首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research was carried out in order to determine the zinc status of the paddy soils with different physical and chemical properties of Thrace region as well as to determine the most suitable method for chemical extraction of available zinc content of soils for plant. As a result of the investigation with 12 paddy soils representing the region, it was estimated that the application of increasing amounts of zinc to the soil of pot grown maize to increasing the zinc uptake, dry matter and zinc content of the plant was determined. Nine chemical extraction methods for available zinc contents of soil were used and the reliability of the investigated methods was ranked as: 0.005 r M DTPA+0.01 r M CaCl 2 +0.1 r M TEA; 0.005 r M DTPA+1 r M NH 4 HCO 3 ; 0.01 r M Na 2 EDTA+1 r M (NH 4 ) 2 CO 3 ; 0.01 r N Na 2 EDTA+1 r N NH 4 Oac; 0.01 r N Na 2 EDTA; 1 r N NH 4 Oac; 2 r N MgCl 2 ; 0.05 r N HCl+0.025 r N H 2 SO 4 ; 0.01 r M Hidrocinon. The method for extraction with 0.005 r M DTPA+0.01 r M CaCl 2 +0.01 r M TEA solution which not only owns the highest correlation coefficient but also enables determination of Fe, Mn and Cu concentrations in addition to Zn amount, could be recommended as the most suitable one for the investigated soils.  相似文献   

2.
Ethylendiamintetraacetic acid (EDTA) is persistent in the environment. The presence of EDTA in soil may alter the mobility and transport of Zn, Cd and Ni in soils because of the formation of water soluble chelates, thus increasing the potential for metal pollution of natural waters. Mobility of metals is related to their extractability. To investigate metal extractability affected by EDTA, Zn, Cd and Ni were added to Vertisol and Alluvial soil at rates of 50, 2 and 5 mg kg-1, respectively. Both natural and metal amended soils were treated with Na2EDTA at rates of 0; 0.2 and 0.5 mg kg-1. After five months of incubation soil samples were extracted with 0.1 N HCl, 0.005 M DTPA + 0.01 M CaCl2 + 0.1 M TEA (0.005 M Diethylenetriaminepentaacetic acid + 0.01 M Calcium cloride + 0.1 M Triethanolamine) and 1 M Mg(NO3)2, the latter of which extracts the exchangeable from of metald (Zn, Cd and Ni).

According to experiment results, Zn, Cd and Ni in all extraction increased with increasing rates of EDTA in the natural and metal amended soils.  相似文献   

3.
The aim of this research was to determine the available iron (Fe) content of brown forest soils of Edirne Province and the most suitable chemical extraction method. Eight chemical extraction methods (the 0.005 M DTPA + 0.01 M CaCl2 + 0.1 MTEA, 0.05 M HCl + 0.012 M H2SO4, 1 M NH4OAc (pH: 4.8), 0.01 M EDTA + 1 M NH4OAc, 1 M MgCl2, 0.01 M EDTA + 1 M (NH4)2CO3, 0.005 M DTPA + 1 M NH4HCO3, and 0.001 M EDDHA methods) and six biological indices (the dry matter yield, Fe concentration, Fe uptake, relative dry matter yield, relative Fe concentration, and relative Fe uptake) were compared. The biological indices were determined with barley (Hordeum vulgare L.) grown under greenhouse conditions. At the end of the experiment, the highest correlation coefficients (r) were determined to be between the 0.005 M DTPA + 0.01 M CaCl2 + 0.1 M TEA method and the biological indices and between the 0.005 M DTPA + 1 M NH4HCO3 method and the biological indices. The corresponding correlation coefficients (r) for the 0.005 M DTPA + 0.01 M CaCl2 + 0.1 M TEA method and the six biological indices were 0.621**, 0.823**, 0.810** 0.433**, 0.558**, and 0.640**, respectively. For the 0.005 M DTPA + 1 M NH4HCO3 method, these coefficients were equal to 0.618**, 0.520**, 0.679**, 0.521**, 0.492**, and 0.641**, respectively (** indicate the validity of the relationships at p < 0.01) These extraction methods, out of all the methods tested, were suggested for the determination of the available Fe content of the brown forest soils. Published in Russian in Pochvovedenie, 2006, No. 9, pp. 1068–1074. The text was submitted by the author in English.  相似文献   

4.
石灰性土壤中锰素营养的研究——Ⅱ.土壤有效锰的测定   总被引:2,自引:0,他引:2  
张维理  张乃凤 《土壤学报》1984,21(3):268-276
自从Leeper[5]首先提出用对苯二酚提取土壤易还原态锰评价土壤供锰状况以来,四十多年间各国的土壤农化工作者陆续设计并使用了种类繁多的土壤有效锰的提取剂。将其归纳大致可分为五类。  相似文献   

5.
Human exposure to toxic heavy metals via dietary intake is of increasing concern. Heavy-metal pollution of a rice production system can pose a threat to human health. Thus, it was necessary to develop a suitable extraction procedure that would represent the content of metal available to rice plants (Oryza sativa L.). The aim of this study was to predict, on the basis of single extraction procedures of soil heavy metals, the accumulation of heavy metals (cadium, lead, copper, and zinc) in rice plants. Six extracting agents [Mehlich 1, Mehlich 3, EDTA (ethylenediaminetetraacetic acid), DTPA–TEA (diethylenetriaminepentaacetic acid–triethanolamine), ammonium acetate (NH4OAc), and calcium chloride (CaCl2)] were tested to evaluate the bioavailability of heavy metals from paddy soils contaminated with lead–zinc mine tailings to rice. The extraction capacity of the metals was found to be of the order EDTA > Mehlich 3 > Mehlich 1 > DTPA–TEA > NH4OAc > CaCl2. The correlation analysis between metals extracted with different extractants and concentrations of the metals in the grain and stalk of the plant showed positive correlations with all metals. The greatest values of correlation coefficients were determined between the NH4OAc- and CaCl2-soluble fractions of soil and contents in plants in all four metals studied. Therefore, NH4OAc and CaCl2 were the most suitable extractants for predicting bioavailability of heavy metals in the polluted soils to rice. The results suggested that uptake of heavy metals by rice was mostly from exchangeable and water-soluble fractions of the metals in the soils. Soil-extractable metals were more significantly correlated with metal accumulation in the stalk than in the grain. The pH had more significant influence on availability of heavy metals in the soils than total content of metals and other soil properties. The bioavailability of metals for rice plants would be high in acidic soils.  相似文献   

6.
Abstract

Five soil extractants, namely, 0.005 M diethylene triamine pentaacetic acid (DTPA) (pH 7.3), 0.005 M DTPA+1 M ammonium bicarbonate (pH 7.6), Mehlich 3, 0.01 M ethylene diamine tetraacetic acid (EDTA)+0.05 M ammonium carbonate (pH 8.6), and 1 M magnesium chloride (MgCl2) (pH 6.0), were evaluated to predict the response of wheat to zinc (Zn) application in Mollisols. These extractants could be arranged in the following decreasing order of their Zn extracting power: Mehlich 3>0.005 M DTPA+1 M ammonium bicarbonate>0.01 M EDTA+0.05 M ammonium carbonate>0.005 M DTPA>1 M MgCl2. The critical limits of Zn in soil, below which the yield response to late sown wheat (var. UP‐2338) to Zn application could be expected, were 0.57 mg 0.005 M DTPA (pH 7.3) extractable and 1.72 mg Mehlich 3–extractable Zn kg?1 soil. The critical limit of Zn in whole shoot at 60 days after emergence was found to be 26.1 mg Zn kg?1 plant tissue. The DTPA and Mehlich 3–extractable soil Zn also correlated significantly and positively with Zn concentration in whole shoot at 60 days after emergence and total Zn uptake by wheat at harvest.  相似文献   

7.
Abstract

A pot culture experiment was conducted to establish the critical limits of deficiency and toxicity of Zn in a Typic Ustipsamment from tropical India. Critical limits of Zn deficiency and toxicity were 0.39, and 12 μg/g with DTPA‐TEA‐CaCl2, 2.2 and 26 μg/g with EDTA‐(NH4)2Co3 and 0.78 and 12 μg/g with HC1 (0.05 N), respectively. Critical concentrations in the rice plants associated with deficiency and toxicity were 16 and 190 μg/g.  相似文献   

8.
Abstract

The proportion of copper (Cu) that can be extracted by soil test extractants varied with the soil matrix. The plant‐available forms of Cu and the efficiency of various soil test extractants [(0.01 M Ca(NO3)2, 0.1 M NaNO3, 0.01 M CaCl2, 1.0 M NH4NO3, 0.1 M HCl, 0.02 M SrCl2, Mehlich‐1 (M1), Mehlich‐3 (M3), and TEA‐DTPA.)] to predict the availability of Cu for two contrasting pasture soils were treated with two sources of Cu fertilizers (CuSO4 and CuO). The efficiency of various chemical reagents in extracting the Cu from the soil followed this order: TEA‐DTPA>Mehlich‐3>Mehlich‐1>0.02 M SrCl2>0.1 M HCl>1.0 M NH4NO3>0.01 M CaCl2>0.1 M NaNO3>0.01 M Ca(NO3)2. The ratios of exchangeable: organic: oxide bound: residual forms of Cu in M1, M3, and TEA‐DTPA for the Manawatu soil are 1:20:25:4, 1:14:8:2, and 1:56:35:8, respectively, and for the Ngamoka soil are 1:14:6:4, 1:9:5:2, and 1:55:26:17, respectively. The ratios of different forms of Cu suggest that the Cu is residing mainly in the organic form, and it decreases in the order: organic>oxide>residual>exchangeable. There was a highly significant relationship between the concentrations of Cu extracted by the three soil test extractants. The determination of the coefficients obtained from the regression relationship between the amounts of Cu extracted by M1, M3, and TEA‐DTPA reagents suggests that the behavior of extractants was similar. But M3 demonstrated a greater increase of Cu from the exchangeable form and organic complexes due to the dual activity of EDTA and acids for the different fractions and is best suited for predicting the available Cu in pasture soils.  相似文献   

9.
Abstract

Rice (Oryza sativaL. CV. Lemont) was grown on 19 soils, and eight extractants were evaluated for determining the availability of Cu to rice plants. Correlation analyses were employed as criteria for evaluating methods that would provide the best index of Cu availability. The order of removal of Cu from soils was: 0.5NHC1 + 0.05NA1C13> 0.5NHNO3> 0.5 N HC1 > EDTA + NH4OAc > 0.1NHC1 > EDTA + (NH4)2CO3? DTPA‐TEA, pH 7.3 >>> 1 N NH40Ac, pH 4.8.

Uptake of Cu by rice plants was significantly correlated with soil Cu. Among the eight extractants evaluated, Cu extracted with DTPA‐TEA, pH 7.3 was better related to the concentration (r = 0.563 ) and uptake (r = 0.673 ) of Cu by rice plants grown on the soils with different chemical and physical properties.

A significant negative correlation was found between the concentration of Cu in rice plants and the organic matter content of the soils. Each one percent increase in the organic matter of the soils resulted in a corresponding decrease of approximately one mg/kg in the concentration of Cu in the rice‐plant tissue. Multiple regressions of extractable Cu by eight methods with soil organic matter content accounted for from 53.4 to 70.0% of the variations in the prediction of the concentration of Cu in the rice plants. Combinations of other soil chemical properties measured with extractable Cu did not significantly improve the predictability  相似文献   

10.
In this study, complexation extractants ammonium bicarbonate diethylene triamine pentaacetic acid (AB-DTPA), diethylene triamine pentaacetic acid (DTPA), and ethylene diamine tetraacetic acid (EDTA) and mild cation-exchange extractants calcium chloride (CaCl2) and ammonium nitrate (NH4NO3) were used to evaluate the bioavailability of soil cadmium (Cd) to cacao in the field. Among the five extractants, the extractable Cd generally followed the order EDTA > DTPA > AB-DTPA > CaCl2 > NH4NO3. Correlation analysis was done between the extractable Cd in soil and total Cd content of cacao tissues (nibs, shells, leaves, and pods). The Cd extracted by CaCl2 and NH4NO3 was significantly (P < 0.05) correlated with some of the tissues but their Pearson correlation coefficients were weak. In contrast, extractants AB-DTPA, DTPA, and EDTA showed stronger, significant correlations to the Cd concentration in all four tissues. Overall, regression analysis demonstrated that AB-DTPA, DTPA, or EDTA can be used to predict bioavailable Cd in soils for cacao. Of these, AB-DTPA and DTPA both showed the strongest correlations compared to EDTA. However, the ease of preparation and the superior shelf-life of DTPA over AB-DPTA make it the preferred reagent for Cd bioavailability extractions from cacao soils and is currently being used to develop cost-effective soil treatments to reduce bioavailable Cd to cacao plants.  相似文献   

11.
Total Zn in alluvial and calcareous soils (average 138 and 70 ppm respectively) was significantly related to their contents of CaCO3 (negatively), O.M. and clay (positively). Extracting Zn by Na2EDTA gave the highest values for both soil types. Total Cu contents varied widely from 26 to 111 ppm in alluvial and from 15 to 30 ppm in calcareous soils. They were negatively correlated with the CaCO3 contents. The pot experiments showed that EDTA(NH4)2CO3, Na2EDTA and DTPA are reasonable extractants for available Zn from both soil types. DTPA was efficient for all soils investigated, while Na2 EDTA and EDTA-citrate were specific for extracting Cu from calcareous soils.  相似文献   

12.
Abstract

Soil pot culture experiment was conducted on 22 soils of Balewal‐Phaguwala‐Narike (BPN) and 24 soils of Isri‐Langrian‐Narike (ILN) associations using rice (PR 106) as test crop at 0 and 7.5 ppm Zn levels. Chelating extractants 0.005M DTPA, 0.01M EDTA‐(NH4)2CO3 and 0.05M EDTA, extracted more soil Zn than double‐acid and were significantly correlated with each other as well as with soil pH and clay in BPN and only with clay in ILN soil association. Soil CaCO3 governed the double‐acid extractable Zn in these soils. Dry matter yield and Zn uptake by rice significantly increased with 7.5 ppm Zn application. The response was higher in ILN than BPN soil association, The DTPA method gave the highest correlation with Bray's yield and Zn uptake (r =0.72 and 0.55) followed by 0.05M EDTA (r ‐ 0.75 and 0.61) or EDTA‐(NH4)2CO3 (r =0.70 and 0.61). The predictability of rice yield improved from 18–27 to 27–35, 32–43, 34–44 and 51–55 percent as a result of stepwise inclusion of pH, CaCO3, organic carbon (OC) and clay respectively in the regression equation alongwith Zn extracted by chelating agents.

The critical levels of DTPA, EDTA‐(NH4)2CO3 and EDTA extractable Zn significantly differed in the two associations and were 0.69, 0.82 and 1.24 ppm in BPN and O.BC, 1.09 and 1.42 ppm in ILN soil association. Soil properties further affected the critical levels. This for DTPA available Zn was 0.80 and 1.03 ppm in soil containing less and greater than 2% CaCO3, 1.03 and 0.80 ppm in soils containing less and greater than 0.25% OC. These values for EDTA‐(NH4)2CO3 available Zn were 1.09 and 0.91 ppm Zn in soils containing less and greater than 15% clay suggesting that critical levels of Zn for each category of soil properties should be considered while making recommendations of Zn fertilization of crops.,  相似文献   

13.
Abstract

Eighteen soils from northwestern Switzerland were used to study the value of seven universal extractants (CaCl2; DB‐DTPA; Mehlich 1, 2, and 3; Morgan‐Wolf; and NH4OAc‐EDTA) for predicting plant available potassium (K) as compared to a bioassay (a modified Neubauer test with winter rye). These extractants were evaluated on the basis of K uptake by the bioassay test and the soil K status. In order to create the sufficiency level of exchangeable K for plant growth, soils were treated with 0, 20, 40, 80, and 160 mg K/kg of soil. The range of K uptake by the bioassay tests was between 89.2 and 403.0 mg/kg of soil for the control pots, and 136.6 to 495.8 for the K treatments with optimal conditions for plant growth. The average amounts of K extracted by the seven universal extractants, in ascending order, were: CaCl2 < Morgan‐Wolf < Mehlich 1 < Mehlich 2 < NH4OAc‐EDTA < Mehlich 3 < DB‐DTPA. The highest simple correlation with K uptake versus the bioassay test was obtained with the DB‐DTPA (r = 0.89) extractant and the lowest with the Mehlich 1 (r = 0.53) extractant. The DP‐DTPA, NH4OAc‐EDTA and Mehlich 3‐K procedures showed an advantage over K procedures based on water soluble and exchangeable K pools in the investigated soils in order to predict the amount of plant‐available K. A simple regression and the Cate‐Nelson graphic method offer the possibility of assessing the soil‐K status using K values obtained by these universal extractants and to calibrate them against K forms as follows: exchangeable, water soluble, and non‐exchangeable.  相似文献   

14.
Abstract

Individual soil tests are used to assess plant nutrient element needs. Separate soil tests, however, are time consuming and costly. Our objective was to develop a 0.5M sodium bicarbonate (NaHCO3) soil phosphorus (P) test in combination with 0.005M diethylenetriaminepentaacetic acid (DTPA) so macronutrient dements: ammonium‐nitrogen (NH4‐N), nitrate‐nitrogen (NO3‐N), P, potassium (K), calcium (Ca), and magnesium (Mg); and micronutrients: iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) could be quantified in one extraction. The NaHCO3‐DTPA extracting solution is a combination of 0.5M NaHCO3 and 0.005M DTPA and has a pH of 7.60±0.05. Sodium in the solution enhances the NH4, K, Ca, and Mg extraction; bicarbonate (HCO3) is for P extraction; DTPA chelates Ca, Mg, and micronutrients; and the water is for NO3 extraction. Soil samples (0–15 cm depth) came from two sources. The first set was from 12 N x P dryland proso millet (Panicum miliaceum L.) experiments, conducted from 1985 through 1987 in eastern Colorado. These soils were extracted with potassium chloride (KCl), NaHCO3, ammonium acetate (CH3‐COONH4), DTPA, ammonium bicarbonate DTPA (AB‐DTPA), and with the NaHCO3‐DTPA solutions. The second set included 25 soils from Alabama, Georgia, North Carolina, and South Carolina and were analyzed only for available P with the NaHCO3 and NaHCO3‐DTPA methods. Simple linear correlations for macronutrient elements and micronutrients were highly significant. Critical levels for the macronutrient elements: NO3‐N, P, and K were 27, 11, and 144 mg kg‐1, respectively; and the critical levels for the micronutrients: Fe, Mn, Zn, and Cu were 3.9, 0.35, 0.97, and 0.24 mg kg‐1, respectively.  相似文献   

15.
Abstract

Relative suitability of different extraction procedures for estimating available zinc (Zn) and copper (Cu) in soils was assessed using DTPA, 0.1 N HCl, ammonium acetate+EDTA, and double acid (HCl+ H2SO4) as extractants and rice as a test crop in Neubauer experiment. The relationships between Zn concentration and uptake of Zn by rice plants and Zn extracted by the different methods showed that DTPA‐TEA, pH 7.3, could very suitably be used to assess Zn availability in soils. However, 0.1 N HCl was better for assessing the Cu availability in soils to the rice plants. Water‐soluble and exchangeable fractions of Zn and Cu had significant positive correlations with Zn and Cu concentrations, respectively obtained by all the four extractants tested. The results also showed that DTPA and ammonium acetate+EDTA extracted organically bound Zn, whereas DTPA, 0.1 N HCl and ammonium acetate+EDTA extracted organically bound Cu. Water‐soluble, exchangeable and organic matter bound fractions exhibited significant relationships with Zn and Cu concentrations, their uptake and rice dry matter yield.  相似文献   

16.
Abstract

Soil cation exchange capacity (CEC) measurements are important criteria for soil fertility management, vaste disposal on soils, and soil taxonomy. The objective of this research was to compare CEC values for arable Ultisols from the humid region of the United States as determined by procedures varying widely in their chemical conditions during measurement. Exchangeable cation quantities determined in the course of two of the CEC procedures were also evaluated. The six procedures evaluated were: (1) summation of N NH4OAc (pH 7.0) exchangeable Ca, Mg, K, and Na plus BaCl2 ‐ TEA (pH 8.0) exchangeable acidity; (2) N Ca(OAc)2 (pH 7.0) saturation with Mg(OAc)2 (pH 7.0) displacement of Ca2+; (3) N NH4OAc (pH 7.0) saturation with NaCl displacement of NH4 +; (4) N MgCl2 saturation with N KCl displacement of Mg2+; (5) compulsive exchange of Mg2+ for Ba2+; and (6) summation of N NH4OAc (pH 7.0) exchangeable Ca, Mg, K, and Na plus N KCl exchangeable AJ. The unbuffered procedures reflect the pH dependent CEC component to a greater degree than the buffered methods. The compulsive exchange and the summation of N NH4OAc exchangeable cations plus N KCl exchangeable Al procedures gave CEC estimates of the same magnitude that reflect differences in soil pH and texture. The buffered procedures, particularly the summation of N NH4OAc exchangeable cations plus BaCl2 ‐ TEA (pH 8.0) exchangeable acidity, indicated inflated CEC values for these acid Ultisols that are seldom limed above pH 6.5. Exchangeable soil Ca and Mg levels determined from extraction with 0.1 M BaCl2 were consistently greater than values for the N NH4Oac (pH 7.0) extractions. The Ba2+ ion is apparently a more efficient displacing agent than the NH4 + ion. Also, the potential for dissolving unreacted limestone is greater for the Ba2 + procedures than in the NH4 + extraction.  相似文献   

17.
Abstract

A trial was carried out with compost and compost/peat mixtures to test several extraction methods for the estimation of availability of phosphorus (P). The test plant was Dendranthema grandiflorum All composts had a high pH and salt content. Amounts of P extracted by different extraction methods decreased in the order: Formate < CAL < NH4‐acetate < CaCl2/DTPA < CaCl2. Dilution of compost with peat decreased pH and increased availability of P. The better availability of P caused by dilution with peat was not reflected by the Formate‐, CAL‐, and NH4‐acetate method. These acid and well‐buffered extraction solutions overestimate P, and are therefore not suited to estimate availability of P in composts and compost/peat mixtures. Weak extraction solutions, like CaCl2 and CaCl2/DTPA, gave results which showed a good correlation with P content of plants and P uptake. The advantage of the latter method compared with CaCl2 is the extraction of amounts of P comparable to amounts taken up by the plants. Therefore of all the extraction methods tested, the CaCl2/DTPA method showed the best suitability to estimate the availability of P in composts and compost/peat mixtures.  相似文献   

18.
Field experiments were conducted on rice (cv ‘IET 4094’) in an Aeric endoaquept (pH 7.2) to evaluate the various zinc (Zn) extractants in lowland rice soil under the influence of Zn sulfate and chelated Zn. The diethylenetriaminepentaacetic acid (DTPA), 0.1 N hydrochloric acid (HCl), and 0.05 N HCl‐extractable Zn concentrations in soil increased initially up to the Z29 stage of crop growth when Zn was applied as a single basal source, being greater with Zn ethylenediaminetetraacetic acid (Zn‐EDTA) compared to zinc sulfate (ZnSO4) application. Among the various extractants, the performance of 0.1 N HCl in extracting Zn was better than the other two extractants and followed the trend 0.1 N HCl > 0.005 M DTPA > 0.05 N HCl. The greatest increase in grain and straw yield of rice was 37.8 and 20.4%, respectively, over the control in the treatment T7 (1 kg Zn ha?1 as Zn‐EDTA at basal).  相似文献   

19.
Compost of separately collected green yard and organic household wastes may contain high amounts of Zn. Hence, substrates basing on compost can result in Zn phytotoxicity. The aim of the investigations was to identify a suitable reagent to characterize phytoavailable Zn in compost-peat substrates. Petunia hybrids were cultivated in compost-peat substrates with increasing Zn amounts (basic load, 400, 800, 1600 mg kg?1 d.m. aqua regia soluble). Extractable Zn was determined by extraction of fresh and dried substrates with H2O, 1 M NH4NO3, 0.1 M CaCl2, 1 M NH4OAc, and CaCl2-DTPA (0.01 M + 0.002 M). The Zn content of plants increased significantly with increasing Zn application and decreasing pH. The result of CaCl2 and NH4OAc extraction reflected the influence of pH on Zn phytoavailability quite well and the correlation with the plant Zn content was very good. Extraction with H2O and NH4NO3 did not give acceptable results. Extraction with CaCl2-DTPA was inconsistent for all trials and thus not suitable. The percentage of CaCl2-extractable Zn in relation to the aqua regia soluble content at the same pH varied over the trials. Thus, the phytoavailable content of the substrates is influenced by additional factors, besides Zn supply and pH. The result of CaCl2 extraction of dried substrates resulted in the best reflection of Zn phytoavailability and was used for all further investigations, including determination of critical values of phytotoxic Zn. Plant yield was not influenced by the Zn treatments. However, Zn induced chlorosis of petunias occurred at a plant Zn content > 160 mg kg?1 d.m. and a phytoavailable Zn content in the substrate > 6 mg l?1 in CaCl2 extract and > 2.6 mg l?1 in NH4OAc extract, respectively.  相似文献   

20.
In the present study, a laboratory experiment was designed to compare the 0.01 M calcium chloride (CaCl2) and diethylenetriaminepentaacetic acid (DTPA) extraction methods for their ability to predict cadmium (Cd), copper (Cu), iron (Fe), Manganese (Mn), nickel (Ni), and zinc (Zn) availability and mobility in five calcareous soils. The soils were spiked with different amounts of metals (0, 50, 100, 200, and 400 mg kg?1) both in binary (Cu and Zn; Ni and Cd; Fe and Mn) and in multi-systems (Cd, Cu, Fe, Mn, Ni, and Zn) and incubated for 1 months at field capacity. In metal-spiked soils, both extraction methods showed a linear relationship of extractable to total metals for all soils. The fraction of total metals extracted by DTPA was much higher than the fraction extracted by CaCl2, which was attributed to the formation of soluble metal-complexes in the complexing extracts calculated by the Visual Minteq program. DTPA extraction method showed higher selectivity for Cu over other metals both in binary and in multi-systems. Different order of metals extractability was found in binary and multi-systems for both extraction methods. Solid/solution distribution coefficient (Kd) was calculated by the ratio of the solid phase to soil solution concentration of metals extracted by CaCl2 or DTPA extraction methods. Both in binary and in multi-systems, the average Kd (l kg?1) of metals by soils were in the order of Mn (5398) > Fe (4413) > Zn (3376) > Cu (2520) > Ni (969) > Cd (350) in the CaCl2-extractable metals and Fe (35) ≥ Ni (34) > Zn (18) > Mn (11.2) > Cu (6.3) > Cd (4) in the DTPA-extractable metals. Results showed that among the six studied metals, Cd had the lowest Kd, implying a relative higher mobility in these calcareous soils. The Visual Minteq indicated that in the CaCl2-extraction method and in both binary and multi-systems the dominant species for Cu, Mn, Ni, and Zn were Cu2+, Mn2+, Ni2+ and Zn2+, respectively, while for Cd and Fe, the dominant species were CdCl+ and Fe(OH)2+, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号