relationship was influenced by the rate that air could enter the soil to replace water during drainage. The degree of restriction on air movement was affected by the initial drainage behaviour, and this varied with the imposed step in potential.  相似文献   

13.
Abstract: Soil quality indicators and nematode abundance were characterized in a loessial soil under long‐term conservation tillage to evaluate the effects of no‐till, double‐disk, chisel, and moldboard plow treatments. Indicators included soil electrical conductivity (EC), soil texture, soil organic matter (SOM), and total particulate organic matter (tPOM). Nematode abundance was positively correlated with EC, silt content, and total POM and negatively correlated with clay content. Clay content was the main source of variation among soil quality indicators and was negatively correlated with nematode abundance and most indicators. The gain in SOM in the no‐till system amounted to 10887 kg over the 24 years or 454 kg ha?1 year?1, about half of this difference (45%) resulting from soil erosion in plowed soils. The balance of gain in SOM with no till (249 kg ha?1 year?1) was due to SOM sequestration with no till. No‐till management reduced soil erosion, increased SOM, and enhanced soil physical characteristics.  相似文献   

14.
Soil erosion has serious off-site impacts caused by increased mobilization of sediment and delivery to water bodies causing siltation and pollution. To evaluate factors influencing soil erodibility at a proposed dam site, 21 soil samples collected were characterized. The soils were analyzed for soil organic carbon (SOC), exchangeable bases, exchangeable acidity, pH, electrical conductivities, mean weight diameter and soil particles’ size distribution. Cation exchange capacity, exchangeable sodium percentage, sodium adsorption ratio, dispersion ratio (DR), clay flocculation index (CFI), clay dispersion ratio (CDR) and Ca:Mg ratio were then calculated. Soil erodibility (K-factor) estimates were determined using SOC content and surface soil properties. Soil loss rates by splashing were determined under rainfall simulations at 360?mmh?1 rainfall intensity. Soil loss was correlated to the measured chemical and physical soil properties. There were variations in soil form properties and erodibility indices showing influence on soil loss. The average soil erodibility and SOC values were 0.0734?t?MJ?1?mm?1 and 0.81%, respectively. SOC decreased with depth and soil loss increased with a decrease in SOC content. SOC significantly influenced soil loss, CDR, CFI and DR (P??1. Addition of organic matter stabilize the soils against erosion.  相似文献   

15.
以塔里木盆地南缘不同年限新垦农田(10年、20年、30年、40年、50年)为研究对象,以未开垦的荒漠自然土壤为对照,测定0―40cm土层有机质、养分、盐碱等土壤性状,探讨了新垦农田土壤肥力和盐碱变化及其对小麦产量的影响。结果表明:随开垦年限延长,0―20,20―40cm土层有机质含量均呈线性增加,但后者变化幅度相对较小。在0―40cm土层,全氮、有效氮和速效钾含量随时间延长的变化均与有机质含量呈极显著正相关,开垦50年时分别增加88.8%,213.4%,37.5%;有效磷含量在开垦前30年呈线性增加而后又降低,开垦50年时比开垦前增加1201.2%。荒漠自然土壤(0年)是以Na+和Cl-为主的轻度盐渍化土壤,开垦为农田后总盐分含量显著下降,且不同年限间差异不明显,在0―40cm土层平均为0.8g/kg,离子累积转变为以Na+和HCO3-为主。土壤pH在开垦30年(pH为8.85)时比开垦前增加13.4%,之后又显著下降,pH变化与CO32-和K+累积呈显著正相关。新垦农田小麦产量平均为4.79 t/hm^2,与土壤有机质、养分、盐分含量和pH均不相关,但与Na+、Cl-含量均呈显著负相关。综上,随开垦时间延长绿洲农田土壤肥力和盐渍化程度已得到明显改善,但0―40cm土层Na+和Cl-含量却是影响新垦绿洲小麦产量的主要土壤因子。因此,培肥农田土壤,采取有效措施降低Na+和Cl-含量,并防止其再次升高是实现绿洲小麦稳产高产的关键。  相似文献   

16.
In a 2-yr pot experiment the effects of texture and organic matter content on adsorption in soil and uptake in Perennial ryegrass (Lolium perenne) and Winter rape (Brassica napus) of Cd added to the soil were studied. The soils used were a clay, a loamy sand and a sapric peat mixed in different proportions. One mg kg?1 of Cd was added to each soil mixture. The organic matter showed a greater ability than clay to adsorb Cd in an unavailable form and thereby reduce plant uptake. The effect per unit of organic matter added was greatest at low organic matter content. Most of the Cd was adsorbed in a non-exchangeable form indicating the presence of strong organic complexing. The addition of organic matter reduced plant uptake more efficiently in sand than in clay even though the exchangeable Cd did not differ between the two soils. Increasing the clay content in sand from 9 to 63% led to slightly decreased water leachability but did not significantly decrease non-exchangeable Cd. Neither was plant uptake notably affected. The two crops showed a similar reaction to the different treatments. Uptake was correlated with Cd extractable in ammonium acetate at pH 7, but the relationship was different at each sampling occasion. No significant change in adsorption of the added Cd, fixation, was detected during the 2-yr period but seasonal variations in solubility and uptake were noticed.  相似文献   

17.
Quantitative knowledge of the amount and stability of soil organic matter (SOM) is necessary to understand and predict the role of soils in the global carbon cycle. At present little is known about the influence of soil type on the storage and stability of SOM, especially in the tropics. We compared the amount of mineral-associated SOM resistant to different chemical treatments in soils of different parent material and mineralogical composition (volcanic ashes – dominated by short-range-order aluminosilicates and marine Tertiary sediments – dominated by smectite) in the humid tropics of Northwest Ecuador. Using 13C isotope analyses we traced the origin of soil organic carbon (SOC) in mineral-associated soil fractions resistant to treatment with HCl, NaOCl, and Na4P2O7 under pasture (C4) and secondary forest (C3). Prior to chemical treatments, particulate organic matter was removed by density fractionation (cut-off: 1.6 g cm?3). Our results show that: (1) independent of soil mineralogical composition, about 45% of mineral-associated SOC was resistant to acid hydrolysis, suggesting a comparable SOM composition for the investigated soils; (2) oxidation by NaOCl isolated a SOM fraction with enhanced stability of mineral-bound SOM in soils developed from volcanic ashes; while Na4P2O7 extracted more SOC, indicating the importance of Al-humus complexes in these soils; and (3) recently incorporated SOM was not stabilized after land use change in soils developed from volcanic ashes but was partly stabilized in soils rich in smectites. Together these results show that the employed methods were not able to isolate a SOM fraction which is protected against microbial decay under field conditions and that the outcome of these methods is sensitive to soil type which makes interpretation challenging and generalisations to other soils types or climates impossible.  相似文献   

18.
Soil contains the major part of carbon in terrestrial ecosystems, but the response of this carbon to enriching the atmosphere in CO2 and to increased N deposition is not completely understood. We studied the effects of CO2 concentrations at 370 and 570 μmol CO2 mol?1 air and increased N deposition (7 against 0.7 g N m?2 year?1) on the dynamics of soil organic C in two types of forest soil in model ecosystems with spruce and beech established in large open‐top chambers containing an acidic loam and a calcareous sand. The added CO2 was depleted in 13C and thus the net input of new C into soil organic carbon and the mineralization of native C could be quantified. Soil type was the greatest determining factor in carbon dynamics. After 4 years, the net input of new C in the acidic loam (670 ± 30 g C m?2) exceeded that in the calcareous sand (340 ± 40 g C m?2) although the soil produced less biomass. The mineralization of native organic C accounted for 700 ± 90 g C m?2 in the acidic loam and for 2800 ± 170 g C m?2 in the calcareous sand. Unfavourable conditions for mineralization and a greater physico‐chemical protection of C by clay and oxides in the acidic loam are probably the main reasons for these differences. The organic C content of the acidic loam was 230 g C m?2 more under the large than under the small N treatment. As suggested by a negligible impact of N inputs on the fraction of new C in the acidic loam, this increase resulted mainly from a suppressed mineralization of native C. In the calcareous sand, N deposition did not influence C concentrations. The impacts of CO2 enrichment on C concentrations were small. In the uppermost 10 cm of the acidic loam, larger CO2 concentrations increased C contents by 50–170 g C m?2. Below 10 cm depth in the acidic loam and at all soil depths in the calcareous sand, CO2 concentrations had no significant impact on soil C concentrations. Up to 40% of the ‘new’ carbon of the acidic loam was found in the coarse sand fraction, which accounted for only 7% of the total soil volume. This suggests that a large part of the CO2‐derived ‘new’ C was incorporated into the labile and easily mineralizable pool in the soil.  相似文献   

19.
Abstract. In dairy farming systems the risk of nitrate leaching is increased by mixed rotations (pasture/arable) and the use of organic manure. We investigated the effect of four organic farming systems with different livestock densities and different types of organic manure on crop yields, nitrate leaching and N balance in an organic dairy/crop rotation (barley–grass-clover–grass-clover–barley/pea–winter wheat–fodder beet) from 1994 to 1998. Nitrate concentrations in soil water extracted by ceramic suction cups ranged from below 1 mg NO3-N l?1 in 1st year grass-clover to 20–50 mg NO3-N l?1 in the winter following barley/pea and winter wheat. Peaks of high nitrate concentrations were observed in 2nd year grass-clover, probably due to urination by grazing cattle. Nitrate leaching was affected by climatic conditions (drainage volume), livestock density and time since ploughing in of grass-clover. No difference in nitrate leaching was observed between the use of slurry alone and farmyard manure from deep litter housing in combination with slurry. Increasing the total-N input to the rotation by 40 kg N ha?1 year?1 (from 0.9 to 1.4 livestock units ha?1) only increased leaching by 6 kg NO3-N ha?1. Nitrate leaching was highest in the second winter (after winter wheat) following ploughing in of the grass-clover (61 kg NO3-N ha?1). Leaching losses were lowest in 1st year grass-clover (20 kg NO3-N ha?1). Averaged over the four years, nitrate concentration in drainage water was 57 mg l?1. Minimizing leaching losses requires improved utilization of organic N accumulated in grazed grass-clover pastures. The N balance for the crop rotation as a whole indicated that accumulation of N in soil organic matter in the fields of these systems was small.  相似文献   

20.
Changes in land use can result in increased soil organic matter content, and decreases in Ca and pH which will affect the mobility of Cu in soil. We studied how the mobility and coagulation of dissolved organic matter and pH affected the mobility of Cu in contaminated sandy soil by batch and column experiments in the laboratory. The soil, with pH ranging from 3.8 to 5.7, had been polluted with Cu in the range 0.13–1.9 mmol kg?1 more than a decade ago. Calcium and Cu bound by dissolved organic matter (purified humic acid) was determined in the pH range 4–8; Cu2+ concentration ranged from 10?4 to 10?12M and Ca2+ concentration from 10?3 to 10?6M. Binding of Cu by dissolved organic matter as affected by Ca and pH could be predicted well with the non-ideal competitive adsorption (NICA) model. Coagulation of dissolved organic matter was affected by the amount of trivalent (Al3+) and divalent (Ca2+ and Cu2+) cations in solution. There was little effect of pH on coagulation between pH 4 and 6. The concentration of the divalent cations, Ca2+ and Cu2+, at which coagulation of dissolved organic matter appeared could be explained by differences in the binding of Ca and Cu by dissolved organic matter. Binding of Cu by dissolved organic matter as well as by solid organic matter, both affected by Ca and pH, could be described well with the NICA model. We investigated the coagulation and mobility of dissolved organic matter in column experiments and found that they enhanced Cu mobility. Three processes, Cu desorption by soil, dissolved organic matter coagulation and Cu complexation by dissolved organic matter, act simultaneously in the soil columns. All three with counteracting effects on Cu mobility are influenced by Ca and pH and could be adequately represented by the multicomponent NICA model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号