共查询到20条相似文献,搜索用时 15 毫秒
1.
准确模拟土壤水分(SM)对农田精准灌溉、优化区域水资源配置和提高农业水资源利用效率具有重要意义。采用逐日气象和土壤含水量数据,探究随机森林(RF)和支持向量机(SVM)模拟不同深度(4 cm、10cm和20 cm)土壤含水量的适用性,采用太阳辐射(Rs)、空气温度(T)、降水量(P)、风速(U2)、空气湿度(RH)和土壤温度(ST)数据的4种输入组合,探讨不同输入变量对SM模拟的影响。结果表明:RF模型在4种输入组合下模拟不同深度土壤含水量精度最高,SVM模型模拟精度较低,R2范围分别为0.871~0.914和0.710~0.814,RMSE范围分别为0.050~0.069 cm3/cm3和0.080~0.098 cm3/cm3,MAE范围分别为0.030~0.051 cm3/cm3和0.060~0.077cm3/cm3。考虑模型精度和数据易获取性... 相似文献
2.
为了研究大型灌区节水改造后的区域农田生态环境效应中分布式水文模型空间参数的确定问题,通过内蒙古河套灌区解放闸灌域22个土壤水盐监测点110个土壤样本的采样与分析,利用贝叶斯神经网络(BNN)模型建立了河套灌区区域分层土壤特征参数与土壤水分特征曲线模型参数、特征含水率之间的土壤转换函数模型,并与已有的BP神经网络模型进行适应性比较及模型验证。结果表明,BP模型土壤转换函数的训练模拟精度优于BNN,但是在模拟预测方面,BNN模型普遍好于BP模型,而且模型输入因子数量对BP模型的精度影响较大,而BNN模型对于不同输入因子表现出很好的稳健性,BNN模型比传统的人工神经网络模型具有更好的适应性和预测效果,体现了土壤特征参数的空间随机性和结构性特征,而且预测的土壤水分特征曲线与实测和VG拟合结果更为接近,是一种具有广阔应用前景的区域土壤转换函数推求方法。 相似文献
3.
为及时、有效地监测盐渍化土壤含盐量,以内蒙古河套灌区沙壕渠灌域为研究区,将Sentinel-1雷达影像作为数据源,同步采集不同深度土壤含盐量数据,通过组合两组雷达后向散射系数构建多种指数,并用灰度关联(Gray correlation degree,GCD)排除共线性强的指数,采用偏最小二乘回归(Partial least squares regression,PLSR)、分位数回归(Quantile regression,QR)和支持向量机(Support vector machine regression,SVM)3种方法,构建0~10cm、10~20cm不同深度下的土壤含盐量反演模型。结果表明,在3种回归方法中,SVM回归模型的精度最高,模型建模集决定系数R2c、验证集决定系数R2p均在04以上,建模集均方根误差RMSEc、验证集均方根误差RMSEp均小于03%,分位数回归模型次之,偏最小二乘回归模型最差;在各反演深度下,0~10cm深度的反演精度均高于10~20cm深度的反演精度,其中在0~10cm深度下SVM反演模型效果优于其他模型,R2c、R2p分别为0568和0686,RMSEc、RMSEp分别为0.201%和0.151%。本研究可为雷达遥感监测裸土期土壤盐渍化提供参考。 相似文献
4.
为及时获取大田作物根区土壤含水率(Soil moisture content, SMC),实现精准灌溉,运用高光谱技术,通过连续2年(2019—2020年)田间试验采集了冬小麦拔节期不同土层深度SMC及高光谱数据,构建了3类植被指数(蓝、黄和红边面积等三边光谱参数,与冬小麦根区SMC相关性最高的任意两波段植被指数和前人研究与作物参数相关性较好的经验植被指数)并筛选与各土层深度SMC相关系数最高的植被指数,随后将筛选后的植被指数作为模型输入,分别采用随机森林(Random forest, RF)、反向神经网络(Back propagation neural network, BPNN)和极限学习机(Extreme learning machine, ELM)构建冬小麦拔节期不同土层深度SMC估算模型。结果表明,绝大部分三边参数、任意两波段植被指数和经验植被指数在深度0~20 cm土层的SMC相关系数较20~40 cm和40~60 cm更高,在深度0~20 cm土层两波段组合构建的光谱指数与SMC的相关系数最高,均超过0.8,其中RI与SMC的相关系数最高,为0.851,其波长组合为675... 相似文献
5.
农业机械作业造成的土壤压实已成为制约农业可持续发展的重要因素,过度机械压实使土壤理化性质恶化,甚至成为降低作物产量的主要原因。已有的土壤机械压实研究多是基于简单的数学统计分析,且研究重点为试验方案的设计,无法挖掘数据内部关系,也无法进行土壤机械压实程度的预测。近几年,随着机器学习的不断发展,越来越多的学者开始将其引入农业领域及土壤机械压实的研究。为此,分析了机械压实对土壤理化性质及作物生长的影响,总结了土壤机械压实的表征属性和常用机器学习算法及评价标准,并归纳了近几年基于机器学习的土壤压实的研究成果,给出了相关应用研究的建议。 相似文献
6.
基于组合核函数的籼稻重度不宜存检测模型 总被引:2,自引:0,他引:2
为给籼稻储存品质的判定提供一种快速无损检测手段,对80份重度不宜存籼稻和80份非重度不宜存籼稻的近红外反射光谱进行了实验研究。根据训练样本非线性可分的特点,选择支持向量机方法建立定性模型。在对不同核函数的特性进行分析和研究的基础上,定义了一种新的核函数——组合核函数。该组合核函数是多项式核函数与径向基核函数的线性组合,将两者各自的特点融合在一起兼具内推和外推性能。实验结果表明,以这两种函数的线性组合作为核函数且调节因子为0.7时,所建立的模型综合性能最好。所建模型的训练集正确识别率为97.21%,测试集正确识别率为93.25%。 相似文献
7.
潜在蒸散发(ET_0)是估算作物需水量的基础。根据石羊河流域5个气象站5年的气温、风速、相对湿度等日气象要素资料,采用Penman-Monteith公式计算石羊河流域的ET_0,建立六因子、四因子和三因子的支持向量机(SVM)模型与人工神经网络(ANN)模型模拟日ET_0,对模拟值与计算值进行比较,以均方根误差(RMSE)、平均绝对误差(MAE)、确定性系数(DC)以及皮尔逊相关系数(R)作为模型的性能评价指标,对模型进行检验以获得模拟精度较高的模型。结果表明:相同因子输入下ANN模型较SVM模型在石羊河流域模拟日ET_0有着更高的模拟精度。该研究可为气象要素资料不全的站点提供模拟日ET_0的可行方法。 相似文献
8.
研究土壤有机质含量与土壤盐分参数之间的相关关系,可以为土壤施肥、增产增收及资源有效利用等方面提供理论支撑。研究采集了试验地中165个土样,并测定了土样的HCO~-_3、SO■、Cl~-、Na~+、Ca~(2+)、K~+、Mg~(2+)等离子的含量、土壤全盐含量及土壤有机质含量等数据,研究了土壤有机质含量与土壤盐分参数之间的相关关系以及核函数对预测模型的影响。结果表明:土壤盐分参数与土壤有机质含量之间有较强的相关性,使用基于BP神经网络(BPNN)与回归型支持向量机(SVR)建立的改进BPNN-SVR模型预测土壤有机质含量具有较高的可信度。明确了最优的核函数参数后,随机抽取120个样本数据作为训练集,剩余45个样本数据为测试集,数据归一化后用改进BPNN-SVR预测训练集的决定系数达到0.938,均方差为0.074 2,测试集的决定系数达到0.941 5,均方误差为0.106 5,显示了改进BPNN-SVR优良的泛化能力和预测性能;用传统的BPNN模型预测土壤有机质作为对比试验,测试集的决定系数为0.870 3,均方差为0.116 2。因此,改进BPNN-SVR模型相较于传统BPNN模型的测试集均方差降低了30.99%,决定系数提高了8.18%。在同一训练集和测试集条件下,不同核函数对改进BPNN-SVR模型也有显著的影响,其中RBF核函数表现最佳,决定系数达0.908 6,平均相对误差(5.98%)和均方误差(0.074 6)均小于其他核函数类型。因此,基于RBF核函数的改进BPNN-SVR模型可以利用土壤盐分参数有效地估算土壤有机质含量,且精度和可靠性较高。 相似文献
9.
10.
以内蒙古河套灌区3个尺度下1 024个样本的高光谱为模型输入,黏粒、粉粒、砂粒及有机质质量百分数为模型输出,通过多元回归、支持向量机及BP神经网络方法建立基于中尺度的反演模型,将其尺度上推至大尺度及下推至小尺度,并对其尺度转换的适用性进行评价.结果表明,基于中尺度建立的高光谱与土壤颗粒组成及有机质的反演模型均可以较好地应用于其他2个尺度:多元回归方法在其他2个尺度上的相关性为0.33~0.60,支持向量机方法为0.41~0.52,BP神经网络方法为0.52~0.72,其中BP神经网络方法建立的模型在其他2个尺度上具有更好的适用性;不同参数中,黏粒、粉粒、砂粒及有机质的相关系数分别为0.44~0.62,0.37~0.72,0.42~0.72及0.33~0.56,即颗粒组成的效果整体好于有机质质量百分数. 相似文献
11.
针对土壤盐分遥感反演中众多盐分指示变量在反演效率与相互比较优势方面存在的不确定性和易混淆性问题,以内蒙古额济纳旗的居延泽为例,基于Sentinel-2、Radarsat-2、Landsat-8和SRTM DEM数据提取波段反射率、植被指数、盐分指数、极化雷达参数以及地表温度和地形因子共6类变量,采用变量优选策略筛选各类变量及其组合的最优变量,构建土壤盐分随机森林(Random forest, RF)与支持向量机(Support vector machine, SVM)预测模型,并选择最优模型实现居延泽地区土壤盐分预测,为干旱区土壤盐分监测提供参考。结果表明,短波红外波段(B11)、冠层盐度响应植被指数(CRSI)、扩展比值植被指数(ERVI)、红边盐分指数(S2re3)、单次散射(FOdd)、地表温度(LST)与汇水面积(CA)等变量对土壤盐分监测具有较强的普适性;单一变量模型的盐分预测精度从高到低依次为地形因子、极化雷达参数、地表温度、盐分指数、植被指数和波段反射率;多变量联合可有效提升模型精度与稳定性,随着环境变量的加入,当6类变量均参与... 相似文献
12.
针对土壤悬液组分复杂以及单输入变量时电极预测精准度有限的问题,以提高离子选择电极预测土壤硝态氮含量精准度为目标,建立基于多参数融合的支持向量机(SVM)土壤硝态氮预测模型。采用灰色关联分析法对影响电极法测定土壤硝态氮的主要干扰因素进行排序,建立以主干扰因素及硝酸根电极检测电势的多参数融合SVM预测模型,并与传统Nernst模型和干扰因素全输入下的SVM模型作对比验证算法可行性。实验结果表明,土壤电导率、温度与Cl -电极检测电势为影响电极预测硝态氮精准度的主要干扰因素;输入参数为硝态氮电极检测电势、土壤电导率、温度与Cl -电极检测电势时,SVM土壤硝态氮预测模型效果最优,与光学法测定结果回归方程的调整决定系数为0.98,平均绝对偏差为3.38 mg/L,均方根误差为4.51 mg/L,基于多参数融合的SVM预测模型可显著提高电极法硝态氮检测精准度。 相似文献
13.
14.
以大田原生盐碱荒地土壤入渗试验数据为样本,应用支持向量机回归算法,建立了盐碱土含水率、容重、有机质含量、黏粒含量、粉粒含量、全盐量以及pH值与Philip入渗模型参数间的预测模型。预测结果表明,训练样本中吸渗率S的相对误差平均值为4.05%,稳渗率A的相对误差平均值为5.49%,90 min累积入渗量I_(90)的相对误差平均值为4.28%;检验样本中S、A和I_(90)的相对误差平均值分别为4.22%、3.58%和4.48%。可以看出,不论训练样本还是检验样本,入渗参数预测值与实测值基本吻合,所建立的预测模型精度较高,表明基于支持向量机的盐碱土壤Philip入渗模型参数的预测是可行的,可为改良盐碱土壤提供入渗参数的技术支撑。 相似文献
15.
16.
在季节性冻融期,影响土壤蒸发的因素颇为复杂,准确估算冻融土壤蒸发量对土壤水资源的高效利用具有重要意义。根据2017-2018年冻融期大田试验数据,选取太阳辐射(x_1),日平均气温(x_2),地表土壤温度(x_3),地表土壤含水率(x_4),风速(x_5),气压(x_6),相对湿度(x_7),降水量(x_8),水面蒸发量(x_9)等9个影响冻融土壤蒸发的因素,采用主成分分析法和粒子群算法优化的支持向量机建立了冻融土壤蒸发量的预报模型。结果表明:所建立的基于主成分分析和粒子群算法优化支持向量机的冻融土壤蒸发预报模型,预测值和实测值的决定系数达0.951 3,平均相对误差为9.870 4%,可较好地用于冻融土壤蒸发量的预报。 相似文献
17.
针对黄瓜表型测量中图像识别问题,为解决黄瓜种子腔与果肉图像灰度差别不大情况下的分割难题,提出了基于随机森林算法(Random Forest,RF)的黄瓜种子腔图像分割方法。首先,通过颜色空间变换,提取样本在RGB、HSV、YCb Cr模型下的9个颜色分量;接着,基于灰度共生矩阵提取样本的能量、熵、对比度、相关性的均值与标准差等8个纹理特征。结合纹理与颜色特征,运用随机森林算法构建像素分类器,实现了种子腔的粗分割。为了提高分割质量,对粗分割的图像进行形态学处理得到最终分割图像。最后,与K-均值聚类(Kmeans)算法、支持向量机(Support Vector Machine,SVM)算法做对比。实验表明:随机森林分割算法正确识别率高达95%,错误识别率在10%之内,处理时间1.6 s左右,分割质量上优于其它两种算法。 相似文献
18.
土壤含水率监测是精准农业的重要组成部分,对于农情监测和农业生产起着关键性作用。超宽带雷达由于其体积小、质量轻、穿透力强和功耗低等特性已被广泛应用于土壤含水率监测研究。而现有超宽带雷达反演土壤含水率多为理想裸土情况,实际应用中地表植被覆盖会对结果造成较大影响,针对此问题,融合超宽带雷达和多光谱数据,利用支持向量机(SVM)模型对农田尺度不同植被覆盖下的土壤含水率进行分级预测,以减小植被对预测精度的影响。研究结果表明,在超宽带雷达回波数据提取出的不同时域特征组合中,选用峰值因子、峭度、均方根、峰-峰值、最大幅值、方差、偏斜度、平均值和最小幅值9个时域特征作为SVM模型输入特征预测结果最好,总体精度为95.59%,Kappa系数为0.9492。加入植被指数NDVI后,不同时域特征组合作为特征输入的模型精度均有显著提高,其中将9个时域特征与NDVI共同作为SVM输入预测效果最佳,总体精度为98.09%,Kappa系数为0.9780,与不考虑植被影响的预测结果比较,总体精度提高了2.50个百分点,Kappa系数提高了0.0288。 相似文献
19.
为满足季节性冻土地区越冬期间储水灌溉管理的需求,基于山西省汾河灌区季节性冻土的冬季大田土壤水分入渗试验,得到了120组Philip入渗模型参数实测样本,借助MATLAB软件,建立了以土壤温度、有机质质量分数、土壤含水率、土壤体积质量、物理性黏粒量为输入因子、以Philip入渗模型参数吸渗率和稳渗率为输出因子的多元非线性传输函数模型,并用实测资料对该模型进行了精度检验。结果表明,预测参数的相对误差均小于11%,预报精度在可接受范围之内。 相似文献