首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The objective of these experiments was to establish the relationship of plasma ghrelin concentrations with feed intake and hormones indicative of nutritional state of cattle. In Exp.1, 4 steers (BW 450 +/- 14.3 kg) were used in a crossover design to compare plasma ghrelin concentrations of feed-deprived steers with those of steers allowed to consume feed and to establish the relationship of plasma ghrelin concentrations with those of GH, insulin (INS), glucose (GLU), and NEFA. After adaptation to a once-daily feed offering (0800), 2 steers continued the once-daily feeding schedule (FED), whereas feed was withheld from the other 2 steers (FAST). Serial blood samples were collected via indwelling jugular catheter from times equivalent to 22 h through 48 h of feed deprivation. Average plasma ghrelin concentrations were greater (P < 0.001) in FAST compared with FED (690 and 123 +/- 6.5 pg/mL) steers. Average plasma ghrelin concentrations for FED steers prefeeding were elevated (P < 0.001) when compared with those postfeeding (174 and 102 +/- 4.2 pg/mL, respectively). Average plasma GH concentration was elevated (P < 0.05) for FAST steers compared with FED steers. Plasma GLU concentrations were not different; however, for FAST steers, NEFA concentrations were elevated (P < 0.001) and INS concentrations were decreased (P < 0.001). In Exp. 2, 4 steers (BW 416 +/- 17.2 kg) were used in a crossover design to determine the effects of i.v. injection of bovine ghrelin (bGR) on plasma GH, INS, GLU, and NEFA concentrations; length of time spent eating; and DMI. Steers were offered feed once daily (0800). Serial blood samples were collected from steers via indwelling jugular catheter. Saline or bGR was injected via jugular catheter at 1200 and 1400. A dosage of 0.08 microg/kg of BW bGR was used to achieve a plasma ghrelin concentration similar to the physiological concentration measured in a FAST steer in Exp. 1 (1,000 pg/mL). Injection of bGR resulted in elevated (P < 0.005) plasma GH concentrations after the 1200 but not the 1400 injection. Plasma INS, GLU, and NEFA concentrations were not affected by bGR injection. For the combined 1-h periods postinjection, length of time spent eating was greater (P = 0.02) and DMI tended to be increased (P = 0.06) for bGR steers. These data are consistent with the hypothesis that ghrelin serves as a metabolic signal for feed intake or energy balance in ruminants.  相似文献   

2.
Ghrelin, the natural ligand of the growth hormone secretagogue receptor (GHS-R1a), has been shown to stimulate growth hormone (GH) secretion. Regulation of ghrelin secretion in ruminants is not well studied. We investigated the effects of oxyntomodulin (OXM) and secretin on the secretions of ghrelin, insulin, glucagon, glucose, and nonesterified fatty acids (NEFA) in pre-ruminants (5 wk old) and ruminants (10 wk old) under normal physiological (feeding) conditions. Eight male Holstein calves (pre-ruminants: 52 ± 1 kg body weight [BW]; and ruminants: 85 ± 1 kg BW) were injected intravenously with 30 μg of OXM/kg BW, 50 μg of secretin/kg BW, and vehicle (0.1% bovine serum albumin [BSA] in saline as a control) in random order. Blood samples were collected, and plasma hormones and metabolites were analyzed using a double-antibody radioimmunoassay system and commercially available kits, respectively. We found that OXM increased the concentrations of insulin and glucose but did not affect the concentrations of ghrelin in both pre-ruminants and ruminants and that there was no effect of secretin on the concentrations of ghrelin, insulin, and glucose in these calves. We also investigated the dose-response effects of OXM on the secretion of insulin and glucose in 8 Holstein steers (401 ± 1 d old, 398 ± 10 kg BW). We found that OXM increased the concentrations of insulin and glucose even at physiological plasma concentrations, with a minimum effective dose of 0.4 μg/kg for the promotion of glucose secretion and 2 μg/kg for the stimulation of insulin secretion. These findings suggest that OXM takes part in glucose metabolism in ruminants.  相似文献   

3.
Four ruminally cannulated steers (BW 581 +/- 12.8 kg) were used in a crossover design to determine the effects of prolonged, moderate nutrient restriction on plasma ghrelin concentrations and to establish the relationship of plasma ghrelin concentrations with hormones and metabolites indicative of nutritional status and end products of rumen fermentation. A high-grain diet was offered at 240% of the intake needed for BW maintenance (2.4xM) or 80% of the intake needed for BW maintenance (0.8xM). To standardize, all steers were acclimated to 2.4xM before initiation of the treatment periods. During period 1, 2 steers continued at 2.4xM, whereas intake for the remaining 2 steers was restricted to 0.8xM. On d 7, 14, and 21 after initiation of the restriction, serial blood samples were collected at 15-min intervals via indwelling jugular catheter and were assayed for ghrelin, GH, NEFA, insulin, and glucose concentrations. Rumen fluid was collected at hourly intervals for evaluation of pH and VFA concentrations. After period 1, steers were weighed, the treatments were switched between steer groups, and the intake amounts were recalculated. Intake of 2.4xM was established for previously restricted cattle, and period 2 was then conducted as described for period 1. Data were analyzed statistically as repeated measures in time, and stepwise regression was used to define the relationship of plasma ghrelin with hormones, metabolites, and end products of rumen fermentation. Throughout the 21-d treatment period, plasma ghrelin concentrations were elevated (P 相似文献   

4.
Ghrelin is a gut peptide which participates in growth regulation through its somatotropic, lipogenic and orexigenic effects. Synergism of ghrelin and growth hormone-releasing hormone (GHRH) on growth hormone (GH) secretion has been reported in humans and rats, but not in domestic animals in vivo. In this study, effects of a combination of ghrelin and GHRH on plasma GH and other metabolic parameters, and changes in plasma active and total ghrelin levels were studied in Holstein bull calves before and after weaning. Six calves were intravenously injected with vehicle (0.1% BSA-saline), ghrelin (1 microg/kg BW), GHRH (0.25 microg/kg BW) or a combination of ghrelin plus GHRH at the age of 5 weeks and 10 weeks (weaning at 6 weeks of age). Ghrelin stimulated GH release with similar potency as GHRH and their combined administration synergistically stimulated GH release in preweaning calves. After weaning, GH responses to ghrelin and GHRH became greater compared with the values of preweaning calves, but a synergistic effect of ghrelin and GHRH was not observed. The GH areas under the concentration curves for 2h post-injection were greater in weaned than in preweaning calves (P<0.05) if ghrelin or GHRH were injected alone, but were similar if ghrelin and GHRH were injected together. Basal plasma active and total ghrelin levels did not change around weaning, but transiently increased after ghrelin injection. Basal plasma insulin, glucose and non-esterified fatty acid levels were reduced after weaning, but no changes by treatments were observed. In conclusion, ghrelin and GHRH synergistically stimulated GH release in preweaning calves, but this effect was lost after weaning.  相似文献   

5.
The effect of appetite regulatory hormone cholecystokinin (CCK) on the secretions of oxyntomodulin (OXM) and ghrelin, and the effect of ghrelin on the secretions of CCK and OXM were studied in ruminants. Eight Holstein steers, 7 months old, 243 ± 7 kg body weight (BW), were arranged in an incomplete Latin square design (8 animals × 4 treatments × 4 days of sampling). Steers were intravenously injected with 10 µg of sulfated CCK‐8/kg BW, 20 µg of acyl ghrelin/kg BW, 100 µg of des‐acyl ghrelin/kg BW or vehicle. Blood samples were collected from ?60 min to 120 min relative to time of injection. Plasma concentrations of ghrelin, sulfated CCK and OXM were measured by double‐antibody radioimmunoassay. Plasma acyl ghrelin was increased to peak level (428.3 ± 6 pg/mL) at 60 min after injection of CCK compared with pre‐injected levels (203.3 ± 1 pg/mL). These results showed for the first time, that intravenous bolus injection of CCK increased ghrelin secretion in ruminants. In contrast, injection of ghrelin did not change CCK secretion. Administration of ghrelin or CCK has no effect on plasma OXM concentrations. In conclusion, our results show that administration of CCK increased ghrelin secretion but did not affect OXM release in ruminants. Ghrelin did not affect the secretions of CCK and OXM.  相似文献   

6.
Ghrelin action, which stimulates growth hormone (GH) secretion, may alter during the weaning period in calves. Our objective was to compare the effects of intravenous ghrelin injection on plasma GH, insulin and glucose concentrations in calves around the weaning period. Four Holstein bull calves were fed whole milk and allowed free access to solid feeds, and weaned at 7 weeks of age. Measurements were performed at weeks 1, 2, 4, 6, 7, 9, 11 and 13, when calves were intravenously injected with ghrelin (1.0 μg/kg body weight (BW)) through a catheter, and jugular blood samples were obtained temporally relative to the injection time. Estimated digestible energy intake per metabolic BW transiently decreased at week 7 because of low solid intake immediately after weaning, and thereafter gradually increased. Plasma insulin and glucose concentrations were not affected by ghrelin injection at all ages. In contrast, plasma GH concentrations increased with ghrelin injection at all ages. The incremental area of GH at week 7 was greatest and significantly higher compared with weeks 2, 4, 6 and 9. This result suggests that nutrient insufficiency immediately after weaning enhances GH responsiveness to ghrelin.  相似文献   

7.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a hypothalamic neuropeptide that stimulates release of growth hormone (GH) from cultured bovine anterior pituitary gland cells, but the role of PACAP on the regulation of in vivo secretion of GH in cattle is not known. To test the hypothesis that PACAP induces secretion of GH in cattle, meal-fed Holstein steers were injected with incremental doses of PACAP (0, 0.1, 0.3, 1, 3, and 10 microg/kg BW) before feeding and concentrations of GH in serum were quantified. Compared with saline, injection of 3 and 10 microg PACAP/kg BW increased peak concentrations of GH in serum from 11.2 ng/ml to 23.7 and 21.8 ng/ml, respectively (P < 0.01). Peak concentrations of GH in serum were similar in steers injected with 3 or 10 microg PACAP/kg BW. Meal-fed Holstein steers were then injected with 3 microg/PACAP/kg BW either 1 hr before feeding or 1 hr after feeding to determine if PACAP-induced secretion of GH was suppressed after feeding. Feeding suppressed basal concentrations of GH in serum. Injection of PACAP before feeding induced greater peak concentrations of GH in serum (19.2 +/- 2.6 vs. 11.7 +/- 2.6 ng/ml) and area under the response curve (391 +/- 47 vs. 255 +/- 52 ng. ml(-1) min) than injection of PACAP after feeding, suggesting somatotropes become refractory to PACAP after feeding similar to that observed by us and others with growth hormone-releasing hormone (GHRH). We concluded that PACAP induces secretion of GH and could play a role in regulating endogenous secretion of GH in cattle, perhaps in concert with GHRH.  相似文献   

8.
The effects of GHRP-2 (also named KP102), a new growth hormone-releasing peptide, on the release of growth hormone (GH) and growth performance were examined in swine. The single intravenous (i. v.) injection of GHRP-2 at doses of 2, 10, 30 and 100 microg/kg body weight (BW) to cross-bred castrated male swine stimulated GH release in a dose-dependent manner, with a return to the baseline by 120 min. The peak GH concentrations and GH areas under the response curves (GH AUCs) for 180 min after the injections of GHRP-2 were higher (P < 0.05) than those after the injection of saline. The GH responses to repeated i.v. injections of GHRP-2 (30 microg/kg BW) at 2-h intervals for 6 h were decreased after each injection. The chronic subcutaneous (s.c.) administration of GHRP-2 (30 microg/kg BW) once daily for 30 days consistently stimulated GH release. The GH AUCs for 300 min after the injections on d 1, 10 and 30 of treatment in GHRP-2-treated swine were higher than those in saline-treated swine. However, chronic administration of GHRP-2 caused a partial attenuation of GH response between d 1 and 10 of treatment. The chronic s.c. administration of GHRP-2 also increased average daily gain for the entire treatment period by 22.35% (P < 0.05) and feed efficiency (feed/gain) by 20.64% (P < 0.01) over the saline control values, but did not significantly affect daily feed intake. These results indicate that GHRP-2 stimulates GH release and enhancing growth performance in swine.  相似文献   

9.
Effects of various doses of bovine somatotropin (bST) on plasma concentrations of nonesterified fatty acids (NEFA) were studied in a 14-d Latin square with six Holstein heifers. Animals were given daily injections of excipient or bST at 12:00 p.m. and fed twice daily at 7:00 a.m. and 7:00 p.m. On Day 14, plasma NEFA remained low through the day except around the 7:00 p.m. feeding when they were substantially elevated. The elevation was significantly greater in bST-treated animals and corresponded to the excitement of the animals in anticipation of the evening feeding. To further investigate this phenomenon, a second experiment was conducted in which nine growing Holstein steers were fed hourly and received either daily intramuscular (i.m.) injection of excipient or bST (120 mg/kg BW) for 15 d in a crossover design. Daily profiles of NEFA were obtained under undisturbed conditions or concurrently with intensive handling. Although no elevations could be detected in any case in control animals, bST caused a substantial rise in NEFA concentration only when animals were subjected to intensive handling. This suggested that NEFA peaks noted in bST-treated heifers in the first experiment resulted from increased ability of adipose tissue to respond to adrenergic stimulation associated with the anticipation of feeding. Consistent with this hypothesis, plasma NEFA concentrations in bST-treated steers were increased to a greater extent during a challenge involving i.v. injection of epinephrine. This amplification of adipose tissue response by bST must be considered when conducting intensive studies. Even the minimal excitement associated with blood sampling can confound the results regarding lipid mobilization, and this may have contributed to the notion that ST is a lipolytic hormone.  相似文献   

10.
Four experiments were conducted to clarify the effect of intravenous (i.v.) administration of recombinant bovine tumor necrosis factor alpha (rbTNF) on selected metabolites and on hormone secretion in Holstein heifers (n = 6; 347.0 kg average BW). In Exp. 1, rbTNF was injected at three dosage levels in a Latin square; 0 (CONT), 2.5 (TNF2.5), or 5.0 (TNF5) microg/kg BW. Plasma glucose and triglyceride concentrations were at first elevated (P < .05) by rbTNF treatment and then were decreased (P < .05) by TNF2.5 and TNF5. Plasma NEFA concentrations were increased (P < .05) in rbTNF-treated groups. The injection of rbTNF resulted in an increase in plasma insulin levels (P < .05 with TNF5) during the period between 2 and 24 h, except for the period between 6 and 8 h, after the treatment. In Exp. 2, 3, and 4, each heifer received i.v. injections of glucose (.625 mM/kg BW) + rbTNF (5 microg/kg) or glucose + saline (10 mL) (Exp. 2), insulin (0.2 U/kg) + rbTNF or insulin + saline (Exp. 3), and GHRH (0.25 microg/kg) + rbTNF or GHRH + saline (Exp. 4) at 1-wk intervals. In Exp. 2, rbTNF inhibited (P < .05) glucose-stimulated insulin secretion during the initial phase. Thereafter, plasma insulin was higher (P < .01) with the glucose + rbTNF treatment than with the glucose + saline treatment. Treatment with rbTNF inhibited the insulin-stimulated glucose utilization (Exp. 3) and GHRH-stimulated GH secretion (Exp. 4) during the initial phase. These results suggest that rbTNF directly and(or) indirectly affects the intermediary metabolism and hormone secretion in Holstein heifers.  相似文献   

11.
Data from species other than cattle indicate that ghrelin and GH secretagogue receptor (GHS-R) could play a key role in fat deposition, energy homeostasis, or glucose metabolism by directly affecting liver and adipose tissue metabolism. Beef steers (n = 72) were used to test the hypothesis that plasma ghrelin and leptin concentrations and abundance of the GHS-R in liver, muscle, and adipose tissues differ in steers exhibiting differences in composition of gain. At trial initiation (d 0), 8 steers were slaughtered for initial carcass composition. The remaining 64 steers were stratified by BW, allotted to pen, and treatment was assigned randomly to pen. Steers were not implanted with anabolic steroids. Treatments were 1) a low-energy (LE) diet fed during the growing period (0 to 111 d) followed by a high-energy (HE) diet during the finishing period (112 to 209 d; LE-HE) or 2) the HE diet for the duration of the trial (1 to 209 d; HE-HE). Eight steers per treatment were slaughtered on d 88, 111, 160, and 209. Carcass ninth, tenth, and eleventh rib sections were dissected for chemical composition and regression equations were developed to predict compositional gain. Liver, muscle, and subcutaneous adipose tissues were frozen in liquid nitrogen for subsequent Western blotting for GHS-R. Replicate blood samples collected before each slaughter were assayed for ghrelin and leptin concentrations. When compared at a common compositional fat end-point, the rate of carcass fat accretion (g·kg of shrunk BW(-1)) was greater (P < 0.001) in HE-HE steers whereas the rate of carcass protein accretion (g·kg of shrunk BW(-1)) was less (P < 0.001) compared with LE-HE steers. When compared at a common compositional fat end-point, plasma leptin, ghrelin, and insulin concentrations were greater (P < 0.05) for HE-HE compared with LE-HE steers. Abundance of the GHS-R, to which ghrelin binds, increased over time in liver and adipose tissue but did not differ as a result of treatment. Plasma ghrelin concentrations were increased for cattle continuously fed the HE diet as they became increasingly fatter; however, abundance of the GHS-R in liver, muscle, and subcutaneous adipose tissue was not different between treatment groups. The role of ghrelin in cattle metabolism warrants further investigation as it could have a significant effect on composition of BW gain, feed efficiency, and metabolic disorders such as ketosis and fatty liver.  相似文献   

12.
The adaptation of the physiology of an animal to changing conditions of light and food availability is evident at the behavioral and hormonal levels. Melatonin, leptin, ghrelin, and orexin, which exhibit rhythmic secretion profiles under ad libitum feeding conditions, are sensitive to changes in daylength, forming a tight web of interrelationships in the regulation of energy balance. The aim of this study was to determine the effects of central injections of leptin, ghrelin, and orexin on the reciprocal interactions among these hormones and the influence of photoperiod on these responses. Twenty-four ovariectomized and estradiol-implanted ewes were used in a replicated switchback design. The ewes were assigned randomly to 1 of 6 treatment groups, and the treatments were infused into their third ventricles 3 times at 0, 1, and 2 h, with 0 h being at dusk. The treatments were as follows: 1) control, Ringer-Locke buffer; 2) leptin, 0.5 μg/kg BW; 3) ghrelin, 2.5 μg/kg BW; 4) orexin B, 0.3 μg/kg BW; 5) leptin antagonist, 50 μg/kg BW, then ghrelin, 2.5 μg/kg BW; and 6) leptin antagonist, 50 μg/kg BW, then orexin B, 0.3 μg/kg BW. Blood samples (5 mL) were collected at 15-min intervals for 6 h. The administration of leptin increased (P < 0.05) plasma concentrations of melatonin during short-day (ShD) photoperiods and decreased (P < 0.05) them during long-day (LD) photoperiods, whereas ghrelin decreased (P < 0.05) melatonin concentrations during ShD photoperiod, and orexin had no effect (P > 0.1). Leptin attenuated (P < 0.05) ghrelin concentrations relative to the concentration in controls during ShD. The plasma concentrations of orexin were reduced (P < 0.05) after leptin infusions during LD and ShD photoperiods; however, ghrelin had the opposite effect (P < 0.05) on orexin concentration. Orexin increased (P < 0.05) ghrelin concentrations during LD. Ghrelin and orexin concentrations were increased (P < 0.05) after leptin antagonist infusions. Our data provide evidence that the secretion of leptin, ghrelin, and orexin are seasonally dependent, with relationships that are subject to photoperiodic regulation, and that leptin is an important factor that regulates ghrelin and orexin releases in sheep.  相似文献   

13.
Serotonin stimulates secretion of growth hormone (GH) in cattle, but the mechanism is unknown. In rats, thyrotropin-releasing hormone (TRH) mediates serotonin-induced secretion of GH. We hypothesized that the same is true in cattle. Cattle were fed for 2h daily to synchronize secretion of GH, such that concentrations of GH were high before and low after feeding. Our first objective was to determine whether or not feeding suppresses serotonin receptor agonist (quipazine) induced secretion of GH. Holstein steers were injected with quipazine (0.2 mg/kg BW) either 1 h before or 1 h after feeding. Quipazine-induced secretion of GH which did not differ in magnitude before and after feeding. If TRH mediates serotonin-induced secretion of GH, then magnitude of TRH-induced secretion of GH should not be different before and after feeding (our second objective). Sixteen meal-fed Holstein steers were injected with 0.3 microg TRH/kg BW either 1 h before or 1 h after feeding. Indeed, magnitude of TRH-induced secretion of GH before and after feeding was not different. Our third objective was to inhibit endogenous TRH with 3,5,3'-triiodothyronine (T(3)) and examine basal, GH-releasing hormone (GHRH)-, TRH- and quipazine-induced secretion of GH. Sixteen Holstein steers were injected daily with either T(3) (3 or 6 microg/kg BW) or vehicle for 20 days and then challenged sequentially with vehicle or GHRH, TRH, or quipazine. T(3) did not affect basal, GHRH- or TRH-induced secretion of GH, but reduced basal secretion of thyroxine. T(3) reduced but did not completely block quipazine-induced secretion of GH. In conclusion, TRH mediates, in part, serotonin-induced secretion of GH in cattle.  相似文献   

14.
A study was undertaken to determine the effective dosage of GH-releasing hormone (GRF) required to produce blood GH response in mithun (Bos frontalis), a semi-wild ruminant species. For the purpose, 12 mithuns averaging 11.5 months of age and 146 kg body weight (BW) were randomly assigned to receive GRF (n = 12), administered at 0 (normal saline), 5, 10 and 20 mug per 100 kg BW. Blood samples were collected prior to and after GRF administration at -60, -45, -30, -15, -10, -5, 0 min and 5, 10, 15, 30 and thereafter, at 15-min interval up to 8 h post-GRF were assayed for plasma GH. For all the dosages, the pre-treatment GH concentrations and corresponding area under GH response curve (AUC) were similar (p > 0.05). The post-GRF plasma GH responses to different dosages of GRF viz. 5, 10 and 20 mug per 100 kg BW and corresponding AUCs were higher (p < 0.05) than those recorded in normal saline-treated controls. The GH responses to 10 and 20 mug GRF per 100 kg BW and corresponding AUCs were higher (p < 0.05) than those registered in mithuns administered with 5 mug GRF per 100 kg BW. Interestingly, post-GRF concentration of plasma GH and AUCs were not different for 10 and 20 mug GRF per 100 kg BW dosages. In all animals treated with GRF, a peak of GH was registered within 10 to 20 min post-GRF. Following 5 mug GRF per 100 kg BW, GH concentrations were maintained at higher level for 90 min post-GRF and thereafter became similar to that of controls and it was 435 min for 10 and 20 mug GRF per 100 kg BW dosages. In conclusion, our results suggest that 10 mug GRF per 100 kg BW is the dosage, which can be used for augmentation of mithun production.  相似文献   

15.
The selective dopamine D1 receptor agonist, SKF38393, stimulates release of somatostatin (SS) from perifused bovine hypothalamic slices. Therefore, we hypothesized that SKF38393 activates SS neurons, which, via release of SS, would suppress concentrations of growth hormone (GH) in serum in calves. Our objectives were to determine whether SKF38393: (1) increases the percent of immunoreactive c-Fos protein and Fos-related antigens (Fos/FRA) detected in somatostatin neurons in periventricular (PeVN) and arcuate (ARC) hypothalamic nuclei; (2) reduces concentrations of GH in serum; (3) suppresses growth hormone-releasing hormone (GHRH)-induced release of GH. Meal-fed steers were used to perform these objectives because a synchronous pulse of GH occurs 1–2 hr before feeding in steers allowed access to feed for 2 hr each day. In Experiment 1, two groups of four Holstein steers were injected s.c. with either vehicle (sterile water) or SKF38393 (5 mg/kg BW). Steers were injected i.v. with a lethal dose of sodium pentobarbital 100 min later and their brains were fixed with 4% paraformaldehyde. Dual-label immunohistochemistry was performed on 40 μm free-floating sections using antiserum to SS and to Fos/FRA on sections containing PeVN and ARC nuclei. More SS neurons were detected in the PeVN than in the ARC. The percent of SS neurons with immunoreactive Fos/FRA present was 2.9-fold higher in SKF38393-treated compared with vehicle-injected steers in the PeVN, but was unchanged in the ARC. In Experiment 2, eight Holstein steers were injected s.c. with either vehicle (sterile water) or SKF38393 (5 mg/kg BW) 140 min before meal-feeding. In contrast to controls, concentrations of GH in serum of SKF38393-treated steers did not increase during the 140 min before meal-feeding. In Experiment 3, eight Holstein steers were injected s.c. with either vehicle (sterile water) or SKF38393 (5 mg/kg BW), then 100 min later, each steer was injected i.v. with [Leu27, Hse45] bGHRH1–45 lactone (0.2 μg/kg BW). Bovine GHRH stimulated release of GH into serum in both groups, but concentrations of GH were lower in SKF38393-treated steers. These results show that stimulation of D1 receptors selectively increases activity of SS neurons in the PeVN, and this increased activity is associated with suppressed basal- and GHRH-induced release of GH in serum of meal-fed steers.  相似文献   

16.
Milk production is increased in lactating cows treated with bovine somatotropin (bST) because a greater portion of absorbed nutrients are partitioned for milk synthesis. This homeorhetic action may be caused by alterations in response of key tissues to homeostatic signals. To examine this theory, acute metabolic challenges were administered to 8 multiparous Holstein cows (61 +/- 2 days postpartum) receiving daily subcutaneous injections of pituitary-derived bST (26.3 mg) or excipient during two 14-day treatment periods (crossover experimental design). Treatment with bST increased milk yield 12%. Feed intake did not change so that net energy balance decreased (+ .5 vs. -4.3 Mcal/day). Plasma concentrations of nonesterified fatty acids (NEFA) were chronically elevated in bST-treated cows, consistent with energy balance differences. However, baseline concentrations of glucose, insulin, and glucagon in plasma did not differ. On the last 3 days of treatment, individual metabolic challenges were administered via jugular cannulas: epinephrine (700 ng/kg BW), glucose (250 mg/kg BW), insulin (1.0 micrograms/kg BW), and glucagon (175 ng/kg BW). Plasma glucose was reduced after the insulin challenge to a lesser extent during bST treatment. In bST-treated cows, the increase in plasma NEFA in response to epinephrine was greater, and NEFA concentrations were lowered to a greater extent after insulin and glucose challenges. Glucose, insulin, and glucagon removal rates were not altered, nor was plasma glucose response to epinephrine or glucagon challenges. Treatment of lactating cows with bST primarily altered the response of adipose tissue to homeostatic signals which affect lipid metabolism.  相似文献   

17.
We measured changes in plasma ghrelin and GH concentrations in mature Holstein cows and 3-mo-old female Holstein calves fed at scheduled times. Our objective was to determine the characteristics of ghrelin secretion in dairy cattle and its influence on GH. Animals were fed at 0800 and 1600 for 2 wk before and during experiments. Plasma was sampled for 24 h at 2-h intervals in Exp. 1. In mature cows, plasma ghrelin concentrations decreased (P < 0.01) just after 0800 but not at the 1600 feeding. Ghrelin concentrations were lower (P < 0.01) in calves than in mature cows and they did not decrease after feeding in calves. The temporal relationship between ghrelin and GH remained unclear. In Exp. 2, plasma was sampled 2 h before and after both morning and evening feedings at 20-min intervals. Plasma ghrelin concentrations decreased (P < 0.05) 40 min after 0800 feeding and 60 min after 1600 feeding in mature cows. These results indicate that in mature cows, plasma ghrelin concentration decreased after feeding, but this decrease was not evident in 3-mo-old calves. Further studies are required to define the relationship between plasma ghrelin and GH concentrations.  相似文献   

18.
The objective of this study was to determine the effect of a subtherapeutic level of chlortetracycline (CTC) fed to growing beef steers under conditions of limited and adequate dietary protein on plasma concentrations of GH, thyroid-stimulating hormone (TSH), and thyroid hormones before and after an injection of thyrotropin-releasing hormone (TRH) + GHRH. Young beef steers (n = 32; average BW = 285 kg) were assigned to a 2x2 factorial arrangement of treatments of either a 10 or 13% crude protein diet (70% concentrate, 15% wheat straw, and 15% cottonseed hulls) and either a corn meal carrier or carrier + 350 mg of CTC daily top dressed on the diet. Steers were fed ad libitum amounts of diet for 56 d, and a jugular catheter was then placed in each steer in four groups (two steers from each treatment combination per group) during four consecutive days (one group per day). Each steer was injected via the jugular catheter with 1.0 microg/kg BW TRH + .1 microg/kg BW GHRH in 10 mL of saline at 0800. Blood samples were collected at -30, -15, 0, 5, 10, 15, 20, 30, 45, 60, 120, 240, and 360 min after releasing hormone injection. Plasma samples were analyzed for GH, TSH, thyroxine (T4), and triiodothyronine (T3). After 84 d on trial, the steers were slaughtered and the pituitary and samples of liver were collected and analyzed for 5'-deiodinase activity. Feeding CTC attenuated the GH response to releasing hormone challenge by 26% for both area under the response curve (P<.03) and peak response (P<.10). Likewise, CTC attenuated the TSH response to releasing hormone challenge for area under the response curve by 16% (P<.10) and peak response by 33% (P<.02), and attenuated the T4 response for area under the curve by 12% (P<.08) and peak response by 14% (P<.04). Type II deiodinase activity in the pituitary was 36% less (P<.02) in CTC-fed steers than in steers not fed CTC. The results of this study are interpreted to suggest that feeding subtherapeutic levels of CTC to young growing beef cattle attenuates the release of GH and TSH in response to pituitary releasing hormones, suggesting a mechanism by which CTC may influence tissue deposition in cattle.  相似文献   

19.
A study was undertaken to investigate the changes of plasma non-esterified fatty acids (NEFA), glucose and alpha-amino nitrogen and their relationship with age, body weight (BW) and plasma growth hormone (GH) in growing buffaloes. For the purpose, six growing female Murrah buffalo calves of 6-8 months of age were selected on the basis of their BW and fed according to Kearl standard (Nutrient Requirements of Ruminants in Developing Countries, International Feedstuffs Institute, Utah State University, Utah, USA, 1982, p. 89) for growing buffaloes (target growth rate 500 g/day) to meet energy and protein requirement of the animals. Blood samples collected at fortnight intervals for 1 year were analysed for plasma NEFA, glucose, alpha-amino nitrogen and GH. The animals were also weighed at fortnight intervals. Plasma NEFA and glucose levels were found to decrease (p < 0.01) with age. Unlike plasma NEFA and glucose, plasma alpha-amino nitrogen level increased (p < 0.01) as the buffaloes become older. Plasma NEFA and glucose concentrations in growing buffaloes were found to be positively correlated with plasma GH (r = 0.379 and 0.420 respectively), but these were non-significant (p > 0.01). However, plasma NEFA and glucose showed a good correlation (p < 0.01; r = 0.780 and 0.652 respectively) with plasma GH per 100 kg live weight. Plasma alpha-amino nitrogen exhibited non-significant (p > 0.01) negative correlation (r = -0.295) with plasma GH but a negative correlation (p < 0.01; r = -0.641) with GH per 100 kg BW. So, plasma metabolites showed a definite pattern of change during growth and these have a significant (p < 0.01) correlation with plasma GH per 100 kg BW than GH.  相似文献   

20.
The aim of this study was to determine whether 2,4-thiazolidinedione (2,4-TZD) influences the effects of peripheral insulin action in steers given recombinant bovine tumor necrosis factor (TNF) alpha (rbTNF). Steers were treated once daily for 9 d (d0 - d8) with either s.c. injection of rbTNF (2.5 microg/kg), rbTNF + i.v. injection of 2,4-TZD (2.0 mg/kg), or s.c. injection of saline (control). The plasma glucose, NEFA, and insulin concentrations in the rbTNF-treated group increased compared to those in the control and rbTNF + 2,4-TZD groups, whereas glucagon concentration decreased. A single i.v. injection of insulin (0.2 U/kg), glucose (112.5 mg/kg), or growth hormone (GH)-releasing hormone (GHRH) (0.25 microg/kg) was performed on d4, d6, and d8, respectively. In the insulin challenge, the net area under the glucose curve (AUC) was smaller in the rbTNF group than in the control and rbTNF + 2,4-TZD groups. In the glucose challenge, the net insulin AUC was smaller in rbTNF + 2,4-TZD group than in rbTNF group. In the GHRH challenge, there was no difference in GH responses to GHRH between the rbTNF and rbTNF + 2,4-TZD groups, respectively. We conclude that 2,4-TZD treatment partially reverses the impairment of peripheral insulin action caused by rbTNF injection in steers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号