首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
凋落物是森林生态系统的重要组成部分,其分解过程是森林生态系统养分循环的重要环节。准确测定凋落物的分解动态,对研究森林生态系统的格局和过程非常重要。本文的工作在贡嘎山高山生态系统观测试验站开展,对海拔3 000 m的峨眉冷杉(Abies fabri)林进行定位观测,并对峨眉冷杉林凋落物分解过程进行了长期测定。研究结果表明:(1)凋落物的分解速率是阔叶>针叶>枯枝,峨眉冷杉林的阔叶、针叶和枯枝等凋落物分解一半所需要的时间分别为6.8年、10.5年和14.5年,分解95%所需时间分别为29.3年、45.6年和63.1年;(2)无论阔叶还是针叶、枯枝,其有机碳含量均随着时间的推移而下降,而有机碳分解率均随着时间而增高;利用指数衰减模型,获得凋落物有机碳的分解系数是阔叶>针叶>枯枝;(3)在每年凋落物输入峨眉冷杉林林地时,其中的阔叶、针叶和枯枝已经开始分解,当年可释放的有机碳分别为52.18 kg·hm^-2、4.32 kg·hm^-2和0.67 kg·hm^-2,各类凋落物每年有机碳释放总量为61.13 kg·hm^-2,占凋落时有机碳量的6.58%。  相似文献   

2.

Background

This study was designed to evaluate the internal nutrient cycling of litterfall in different elevation subtropical forests of Central Taiwan.

Methods

The litterfall of evergreen hardwoods at three elevations, specifically Mt. Peitungyen (2,078?m), Hui-Sun experimental forest (HSEF) (1,066?m), and Lienhauchi (782?m) in central Taiwan, was collected monthly using traps and sorted into leaves, twigs, reproductive litter, and miscellaneous material. In addition, the litter on the forest floor was collected trimonthly. All the samples were weighed and measured for C, N, P, K, Ca, and Mg concentrations and fluxes from March 2009 to February 2010.

Results

The annual litterfall productions were 6.58, 8.24, and 9.17?Mg?ha?1?year?1 at Mt. Peitungyen, HSEF, and Lienhauchi, respectively. At more than 60?%, leaves were the main component of the total litterfall. There was smallest decomposition constant (0.487) at Mt. Peitungyen. The nutrient fluxes increased as elevation decreased. The litterfall correlated positively with rainfall at Lienhauchi, with temperature at HSEF, and with temperature and rainfall at Mt. Peitungyen.

Conclusion

The annual litterfall decreased with an increase in elevation. The turnover rate was faster at HSEF than at Mt. Peitungyen. Thus, the forest managers should pay more attention to understand and monitor plant community responses to global warming and nutrient loss.  相似文献   

3.
We investigated the dynamics of litterfall and litter decomposition of Sasa dwarf bamboo (Sasa senanensis) and trees to clarify the characteristics of organic matter and nitrogen cycling between plant and soil in a natural cool-temperate mixed forest ecosystem dominated by an understory vegetation of Sasa. Mean annual Sasa litterfall over the 3-year study period was 164 g m?2 year?1, which accounted for approximately 29% of total litterfall. Litter decomposition of Sasa leaf and Sasa culm was significantly slower than that of tree leaf during first and second years. The slow decomposition rates of both Sasa litter types were caused by a significantly higher silicate than in tree leaf. Nitrogen concentration in litter increased as decomposition progressed, especially in Sasa leaf and tree leaf. As a result of the slow decomposition of both Sasa litter types, 111 and 73% of nitrogen to the initial amounts were retained in Sasa leaf and Sasa culm after 3 years, respectively. The amounts of retained nitrogen in Sasa leaf, Sasa culm, and tree leaf after 3 years were 1.29, 0.47, and 3.92 g N m?2, respectively, indicating that the differences of litter decomposition rates among the litter types influence on the nitrogen cycling in forest ecosystem through the differences of the nitrogen release from litter.  相似文献   

4.
Litterfall, which is influenced by physical and biological factors, is a major pathway for carbon and nutrient cycling in forest ecosystems. The purpose of this study was to investigate monthly litterfall production in three forests in Jeju Island differentiated by forest composition and precipitation: Cheongsu(Quercus glauca as the dominant species;low precipitation), Seonheulb(Q. glauca as the dominant species;high precipitation), and Seonheulm(Q. glauca and Pinus thunbergii as the dominant species;high precipitation). Litterfall was collected monthly from April to December 2015 and divided into leaf litter, twig, bark, seeds, and unidentified materials.Seasonal patterns of litterfall production varied across stands according to their species composition. However,the amount of leaf litterfall and total litterfall were comparable among stands, ranging from 362 to 375 g m-2 for leaf litter and 524 g m-2 to 580 g m-2 for total litterfall.Oak leaf litter in May was the highest in all stands, while needle litter was the highest in December in Seonheulm.High twig litterfall in July may be attributable to high rainfall with strong winds and storms during the rainy season. Although forest type and climate factor had no influence on litterfall amounts in this study, the pattern of litterfall production was species dependent, suggesting diverse effects on carbon and nutrient cycling in these forests.  相似文献   

5.
In northeastern India, subtropical forests are over-exploited for timber, fuel wood and common agricultural practice like shifting cultivation, which are responsible for the degradation of natural forest. In degraded areas, large-scale plantations of different species of Quercus have been raised since 1980 for the production of economic Tasar silk. Conversion of natural forest into plantation affects the process of nutrient cycling due to management practices. Thus, it would be of importance to study the litterfall, litter decomposition process and the factors regulating the rate of litter decay in these ecosystems to improve recommendations for their management and conservation. We recorded litterfall by using litter traps and decomposition of leaf litter by nylon net bag technique to understand the amount of organic matter and nutrient return and their release in soils of forest and plantation in Manipur, northeast India. Total litterfall was 419.9 g m−2 year−1 in plantation and 547.7 g m−2 year−1 in forest. Litter decomposition rate was faster at plantation site than the forest in the early stage of litter decomposition whereas the reverse was observed at later stages of decomposition. Stepwise regression analysis showed the significant role of relative humidity and mean temperature on mass loss rates in the forest. Relative humidity, maximum temperature, population of fungi and actinomycetes were the best predictor variables for mass loss rates in plantation. Nutrient retranslocation efficiency and the immobilization of N and P in forest litter were higher than plantation. This suggests that Q. serrata growing in natural ecosystem in oligotrophic condition adapted strong nutrient conservation mechanisms to compete with the other plant species for the meager soil nutrients. The same species in plantation loses these adaptive capabilities because of exogenous supply of nutrients and in the absence of intense competition with other plant species. Thus, the optimization of organic and chemical fertilizer input in plantation is recommended for maintaining the soil fertility level to produce quality leaf for silkworm by conserving essential nutrients in the system.  相似文献   

6.
Patterns of litterfall and nutrient input in a subtropical evergreen broad-leaved forest in northern Okinawa, Japan, were studied during May, 1996–April, 1999. The mean annual rate of litterfall in the five sampling plots ranged from 6.84 to 8.93 Mg ha−1 yr−1, of which 63.3–68.5% were leaves; 22.4–29.1% woody parts (including branches < 5.0 cm in diameter and bark); 2.8–5.0% sexual organs and 4.6–6.3% miscellaneous material. Significant differences were found among plots and among years. Significantly monthly differences pronounced seasonal patterns in litterfall were observed. Total litterfall and leaf litter showed negative correlations with relative basal area of the dominant species,Castanopsis sieboldii; and showed positive correlations with mean height of the stands. The dominant species,C. sieboldii produced an average of 2.36 Mg ha−1 yr−1 of leaf litter, which covered 30.5% of the annual litter production, and the nutrient input from those litterfall contributed 32.3, 28.3, 30.2, 22.2, 32.5, and 30.5% of total N, P, K, Ca, Mg, and Na, respectively. Nutrient use efficiency in litter production was high, especially for P and K compared with other broad-leaved forests in Japan indicating that P and K may be limiting in Okinawan evergreen broad-leaved forest.  相似文献   

7.

Key message

Stand density has a positive effect on C, K and Mg concentration in needle litterfall and a negative one on C, N, Ca, K, Mg, P, S, Zn, and Cu release from needle litter. Consequently, forest management practices such as thinning decrease nutrient concentration in needle litterfall and accelerate nutrient release from decomposing needles in Pinus halepensis plantations in Spain.

Context

Silvicultural practices usually include stand density reduction resulting in changes in litterfall and litter decomposition rates. Little is known about the effect on nutrient concentrations in litterfall and nutrient release during decomposition even when this is the main path of nutrient return to soils.

Aims

The aims of the study are to evaluate the seasonal pattern of nutrient concentration in litterfall, to study how nutrients are released from needle litterfall during decomposition, and to assess whether local basal area of the stand affects nutrient concentration of litterfall and nutrient release during litter decomposition.

Methods

Eight plots were established on each of four stands covering the widest range in local basal area. A littertrap and 15 litterbags were placed on each plot. Periodically, needle litterfall and litter contained in the litterbags were analyzed for C, N, Ca, K, Mg, P, S, Fe, Cu, Mn, and Zn.

Results

Local basal area had a positive effect on C, K, and Mg concentration in needle litterfall and a negative effect on the release of all the nutrients studied but Fe and Mn during the first 2 years of litter decomposition.

Conclusion

Density management of stands has an impact on nutrient cycling, reducing nutrient concentration in needle litterfall, and accelerating nutrient release during decomposition.
  相似文献   

8.
The fluxes of masses and the nutrients Ca,Mg,K,N,P and S were determined in the litterfall of two adjacent forest ecosystems of Hungarian oak(Quercus frainetto L.)and European beech(Fagus sylvatica L.)in a mountainous area of northeastern Greece in 2010–2015.The foliar litterfall for both species reached about 70%of the total litterfall,and was significantly higher from the other two fractions(woody and rest litterfall).The fluxes of masses and nutrients were compared between ecosystems for each fraction separately.Only one significant statistical difference was found,that of K in the woody litterfall.In addition,the stocks of masses and nutrients were calculated in the forest floors and mineral soils of the two ecosystems.Likewise,the stocks of nutrients in the forest floors and mineral soils were compared between ecosystems.In the L horizon of the forest floors,statistical differences,as a result of species effect,were found for the stocks of Ca and N.In the FH horizons,the masses and all the nutrient stocks differed significantly,as the beech plot had much higher quantities of organic matter and nutrients.These higher quantities were probably due to low soil temperatures(microclimate)and high acidity in the beech plot(species effect)that slowed down decomposition.In the mineral soils,the propagation of random error derived from random errors of the individual soil layers was an important factor in the statistical comparisons.Because of the soil acidity in the beech plot,the stocks of exchangeable base cations were significantly higher in the oak plot,whereas the other nutrient stocks did not differ.  相似文献   

9.
Fine litterfall and nutrient return patterns were studied in three subtropical humid forest stands (7-, 13- and 16-year old), regrowing after selective tree cutting in north-eastern India. The seasonality of fine litterfall was unimodal, with a peak during spring and a trough during rainy season in the forest regrowths of three different ages. The rate of fine litterfall increased with increasing basal area of the woody vegetation during forest regrowth. Leaf litter accounted for 83% of the total litterfall. N concentration was maximum during autumn and minimum during rainy season; nutrient concentrations were highest in the leaf litter. Seasonal variation in P concentration was small. Maximum and minimum input of N and P to the forest floor through fine litter coincided with the respective periods of litter production.  相似文献   

10.
为了评价印度东部曼尼普尔亚热带橡树混交林中的土壤养分收支平衡情况,研究了全年不同月份的3个主要树种,枹栎(Quercus serrata)、木荷(Schima wallichi)和滇石栎(Lithocarpus dealbata)的枯落物分解和营养回归情况。印度东部橡树林是生产柞蚕丝的重要经济树种。林下2-7月月枯落物为25.6 g·m-2(7月)和198.0 g·m-2(2月),年枯落物为1093 8g·m-2。在初始月(11月3),滇石栎森林壤土的氮和碳浓度最高,其次是在枹栎林。最低的是木荷林。但就木质素和纤维素含而言,木荷林中的最高,其次是袍栎林和滇石栎林。滇石栎林(k=0.54)具有较高的枯落物分解率,这与月初枯落物中含有较高的氮和碳浓度以及低含量的纤维素相符合。然而,在木荷森林中枯落物分解率低,是与月初时森林土中具有低浓度氮和碳及高浓度木质素和纤维素相符合。在不同月份,剩余的生物量与木质素、碳、碳氮比和纤维素含量呈正相关,但与氮含量呈负相关。由于环境条件的影响,在寒冷和冬季枯落物分解率最低,而在雨季枯落物分解率最高。图3表5参52。  相似文献   

11.
Litterfall is an important ecological process in forest ecosystems, influencing the transfer of organic matter, carbon (C), nitrogen (N), phosphorous (P) and other nutrients from vegetation to the soil. We examined the production of different litterfall fractions as well as nutrient content and nutrient inputs by senesced and green leaf-litter in a semiarid forest from central Mexico. From September 2006 to August 2007, monthly litter sampling was carried out in monospecific and mixed stands of Quercus potosina and Pinus cembroides. Litterfall displayed a marked bimodal pattern with the largest annual amount (5993 ± 655 kg ha−1 yr−1) recorded in mixed stands, followed by Q. potosina (4869 ± 510 kg ha−1 yr−1), and P. cembroides (3023 ± 337 kg ha−1 yr−1). Leaves constituted the largest fraction of total litterfall reaching almost 60%, while small branches contributed with 20–30%. Overall, N content in leaf-litter was higher while lignin content was significantly lower for Q. potosina than for P. cembroides. Thus, greater litter quality together with higher litter production caused the largest C, N and P inputs to forest soils to occur in monospecific Q. potosina stands. Green leaf fall displayed significantly lower lignin:N and C:N ratios in Q. potosina than P. cembroides suggesting faster decomposition and nutrient return rates by the former. Although we recorded only two green leaf fall events, they accounted for 18% and 11% of the total N and P input, respectively, from leaf-litter during the study period. Apart, from the large spatiotemporal heterogeneity introduced by differences in litter quantity and quality of evergreen, deciduous and mixed stands, green litterfall appears to represent a much more important mechanism of nutrient input to semiarid forest ecosystems than previously considered.  相似文献   

12.
Beech forests located in the southwestern limit of Europe have been affected by severe deforestation and long-term fragmentation. Some of these forests have been subjected to partial cutting, whereas others have been maintained with little or no active management. It has previously been shown that past management has led to substantial changes in tree structure, diversity and plant species. These perturbations, through their influence on the litterfall and forest floor, may affect nutrient cycling and the nutritional status of such fragile ecosystems. Mineral nutrition was investigated in 53 forest fragments by analysis of data corresponding to nutrient concentrations in forest floor, mineral soils and foliage. In comparison with other beech forests in Central Europe subjected to higher levels of air pollution, the stands showed fewer incidences of nutrient deficiencies and lower foliar concentrations of S and heavy metals. Partial cuts carried out in recent decades have reduced the forest floor mass proportional to the intensity of the harvesting. The effect was probably due to the lower litter input and the increased decomposition of litter as a consequence of the environmental changes in forest gaps. The partially cut stands displayed higher foliar levels of K and Mg, which could be attributed to the greater release of these elements as a consequence of the increased decomposition of litter. However, past management has brought about lower foliar concentrations of P and N. Both effects were found to be proportional to basal area and the forest floor mass, which suggests that they are related to the intensity of harvesting. Although the causes are uncertain, this negative effect may be due to a reduction in forest floor thickness, which implies the loss of preferred rooting space for trees.  相似文献   

13.
We studied leaf litter fall, decomposition and nutrient release patterns of Shorea robusta and Tectona grandis by using a litter bag technique to better understand the release pattern of nutrients to soil from leaf litter. Annual litterfall varied from 13.40 ± 2.56 t ha?1 a?1 for S. robusta to 11.03 ± 3.72 t ha?1 a?1 for T. grandis and the decay constant (k) of decomposed leaf litter was distinctly higher for T. grandis (2.70 ± 0.50 a?1) compared to S. robusta (2.41 ± 0.30 a?1). Biomass loss was positively correlated with the initial litter C, WSC, C/N and ash content in S. robusta and N, P and K concentration for T. grandis. Biomass was negatively correlated with lignin and L/N ratio for S. robusta and L, WSC, L/N and C/N ratio for T. grandis (P < 0.01). Nutrient use efficiency (NUE) and nutrient accumulation index (NAI) of S. robusta was higher than for T. grandis. The retranslocation of bioelements from senescent leaves ranked as P > N > K. Annual N, P and K input to soil through litterfall differed significantly between the two species in the following order: N>K>P. S. robusta was superior in terms of K and P return and T. grandis was superior in terms of N return. The two tree species showed a similar patterns of nutrient release (K > P > N) during decomposition of their leaf litter. Nutrients of N, K and P were the primary limiting nutrients returned to soil through litterfall with important roles in soil fertility and forest productivity.  相似文献   

14.
Leaf and litter nitrogen and phosphorus in three forests with low P supply   总被引:1,自引:0,他引:1  
We compared the N and P contents of the main labile components of nutrient cycles in three different forest ecosystems [a tropical evergreen forest (TEF); a tropical dry forest (TDF); and a Mediterranean temperate forest (MTF)] with low P supply. A mass-balance approach was used to estimate mean residence times for organic matter, N and P in the forest floor, and to examine the flexibility of N and P intra-system cycling in the three forest ecosystems. For this purpose, we combined published values of N and P in foliage, litterfall, forest floor litter and mineral soils in these three forest ecosystems. The results of our analysis were consistent with the widely held belief that the N content of leaves (both green and senescent) and litter increases with increasing temperatures. In contrast, the data did not support the hypothesis that leaf P content decreases with increasing temperatures and precipitation: leaf and litterfall P contents were higher in both tropical forests than they were in the temperate forest. The TEF had the highest P content of the three forests studied. The mass-balance analysis indicated that although P mineralization in the TDF can run ahead of litter decomposition stoichiometry when P is in short supply, flexibility is much reduced or absent in the TEF and the MTF. Our analysis provides additional evidence of the importance of climatic factors in forest ecosystem processes and highlights the role of flexibility in ecosystem nutrient cycling, especially for P in ecosystems with a limited P supply.  相似文献   

15.
The effects of fertilizer treatment on nutrient transfers to the forest floor were examined in regrowth Eucalyptus diversicolor F. Muell. forest. Dry weight and nutrient content of leaf litterfall and total litterfall were measured for 3 years in a stand to which two levels of N (0, 200 kg ha-1 year-1) were applied each year at each of three levels of a single initial application of P (0, 30, 200 kg ha-1). Annual accessions of litter to the forest floor were significantly increased by additions of both N (by 17%, 18% and 21% in the 3 years) and 200 kg P ha-1 (by 8%, 8% and 4% in the 3 years) but there was no interaction between effects of N and P treatments. Fertilizer application also had a significant effect on the nutrient content of leaf litterfall and total litterfall. Concentration of N in leaf litterfall was 9% to 23% greater on plots treated with N fertilizer compared to untreated plots. The amounts of N in litterfall were about 30% greater on N-treated compared to untreated plots. On plots treated with 200 kg P ha-1, P concentrations in leaf litter were 50% to 100% greater than in litter from plots receiving no P. Application of 200 kg P ha-1 increased the amounts of P in annual litterfall by 32% to 87%. The greatest increase in P accessions occurred soon after fertilizer treatment. The amounts of Ca, K, and Na in litterfall were also significantly increased by fertilizer application. For Ca and K this was due partly to increases in element concentrations in litterfall following application of treatments. The effect of fertilizers on internal recycling of plant nutrients and on litter accumulation and nutrient dynamics in forest floor litter is discussed.  相似文献   

16.
Biomass and nutrient transfer (N, P, K, Ca, Mg) of bilberry (Vaccinium myrtillus L.) leaf litter fall, as well as decomposition and nutrient release, were studied in four mature forest stands situated in Central and South Sweden. Bilberry leaf litter fall amounted to between 33 and 55 kg ha‐1 yr‐1 in the four stands. Only minor differences between sites were noted for litter concentrations of N, P and Ca, whereas K and Mg showed somewhat larger variability. Relative amounts of the five nutrient elements in the litter fall were generally in the order N > Ca > K > Mg > P. The amounts of nutrients returned to the forest floor by the annual leaf litter fall in the stands ranged from 0.4 to 0.8 kg ha‐1 for N, 0.4 to 0.6 kg ha‐1 for Ca, 0.2 to 0.7 kg ha‐1 for K, 0.1 to 0.2 kg ha‐1 for Mg and 0.04 to 0.08 kg ha‐1 for P.

The decomposition of the local bilberry leaf litter was followed by means of litterbags during three years. At all sites there was an extremely rapid mass loss from the litter (between 45% and 54%) during the first four to five months of decomposition. After this initial phase, the decomposition rates decreased markedly and after three years the accumulated mass losses of the litters varied between 64% and 78% at the studied sites. After two and three years of decomposition, three of the sites exhibited almost similar litter mass losses whereas at the fourth site the litter was decomposed to a significantly lower degree. The pattern of nutrient release from the decomposing bilberry leaf litter differed somewhat from site to site. Minor differences were, however, noted for P, Ca and Mg while N and K were more strongly retained in the litter at one of the sites.  相似文献   

17.
Decomposition dynamics were compared among green tree leaves, partially decomposed tree leaf litter (i.e., decayed tree leaf litter on forest floor) and a mixture of the two in a warm temperate forest ecosystem in central China to test the influence of litter chemical quality on the degree of decomposition. The study was conducted in situ at two contrasting forest sites, an oak forest dominated by Quercus aliena var. acuteserrata Maxim., and a mixed pine and oak forest dominated by Pinus armandii Franch. and Q. aliena var. acuteserrata. We found marked differences in the rate of decomposition among litter types at both forest sites; the litter decomposition constant, k, was about 39 % greater at the oak forest site and more than 70 % greater at the pine-oak forest site, for green leaves than for partially decomposed leaf litter. The decomposition dynamics and temporal changes in litter chemistry of the three litter types also greatly differed between the two forest sites. At both forest sites, the higher rate of decomposition for the green leaves was associated with a higher nitrogen (N) content and lower carbon to N ratio (C/N) and acid-unhydrolyzable residue to N ratio (AUR/N). We did not find any non-additive effects when mixing green leaves and partially decomposed leaf litter. Our findings support the contention that litter chemical quality is one of the most important determinants of litter decomposition in forest ecosystems at the local or regional scale, but the effect of litter chemical quality on decomposition differs between the contrasting forest types and may vary with the stage of decomposition.  相似文献   

18.
Temperature and freeze-thaw events are two key factors controlling litter decomposition in cold biomes.Predicted global warming and changes in freeze-thaw cycles therefore may directly or indirectly impact litter decomposition in those ecosystems. Here, we conducted a2-year-long litter decomposition experiment along an elevational gradient from 3000 to 3600 m to determine the potential effects of litter quality, climate warming and freeze-thaw on the mass losses of three litter types [dragon spruce(Picea asperata Mast.), red birch(Betula albosinensis Burk.), and minjiang fir(Abies faxoniana Rehd. et Wild)]. Marked differences in mass loss were observed among the litter types and sampling dates. Decay constant(k) values of red birch were significantly higher than those of the needle litters. However, mass losses between elevations did not differ significantly for any litter type.During the winter, lost mass contributed 18.3–28.8 % of the net loss rates of the first year. Statistical analysis showed that the relationships between mass loss and litter chemistry or their ratios varied with decomposition periods. Our results indicated that short-term field incubations could overestimate the k value of litter decomposition.Considerable mass was lost from subalpine forest litters during the wintertime. Potential future warming may not affect the litter decomposition in the subalpine forest ecosystems of eastern Tibetan Plateau.  相似文献   

19.
The study was conducted to improve our understanding of the effects of forest disturbance on litterfall and patterns of nutrient return in three subalpine forest ecosystems (i.e. Betula utilis-dominated, Abies pindrow-dominated, and Acer mixed broadleaf) of Indian west Himalaya. Total litterfall (t ha−1 yr−1) ranged between 2.6–3.6 and 2.1–2.6 for pristine and degraded stands, respectively. Whereas total litterfall decrease from pristine to degraded stand was about 25–30% in B. utilis and Acer mixed-broadleaf forests, the level of disturbance did not affect total litterfall in A. pindrow (coniferous) forest. Nutrient (N, P, and K) concentrations in litter components of the forests studied also varied across forest types and disturbance intensities. For pristine stands, among all the forests, return of total nutrients via litterfall was higher. The study revealed that patterns of litterfall and nutrient return in the forests studied were sensitive to intensity of disturbance, although sensitivity varied among forest types and nutrient contents. Increased intensity of disturbance greatly affected the total annual amount of nutrient return in broadleaf forests. Maximum impact was recorded in B. utilis forest with a significant decline in nutrient return from pristine to degraded stands (i.e. 64% for N, 38% for P, and 67% for K). Corresponding values for decline in Acer mixed forest were 17, 13, and 33% for N, P, and K, respectively, whereas in A. Pindrow forest N return was 15% higher and P return was 33% lower. This study indicates that the litterfall and litter nutrient concentrations in these forests are sensitive to the intensity of disturbance, which affects the amount of nutrient return. This will have a strong bearing on forest nutrient cycling.  相似文献   

20.
Decaying mangrove detritus plays a significant role in nutrient cycling and fueling in both the forests and aquatic habitats where the detritus stems from estuarine and coastal food webs.Detrital decay rates partly depend on the type of detritus,but most studies have thus far focused on leaf litter decay and decomposition,whereas other detrital sources(except for roots)have largely been ignored.We compare the decay rates of Rhizophora apiculata and Xylocarpus granatum non-leafy detritus(flowers,propagules,stipules,and twigs)with mangrove leaf litter in field studies,using litter bags during the dry and the wet seasons in the tropical mangrove forest of Sibuti,Sarawak,Malaysia.We observed higher microbial decay rates of stipules,flowers,propagules,and twigs for both the R.apiculata and X.granatumduring the wet months.By contrast,leaf decay rates were higher during the dry months.Decay rates depended on the lignin content of the detrital sources of both species,both during dry and wet months.Accordingly,the half-life(T0.5)and 95%lifespan(T0.95)of non-leaf materials(flowers,propagules,stipules and twigs)for both species were remarkably longer than those of leaf litter.Slowly decaying non-leafy detritus may play a significant role in nutrient and carbon cycling over longer time,when leaf litter is either being decomposing rapidly and/or being washed away by tidal flush and river runoff.Hence,non-leafy(flowers,propagules,stipules and twigs)detritus should be taken into account when budgeting organic matter turnover in mangroves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号