首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonlactating Bos indicus x Bos taurus cows were used in three herds to determine the efficacy of different PGF2alpha treatments in combination with GnRH and melengestrol acetate (MGA) for a timed artificial insemination protocol. The start of the experiment was designated as d 0, at which time cows were assigned a body condition score and received 100 microg of GnRH. Cows were fed MGA (0.5 x mg x cow(-1) x d(-1)) on d 1 to 7. On d 7, cows received either a single injection of PGF2alpha (Lutalyse sterile solution; 25 mg; n = 297), a single injection of cloprostenol sodium (Estrumate; 500 microg; n = 297), or half the recommended dose of PGF2alpha (12.5 mg; n = 275) on d 7 and 8. On d 10, all cows were artificially inseminated and received 100 microg of GnRH. Pregnancy rates to the timed artificial insemination (39%) were not affected by treatment, herd, or treatment x herd. There was an effect (P < 0.01) of artificial insemination sire on timed artificial insemination pregnancy rate for one herd, but not the other two herds. Herd influenced (P < 0.05) 30-d pregnancy rates, but there were no treatment or treatment x herd effects as 72.3% of the cows became pregnant during the first 30 d of the breeding season. Results indicate that the type of PGF2alpha treatment administered 7 d after GnRH did not influence timed artificial insemination pregnancy rates in nonlactating Bos indicus x Bos taurus cows.  相似文献   

2.
We determined whether a fixed-time AI (TAI) protocol could yield pregnancy rates similar to a protocol requiring detection of estrus, or estrous detection plus TAI, and whether adding a controlled internal device release (CIDR) to GnRH-based protocols would enhance fertility. Estrus was synchronized in 2,598 suckled beef cows at 14 locations, and AI was preceded by 1 of 5 treatments: 1) a CIDR for 7 d with 25 mg of PG F(2alpha) (PGF) at CIDR removal, followed by detection of estrus and AI during the 84 h after PGF; cows not detected in estrus by 84 h received 100 mug of GnRH and TAI at 84 h (control; n = 506); 2) GnRH administration, followed in 7 d with PGF, followed in 60 h by a second injection of GnRH and TAI (CO-Synch; n = 548); 3) CO-Synch plus a CIDR during the 7 d between the first injection of GnRH and PGF (CO-Synch + CIDR; n = 539); 4) GnRH administration, followed in 7 d with PGF, followed by detection of estrus and AI during the 84 h after PGF; cows not detected in estrus by 84 h received GnRH and TAI at 84 h (Select Synch & TAI; n = 507); and 5) Select Synch & TAI plus a CIDR during the 7 d between the first injection of GnRH and PGF (Select Synch + CIDR & TAI; n = 498). Blood samples were collected (d -17 and -7, relative to PGF) to determine estrous cycle status. For the control, Select Synch & TAI, and Select Synch + CIDR & TAI treatments, a minimum of twice daily observations for estrus began on d 0 and continued for at least 72 h. Inseminations were performed using the AM/PM rule. Pregnancy was diagnosed by transrectal ultrasonography. Percentage of cows cycling at the initiation of treatments was 66%. Pregnancy rates (proportion of cows pregnant to AI of all cows synchronized during the synchronization period) among locations across treatments ranged from 37% to 67%. Pregnancy rates were greater (P < 0.05) for the Select Synch + CIDR & TAI (58%), CO-Synch + CIDR (54%), Select Synch & TAI (53%), or control (53%) treatments than the CO-Synch (44%) treatment. Among the 3 protocols in which estrus was detected, conception rates (proportion of cows that became pregnant to AI of those exhibiting estrus during the synchronization period) were greater (P < 0.05) for Select Synch & TAI (70%; 217 of 309) and Select Synch + CIDR & TAI (67%; 230 of 345) cows than for control cows (61%; 197 of 325). We conclude that the CO-Synch + CIDR protocol yielded similar pregnancy rates to estrous detection protocols and is a reliable TAI protocol that eliminates detection of estrus when inseminating beef cows.  相似文献   

3.
Application of AI in extensive beef cattle production would be facilitated by protocols that effectively synchronize ovarian follicular development and ovulation to enable fixed-time AI (TAI). The objectives were to determine whether use of a controlled internal drug release (CIDR) device to administer progesterone in a GnRH-based estrous synchronization protocol would optimize blood progesterone concentrations, improve synchronization of follicular development and estrus, and increase pregnancy rates to TAI in beef cows. Beef cows (n = 1,240) in 6 locations within the US Meat Animal Research Center received 1 of 2 treatments: 1)?an injection of GnRH [100 μg intramuscularly (i.m.)] followed by PGF(2α) (PGF; 25 mg i.m.) 7 d later (CO-Synch), or 2) CO-Synch plus a CIDR during the 7 d between GnRH and PGF injections (CO-Synch + CIDR). Cows received TAI and GnRH (100 μg i.m.) at 60 h after PGF. Progesterone was measured by RIA in blood samples collected 2 wk before and at initiation of treatment (d 0) and at PGF injection (d 7). Estrous behavior was monitored by Estrotect Heat Detectors. Pregnancy was diagnosed by ultrasonography 72 to 77 d after TAI. Plasma progesterone concentrations did not differ (P > 0.10) between synchronization protocols at first GnRH injection (d 0), but progesterone was greater (P < 0.01) at PGF injection (d 7) in cows receiving CO-Synch + CIDR vs. CO-Synch as a result of fewer CIDR-treated cows having progesterone ≤1 ng/mL at PGF (10.7 vs. 29.6%, respectively). A greater (P < 0.01) proportion of CO-Synch + CIDR vs. CO-Synch cows were detected in estrus within 60 h after PGF (66.7 vs. 57.8 ± 2.6%, respectively) and a greater (P < 0.01) proportion were pregnant to TAI (54.6 vs. 44.3 ± 2.6%, respectively). For both synchronization protocols, cows expressing estrus within 60 h before TAI had a greater pregnancy rate than cows without estrus. For cows with plasma progesterone ≤1 ng/mL at PGF injection, CO-Synch + CIDR increased pregnancy rate (65.2 ± 5.9 vs. 30.8 ± 3.4% with vs. without CIDR), whereas pregnancy rates did not differ (P > 0.10) between protocols (52.1 ± 2.1 vs. 50.0 ± 2.4%, respectively) when progesterone was >1 ng/mL (treatment × progesterone; P < 0.01). Inclusion of a CIDR in the synchronization protocol increased plasma progesterone concentration, proportion of cows detected in estrus, and pregnancy rate; however, the increase in pregnancy rate from inclusion of the CIDR was primarily in cows with decreasing or low endogenous progesterone secretion during treatment.  相似文献   

4.
The objectives of this study were to evaluate replacing GnRH with hCG and the effects of 48-h calf removal (CR) on pregnancy rates of cows synchronized with the CO-Synch protocol. Suckled beef cows (n = 467) at two locations were assigned to treatment by breed, age, and calving date. Treatment included either GnRH with (n = 121) or without CR (n = 117) or hCG with (n = 115) or without CR (n = 114) using the CO-Synch protocol. On d 0 and 9, cows received either hCG (2,500 IU, i.m.) or GnRH (100 microg, i.m.), and on d 7 all cows received PGF2alpha (25 mg). At one location, blood samples were collected from all cows (n = 203) on d -14, -7, 0, 7, 9, and 16. Calves were removed on d 7 and returned on d 9 (48 h) from approximately half of the cows that received GnRH or hCG. Cows that were detected in estrus between d 6 and 9 were bred approximately 12 h later and received no further injections. Cows not observed in estrus by d 9 received a second injection of either GnRH or hCG and were timed-inseminated. The AI pregnancy rates for GnRH-treated cows with or without CR and hCG-treated cows with or without CR were 46, 49, 35, and 34%, respectively (P = 0.44). Pregnancy rates of cows differed by treatment x age interaction (P = 0.07), hormone (P = 0.09), and hormone x age (P = 0.01) but not by CR (P = 0.66) or CR x age (P = 0.33). Among 2-yr-olds, pregnancy rates were higher for cows treated with hCG without CR than for cows that received GnRH with calf removal, whereas cows treated with hCG with CR and GnRH without CR were intermediate. In addition hCG-treated 2-yr-olds had higher pregnancy rates than GnRH-treated 2-yr-olds regardless of calf presence, but the reverse was true for older cows. Overall, GnRH-treated cows (48%) had a higher (P = 0.09) pregnancy rate than hCG-treated cows (34%). Among anestrous cows, GnRH and hCG were similar (P = 0.40) in their ability to induce ovulation and corpus luteum formation after the first and second injections of GnRH (31 and 76%, respectively) or hCG (39 and 61%, respectively). More (P = 0.001) hCG-treated cows exhibited short estrous cycles following timed AI. We conclude that hCG is not a suitable replacement for GnRH to synchronize ovulation with the CO-Synch protocol in multiparous cows, although further evaluation among primiparous cows is warranted using hCG with the CO-Synch protocol.  相似文献   

5.
The objectives of this study were to 1) compare cumulative pregnancy rates in a traditional management (TM) scheme with those using a synchronization of ovulation protocol (CO-Synch + CIDR) for timed AI (TAI) in Bos indicus-influenced cattle; 2) evaluate ovarian and hormonal events associated with CO-Synch + CIDR and CO-Synch without CIDR; and 3) determine estrual and ovulatory distributions in cattle synchronized with Select-Synch + CIDR. The CO-Synch + CIDR regimen included insertion of a controlled internal drug-releasing device (CIDR) and an injection of GnRH (GnRH-1) on d 0, removal of the CIDR and injection of PGF2alpha (PGF) on d 7, and injection of GnRH (GnRH-2) and TAI 48 h later. For Exp. 1, predominantly Brahman x Hereford (F1) and Brangus females (n = 335) were stratified by BCS, parity, and day postpartum (parous females) before random assignment to CO-Synch + CIDR or TM. To maximize the number of observations related to TAI conception rate (n = 266), an additional 96 females in which TM controls were not available for comparison also received CO-Synch + CIDR. Conception rates to TAI averaged 39 +/- 3% and were not affected by location, year, parity, AI sire, or AI technician. Cumulative pregnancy rates were greater (P < 0.05) at 30 and 60 d of the breeding season in CO-Synch + CIDR (74.1 and 95.9%) compared with TM (61.8 and 89.7%). In Exp. 2, postpartum Brahman x Hereford (F1) cows (n = 100) were stratified as in Exp. 1 and divided into 4 replicates of 25. Within each replicate, approximately one-half (12 to 13) received CO-Synch + CIDR, and the other half received CO-Synch only (no CIDR). No differences were observed between treatments, and the data were pooled. Percentages of cows ovulating to GnRH-1, developing a synchronized follicular wave, exhibiting luteal regression to PGF, and ovulating to GnRH-2 were 40 +/- 5, 60 +/- 5, 93 +/- 2, and 72 +/- 4%, respectively. In Exp. 3, primiparous Brahman x Hereford, (F1) heifers (n = 32) and pluriparous cows (n = 18) received the Select Synch + CIDR synchronization regimen (no GnRH-2 or TAI). Mean intervals from CIDR removal to estrus and ovulation, and from estrus to ovulation were 70 +/- 2.9, 99 +/- 2.8, and 29 +/- 2.2 h, respectively. These results indicate that the relatively low TAI conception rate observed with CO-Synch + CIDR in these studies was attributable primarily to failure of 40% of the cattle to develop a synchronized follicular wave after GnRH-1 and also to inappropriate timing of TAI/GnRH-2.  相似文献   

6.
Two progestin-based protocols for the synchronization of estrus in beef cows were compared. Cyclic, nonlactating, crossbred, beef cows were assigned by age and body condition score to one of two treatments. Cows assigned to the MGA Select protocol were fed melengestrol acetate (MGA; 0.5 mg x cow(-1) x (-1)) for 14 d, GnRH was administered (100 microg i.m. of Cystorelin) 12 d after MGA withdrawal, and PGF2alpha (25 mg of i.m. Lutalyse) was administered 7 d after GnRH. Cows assigned to the 7-11 Synch protocol were fed MGA for 7 d and were injected with PG on d 7 of MGA, GnRH on d 11, and PG on d 18. Transrectal ultrasonography was performed daily to monitor follicular dynamics from the beginning of MGA feeding through ovulation after the synchronized estrus. All cows exhibited estrus in response to PG. Mean interval to estrus was shorter (P < 0.01) for 7-11 Synch-treated cows (56 +/- 1.5 h) than for cows assigned to the MGA Select protocol (73 +/- 4.7 h). Mean interval from estrus to ovulation did not differ between treatments (P > 0.10). Variances for interval to estrus differed (P < 0.01) between treatments. Mean follicular diameter at GnRH injection, PG injection, and estrus did not differ (P > 0.10) between treatments. Relative to MGA Select, serum estradiol-17beta concentrations were higher (P < 0.01) for 7-11 Synch 2 d and 1 d before, on the day of GnRH injection, in addition to 4 d after GnRH, and 24 h after PG. Mean progesterone concentrations were greater (P < 0.01) for MGA Select cows from 4 d before to 7 d after GnRH. Forty-four percent of the variation in interval to estrus between treatments was explained by differences in estradiol-17beta concentrations 24 h after PG. This study suggests that follicular competence is likely related to steroidogenic capacity of the follicle and the endocrine environment under which growth and subsequent ovulation of the dominant follicle occurs.  相似文献   

7.
Induction of ovulation for timed artificial insemination (TAI) with the Ovsynch protocol was evaluated in 49 anoestrous and lactating Bos taurus x Bos indicus cows. Palpation per rectum and transrectal ultrasonography were used on Days -30, -20, -10 and 0 (start of treatment) to confirm anoestrus but with the presence of follicles > or = 10 mm, and every other day during treatment to determine ovarian activity. Cows were randomly assigned to: (1) Ovsynch (n = 24; Day 0, 200 microg GnRH; Day 7, 150 microg PGF2alpha; Day 9, 200 microg GnRH + TAI 16 to 20 h later) and (2) control (n = 25; no treatment). Rates of ovulation for the first GnRH injection, detection of a corpus luteum (CL) at PGF2alpha injection, pregnancy and induction of cyclicity were greater (P < 0.05) with Ovsynch. There was no effect of body condition score (P > 0.05). In conclusion, the Ovsynch protocol was not effective in obtaining acceptable pregnancy rate for TAI, but it was effective for induction of cyclicity in anoestrous and lactating Bos taurus x Bos indicus cows under tropical conditions.  相似文献   

8.
Beef cows (n = 473) from two locations were stratified by breed, postpartum interval, age, and AI sire and were randomly allotted to one of four treatments for synchronization of ovulation. Ovulation synchronization protocols included the Ovsynch protocol with (n = 114) or without (n = 123) 48-h calf removal from d 7 to 9 (d 0 = 1st GnRH injection) or the CO-Synch protocol with (n = 119) or without (n = 117) 48-h calf removal from d 7 to 9. The Ovsynch protocol included administration of GnRH (100 microg; i.m.) on d 0, PGF2alpha (25 mg; i.m.) on d 7, GnRH (100 microg; i.m.) on d 9, and timed insemination on d 10. The CO-Synch protocol included administration of GnRH (100 microg; i.m.) on d 0, PGF2alpha (25 mg; i.m.) on d 7, and GnRH (100 microg; i.m.) with timed insemination on d 9. Blood samples were collected from all cows on d -10 and d 0 for analysis of serum progesterone. Cows with at least one serum progesterone concentration greater than 1 ng/mL were considered to be cyclic at the time of treatment. Conception rates of cows that received the CO-Synch + calf removal, Ovsynch + calf removal, CO-Synch, or Ovsynch protocol (63, 61, 54, and 52%, respectively) were not different (P = 0.50). Conception rates were not different (P = 0.80) among CO-Synch- and Ovsynch-treated cows; however, both estrual status and 48-h calf removal affected conception rates. Conception rates of cyclic cows (66%) were greater (P = 0.01) than those of anestrous cows (53%), regardless of which synchronization protocol was used. When data were pooled across synchronization protocol, conception rates of cows with 48-h calf removal (62%) were greater (P = 0.09) than conception rates of cows without calf removal (53%). The CO-Synch + calf removal protocol induces a fertile ovulation in cyclic and anestrous cows, requires handling cattle just three times, results in high conception rates from timed insemination, and should be a useful program for synchronization of ovulation in beef cows.  相似文献   

9.
This experiment was designed to compare pregnancy rates in postpartum beef cows resulting from fixed-time AI (FTAI) after treatment with 1 of 2 protocols to synchronize estrus and ovulation. Cross-bred, suckled beef cows (n = 650) at 4 locations (n = 210; n = 158; n = 88; and n = 194) were assigned within a location to 1 of 2 protocols within age group by days postpartum and BCS. Cows assigned to the melengestrol acetate (MGA) Select treatment (MGA Select; n = 327) were fed MGA (0.5 mg x head(-1) x d(-1)) for 14 d, GnRH (100 microg of Cystorelin i.m.) was injected on d 26, and prostaglandin F2alpha (PG; 25 mg of Lutalyse i.m.) was injected on d 33. Cows assigned to the CO-Synch + controlled internal drug release (CIDR) protocol (CO-Synch + CIDR; n = 323) were fed a carrier for 14 d, were injected with GnRH and equipped with an EAZI-BREED CIDR insert (1.38 g of progesterone, Pfizer Animal Health, New York, NY) 12 d after carrier removal, and PG (25 mg of Lutalyse i.m.) was injected and the CIDR were removed on d 33. Fixed-time AI was performed at 72 or 66 h after PG for the MGA Select or CO-Synch + CIDR groups, respectively. All cows were injected with GnRH (100 microg of Cystorelin i.m.) at the time of insemination. Blood samples were collected 8 and 1 d before the beginning of MGA or carrier to determine estrous cyclicity status of the cows (estrous cycling vs. anestrus) before treatment [progesterone > or = 0.5 ng/mL (MGA Select, 185/327, 57%; CO-Synch + CIDR, 177/323, 55%); P = 0.65]. There was no difference (P = 0.20) in pregnancy rate to FTAI between treatments (MGA Select, 201/327, 61%; CO-Synch + CIDR, 214/323, 66%). There was also no difference (P = 0.25) between treatments in final pregnancy rate at the end of the breeding period (MGA Select, 305/327, 93%; CO-Synch + CIDR, 308/323, 95%). These data indicate that pregnancy rates to FTAI were comparable after administration of the MGA Select or CO-Synch + CIDR protocols. Both protocols provide opportunities for beef producers to utilize AI and potentially eliminate the need to detect estrus.  相似文献   

10.
Cows that exhibit estrus within 24 h of fixed-time AI have elevated concentrations of estradiol and greater pregnancy rates compared with cows not in estrus. Our objective was to determine whether estradiol, estrus, or both had an effect on uterine pH during a fixed-time AI protocol. Beef cows were treated with the CO-Synch protocol (100 mircog of GnRH on d -9; 25 mg of PGF(2alpha) on d -2; and 100 mircog of GnRH on d 0). One-half of the cows received an injection of estradiol cypionate (ECP; 1 mg) 12 h after PGF(2alpha). Cows detected in standing estrus within 24 h of the second GnRH injection were considered to be in standing estrus. Uterine pH was determined in all animals 12, 24, and 48 h after the PGF(2alpha) injection. For Exp. 1, pH was also determined 72 and 96 h after the PGF(2alpha) injection; in Exp. 2, pH was also determined at 54, 60, 66, 72, 78, 84, 90, and 96 h after the PGF(2alpha) injection or until ovulation. A treatment x time interaction (P < 0.01) influenced concentrations of estradiol. All cows had similar (P > 0.15) concentrations of estradiol at the time of ECP administration, but after ECP treatment all cows treated with ECP and control cows that exhibited estrus had greater (P < 0.01) concentrations of estradiol compared with nontreated cows that did not exhibit estrus. In all animals, estradiol diminished 48 h after the PGF(2alpha) (time of the second GnRH injection), but ECP-treated cows, regardless of estrus, had elevated (P < 0.02) concentrations of estradiol compared with control cows. There was a treatment x time interaction (P < 0.001) on uterine pH. All cows had similar uterine pH (P > 0.19) 24 h after the PGF(2alpha) injection. Control cows that did not exhibit estrus had a greater uterine pH compared with control cows that exhibited estrus (P < 0.01) and ECP cows that exhibited estrus (P = 0.05) 48 h after the PGF(2alpha) injection (7.0 +/- 0.1 vs. 6.7 +/- 0.1 and 6.8 +/- 0.1, respectively). Estradiol cypionate-treated cows not exhibiting estrus were intermediate (6.8 +/- 0.1; P > 0.05). All cows had similar uterine pH 72 h after the PGF(2alpha) injection through ovulation (P > 0.06). In summary, uterine pH was similar among all animals that exhibited estrus, regardless of treatment with ECP.  相似文献   

11.
The objective of these studies was to evaluate whether exposing primiparous, suckled beef cows to the biostimulatory effect of bulls alters breeding performance associated with an estrus synchronization protocol that included GnRH followed 7 d later by PGF(2alpha) and fixed-time AI (TAI). This was a composite analysis of 3 experiments that evaluated (1) the effects of bull exposure at different days after calving (yr 1); (2) the biostimulatory effects of bull excretory products (yr 2); and (3) the biostimulatory effects of familiar and unfamiliar bulls (yr 3) on the resumption of ovarian cycling activity. In all studies, cows were exposed (biostimulated; n = 94) or not exposed (nonbiostimulated; n = 67) to bulls or excretory products of bulls for at least 60 d before the beginning of the estrus synchronization protocol. Average calving day did not differ among years and was 52 +/- 5 d. Year did not affect the proportions of biostimulated and nonbiostimulated cows that were cycling at the beginning of the estrus synchronization protocol; however, a greater (P < 0.001) proportion of biostimulated than nonbiostimulated cows were cycling at this time. In each year, cows were given GnRH followed by PGF(2alpha) 7 d later. Cows were observed for estrus twice daily (am and pm) after PGF(2alpha). Cows that exhibited estrus before 54, 60, and 64 h after PGF(2alpha) were inseminated by AI 12 h later in yr 1, 2, and 3, respectively. Cows that failed to show estrus were given GnRH and TAI at 62, 72, and 72 h after PGF(2alpha) in yr 1, 2, and 3, respectively. Conception rates were determined by transrectal ultrasonography 35 d after TAI in each year. The percentages of cows that exhibited estrus after PGF(2alpha) and before TAI, the interval from PGF(2alpha) to estrus, and the percentages of cows inseminated 12 h after estrus or at TAI did not differ between biostimulated and nonbiostimulated cows and were 51%, 54.7 +/- 7.3 h, 35%, and 65%, respectively. Conception rates for cows bred by AI 12 h after estrus did not differ between biostimulated and nonbiostimulated cows; however, the TAI conception rate was greater (P < 0.05) for biostimulated cows (57.6%) than for nonbiostimulated cows (35.6%). We conclude that TAI conception rates in an estrus synchronization protocol that includes GnRH followed 7 d later by PGF(2alpha) may be improved by the biostimulatory effect of bulls in postpartum, primiparous cows.  相似文献   

12.
Induced ovulation of small dominant follicles (SF, < 12 mm; CO-Synch protocol) in postpartum beef cows resulted in formation of corpora lutea (CL) that exhibited a delayed rise in progesterone (P4) compared with CL from large dominant follicles (LF, > 12 mm). Experiment 1 characterized P4 concentrations from ovulation to subsequent estrus among GnRH-induced or spontaneously ovulated SF (or= 12 mm) to determine if P4 secretion by CL formed from GnRH-induced SF remains lower postovulation in nonlactating beef cows. Nonlactating beef cows were induced to ovulate 48 h after PGF(2alpha) (CO-Synch; GnRH on d - 9, PGF(2alpha) on d - 2, and GnRH on d 0) or exhibited estrus and spontaneously ovulated after PGF(2alpha). Follicle size was measured at the second GnRH in cows induced to ovulate or approximately 3 h after the onset of estrus for cows that ovulated spontaneously. Cows were classified into 1 of 4 groups: 1) GnRH-induced ovulation-SF (or= 12 mm; Ind-LF; n = 16); 3) spontaneous ovulation-SF (or= 12 mm; Spon-LF; n = 22). Serum concentrations of P4 from d 3 to 15 were reduced in the Ind-SF compared with the Ind-LF (P = 0.05), Spon-SF (P = 0.07), and Spon-LF (P = 0.03). Experiment 2 characterized P4 concentrations (0 to 60 d postAI) among GnRH-induced or spontaneously ovulated SF (or= 13 mm) to determine if P4 secretion by CL formed from GnRH-induced SF remained lower during early gestation. Ovulation was induced with GnRH 48 h after PGF(2) (CO-Synch) or occurred spontaneously, and ovulatory follicle size was measured at AI. Lactating cows were classified into 1 of 3 groups: 1) GnRH-induced ovulation-SF (or= 13 mm; Ind-LF; n = 43); or 3) spontaneous ovulation-LF (>or= 13 mm; Spon-LF; n = 27). The increase in P4 concentrations was greater (P = 0.06) in pregnant (d 2 to 12) compared with nonpregnant cows. Also, the increase in P4 from d 2 to 12 was greater (P = 0.01) in the Ind-LF compared with the Ind-SF groups, but there was no difference (P = 0.94) among groups in P4 from d 14 to 60 in pregnant cows. Follicle size at AI influenced the increase in P4 in cows that failed to conceive (P = 0.007), but not among cows that became pregnant (P = 0.32) to AI. In summary, P4 secretion after GnRH-induced ovulation of SF was decreased from d 2 to 12 compared with that of LF, but was similar among pregnant cows from d 14 to 60 postAI (d 0).  相似文献   

13.
The objectives of this observational study were to document ovarian and endocrine responses associated with the treatment of cystic ovarian follicles (COFs) in dairy cows, using gonadotropin releasing hormone (GnRH) and prostaglandin F2alpha (PGF) with or without exogenous progesterone. A secondary objective was to determine pregnancy establishment following synchronization of ovulation and timed insemination in cows diagnosed with COFs. In trial I, 18 Holstein cows diagnosed with COFs received 2 injections of 100 microg GnRH, 9 d apart, with 25 mg PGF given 7 d after the 1st GnRH. A new follicle developed in all 18 cows after the 1st GnRH, and 83% of cows ovulated following the 2nd GnRH. Cows were inseminated 16 h after the 2nd GnRH. Of the 17 cows available for pregnancy diagnosis, 7 were confirmed pregnant. In trial II, 8 cows with COFs received GnRH and an intravaginal progesterone device (CIDR) concurrently, then PGF 7 d later. The CIDR was removed 2 d after PGF administration. Plasma estradiol concentrations declined following CIDR insertion. In all cows, a new follicle developed following GnRH treatment; estradiol-surge and estrus occurred spontaneously after CIDR-removal. Seven of 8 cows ovulated the new follicle. In dairy cows diagnosed with COFs, treatment with GnRH followed by PGF 7 d later, with or without exogenous progesterone, resulted in the recruitment of a healthy new follicle; synchronization of ovulation and timed insemination resulted in a 41% pregnancy rate.  相似文献   

14.
The objective of this experiment was to determine the effect of sequential treatment with buserelin (a GnRH agonist) and cloprostenol (a prostaglandin F2 alpha analog) on estrous response and fertility in beef cattle with different ovarian conditions. On d 0 (1st d of treatment), the control group (n = 52, 10 heifers and 42 cows) and the GnRH group (n = 48, 10 heifers and 38 cows) received 2 mL of saline or 2 mL of Receptal (8 micrograms of buserelin), respectively. On d 6, all cows that had not exhibited spontaneous estrus were given i.m. 500 micrograms of cloprostenol (PGF). Ultrasonography on d 0 and assays of progesterone in blood on d -11, 0, and 6 were used to identify follicular and luteal status of animals. Cattle were observed for estrus from d 0 to 10. Cows showing estrus were bred artificially 12 h after onset of estrus. Over the 10-d period, the number of cows detected in estrus and pregnancy and conception rates were identical for the two groups. However, between d 0 and 6, the proportion of cows exhibiting estrus was lower (P less than .01) in the GnRH group than in the control group. Between d 6 and 10, the synchronization rate and precision of estrus were greater (P less than .01) in the buserelin-treated group than in the control group. Conception rate and interval from PGF injection to onset of estrus were not different between the two treatment groups. Presence of a large (greater than 10 mm) follicle on d 0 enhanced synchronization rate and precision of estrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Two experiments were conducted to evaluate whether hCG administered 7 d before initiating the CO-Synch + controlled internal drug release (CIDR) ovulation synchronization protocol (Exp. 1 and 2), or replacing GnRH with hCG at the time of AI (Exp. 1), would improve fertility to a fixed-time AI (TAI) in suckled beef cows. In addition, the effects of hCG on follicle dynamics, corpus luteum development, and concentrations of progesterone (P4) were evaluated. In Exp. 1, cows were stratified by days postpartum, age, and parity and assigned randomly to a 2 × 2 factorial arrangement of 4 treatments: 1) cows received 100 μg of GnRH at CIDR insertion (d -7) and 25 mg of PGF(2α) at CIDR removal (d 0), followed in 64 to 68 h by a TAI plus a second injection of GnRH at TAI (CG; n = 29); 2) same as CG but the second injection of GnRH at the time of insemination was replaced by hCG (CH; n = 28); 3) same as CG, but cows received hCG 7 d (d -14) before CIDR insertion (HG; n = 28); and 4) same as HG, but cows received hCG 7 d (d -14) before CIDR insertion (HH; n = 29). Pregnancy rates were 52, 41, 59, and 38% for GG, GH, HG, and HH, respectively. Cows receiving hCG (39%) in place of GnRH at TAI tended (P = 0.06) to have poorer pregnancy rates than those receiving GnRH (56%). Pre-CO-Synch hCG treatment increased (P < 0.05) the percentage of cows with concentrations of P4 >1 ng/mL at d -7, increased (P < 0.02) concentration of P4 on d -7, and decreased (P < 0.001) the size of the dominant follicle on d 0 and 3, compared with cows not treated with hCG on d -14. In Exp. 2, cows were stratified based on days postpartum, BCS, breed type, and calf sex and then assigned to the CG (n = 102) or HG (n = 103) treatments. Overall pregnancy rates were 51%, but no differences in pregnancy rates were detected between treatments. Pre-CO-Synch hCG treatment increased (P < 0.05) the percentage of cows cycling on d -7 and increased (P < 0.05) concentrations of P4 on d -7 compared with pre-CO-Synch controls. Therefore, pretreatment induction of ovulation after hCG injection 7 d before initiation of CO-Synch + CIDR protocol failed to enhance pregnancy rates, but replacing GnRH with hCG at the time of AI may reduce pregnancy rates.  相似文献   

16.
Angus, Boran and Red Poll sires were mated to Ankole, Boran and small East African Zebu (Zebu) females to produce the cows characterized in this study, which produced calves by Friesian, Brown Swiss, Simmental, Boran and Red Poll sires. Individual traits included cow parturition weight, cow weight at weaning, cow mean weight and cow weight change from parturition to weaning; maternal traits included calf crop born percentage, preweaning viability percentage, overall viability percentage, birth weight, weaning weight, weight at 12, 18 and 24 mo and calf weight weaned per cow exposed to breeding (productivity index). Cows by Angus and Red Poll sires significantly exceeded cows by Boran sires (all cows in this comparison had Ankole and Zebu dams) in weaning weight of progeny and in cow weight at parturition and at weaning. Cows by Red Poll sires significantly exceeded cows by Boran sires in birth weight of progeny. Progeny of cows by Boran sires significantly exceeded progeny of cows by Angus and Red Poll sires in 24-mo weight. Cows by Angus and Red Poll sires did not differ (P greater than .05) in any of the traits analyzed. Cows with Ankole and Boran dams significantly exceeded cows with Zebu dams (all cows in this comparison had Angus and Red Poll sires) in progeny weight at birth, 18 mo and 24 mo and in cow weight at parturition and at weaning. Cows with Boran dams significantly exceeded cows with Zebu dams in weaning and 12-mo weight of progeny and significantly exceeded cows with Ankole dams in weaning weight of progeny. The significantly heavier weaning weight and significantly lighter 24-mo weight of the 3/4 Bos taurus progeny of cows with Angus and Red Poll sires relative to the 1/2 Bos taurus progeny of cows with Boran sires suggest that cattle that are 1/2 Bos taurus breed composition have greater general adaptation than cattle with 3/4 Bos taurus breed composition in the postweaning nutritive and climatic environment under which this experiment was conducted. Significantly heavier weights of Angus and Red Poll crossbred cows relative to Boran crossbred cows (all breeds crossed on Ankole and Zebu cows) indicate that the two Bos taurus breeds exceed the Boran (Bos indicus) breed in additive direct genetic effects for size when they have general adaptation to the environment.  相似文献   

17.
Four experiment stations (IL, KS, MN, and MO) conducted experiments to determine effects of introducing a CIDR (controlled internal device release) into an ovulation control program for postpartum suckled beef cows. Five hundred sixty cows were assigned randomly to two treatments: 1) 100 microg of GnRH (i.m.) followed in 7 d with 25 mg of PGF2alpha, followed in 48 h by a second injection of GnRH and one fixed-time insemination (Cosynch; n = 287) or 2) Cosynch plus one CIDR during the 7 d between the first injection of GnRH and PGF2alpha (Cosynch+P; n = 273). Cows at three stations were inseminated at the time of the second GnRH injection (n = 462), whereas 98 cows at the fourth station were inseminated 16 to 18 h after that injection. Blood samples were collected at d -17, -7, 0, and 2 relative to PGF2alpha to determine concentrations of progesterone. Ultrasonography was used to monitor follicle diameter on d 2 and to determine the presence of an embryo at 30 to 35 d after insemination. Pregnancy rates were greater (P < 0.05) for Cosynch+P- (58%) than for Cosynch-treated (48%) cows. No station x treatment interaction occurred; however, cows at MO (62%) and KS (60%) had greater (P < 0.05) pregnancy rates than those at IL (47%) and MN (44%). Cows that had follicles > 12 mm on d 2 had greater (P < 0.01) pregnancy rates than those with follicles < or = 12 mm regardless of treatment. Pregnancy rates were similar between Cosynch and Cosynch+P treatments when cycling cows had elevated concentrations of progesterone at d 0, but pregnancy rates were greater (P < 0.05) in the Cosynch+P (79%) than in the Cosynch (43%) treatment when cycling cows had low concentrations of progesterone on d 0 (at PGF2alpha injection). Similarly, among noncycling cows, pregnancy rates were greater (P < 0.05) in the Cosynch+P (59%) treatment than in the Cosynch (39%) treatment. Cows in greater body condition at the onset of the breeding season experienced improved (P < 0.001) overall pregnancy rates. Pregnancy rates for cows that calved > 50 d before the onset of the breeding season were greater (P < 0.01) than those for cows that calved < or = 50 d. Thus, treatment of suckled cows with Cosynch yielded acceptable pregnancy rates, but addition of a CIDR improved pregnancy rates in noncycling cows. Body condition and days postpartum at initiation of the breeding season affected overall efficacy of the Cosynch and Cosynch+P protocols.  相似文献   

18.
Two experiments were conducted during 2 yr to evaluate differences in ovulation potential and fertility in response to GnRH or hCG. In Exp. 1, 46 beef cows were given 100 microg of GnRH or 500, 1,000, 2,000, or 3,000 IU of hCG. Ovulation incidence was not different between GnRH and any of the hCG doses, indicating that ovulatory capacity of at least 500 IU of hCG was equivalent to GnRH. In Exp. 2, beef cows (n = 676) at 6 locations were assigned randomly to a 2 x 3 factorial arrangement of treatments. Main effects were: 1) pre-timed AI (TAI) treatment (GnRH or hCG) and 2) post-TAI treatment (saline, GnRH, or hCG) to initiate resynchronization of ovulation in previously inseminated cattle. Blood samples were collected (d -21 and -10) to determine progesterone concentrations and assess cyclicity. Cattle were treated with a progesterone insert on d -10 and with 100 microg of GnRH or 1,000 IU of hCG. A PGF(2alpha) injection was given at insert removal on d -3. Cows were inseminated 62 h (d 0) after insert removal. On d 26 after first TAI, cows of unknown pregnancy status were treated with saline, GnRH, or hCG to initiate a CO-Synch protocol. Pregnancy was diagnosed 33 d after first TAI to determine pregnancies per AI (P/AI). Nonpregnant cows at 6 locations in yr 1 and 1 location in yr 2 were given PGF(2alpha) and inseminated 56 h later, concurrent with a GnRH injection. Five weeks later, pregnancy diagnosis was conducted to determine pregnancy loss after first TAI and pregnancy outcome of the second TAI. Injection of pre-TAI hCG reduced (P < 0.001) P/AI compared with GnRH, with a greater reduction in cycling cows. Post-TAI treatments had no negative effect on P/AI resulting from the first TAI. Serum progesterone was greater (P = 0.06) 7 d after pre-TAI hCG than after GnRH and greater (P < 0.05) after post-TAI hCG on d 26 compared with saline 7 d after treatment in association with greater frequency of multiple corpora lutea. Compared with saline, injections of post-TAI GnRH and hCG did not increase second insemination P/AI, and inconsistent results were detected among locations. Use of hCG in lieu of GnRH is contraindicated in a CO-Synch + progesterone insert protocol. Compared with a breeding season having only 1 TAI and longer exposure to cleanup bulls, total breeding season pregnancy rate was reduced by one-third, subsequent calving distribution was altered, and 50% more AI-sired calves were obtained by applying 2 TAI during the breeding season.  相似文献   

19.
The objective of this experiment was to determine the effect of a GnRH injection within a melengestrol acetate (MGA)-PGF2alpha (PGF) estrus synchronization protocol on follicular dynamics and synchronization of estrus. Pubertal crossbred beef heifers (n = 34) were randomly assigned to one of two treatments. Both treatment groups were fed MGA (0.5 mg x hd(-1) x d(-1)) for 14 d and injected (i.m.) with PGF (25 mg of Lutalyse) 19 d after MGA withdrawal. Melengestrol acetate was delivered in a feed supplement of 1.8 kg x hd(-1) x d(-1). Seventeen heifers received an injection of GnRH (100 microg Cystorelin) 12 d after MGA withdrawal and 7 d before PGF. The control group (n = 17) received only MGA-PGF. Estrus was detected four times/d for 7 d beginning on the day PGF was injected. Transrectal ultrasonography was performed daily on eight heifers from each treatment to monitor ovarian activity and characterize changes in follicular dynamics after MGA withdrawal and until ovulation after PGF. Each of the GnRH-treated heifers either ovulated or had a luteinized dominant follicle following GnRH and subsequently initiated a new follicular wave (8/8, 100%). All GnRH-treated heifers (17/17, 100%) and 94% of controls (16/17) exhibited estrus after PGF. Estrus was exhibited over a 132-h period (12 to 144 h) for control heifers compared with 60 h (48 to 108 h) for GnRH-treated heifers. The peak synchronized period for both treatments was between 48 and 72 h after PGF, during which time 76% (13/17) of the GnRH-treated heifers exhibited estrus compared with 63% (10/16) for controls. Seventy-one percent (12/17) of the GnRH-treated heifers exhibited estrus from 48 to 60 h after PGF, compared with 38% (6/16) for controls (P < 0.05). In summary, injection of GnRH within a 14- to 19-d MGA-PGF protocol increased the synchrony of estrus during the synchronized period and concentrated the period of detected estrus. This protocol may offer potential for the fixed-time insemination of replacement beef heifers.  相似文献   

20.
This experiment was designed to compare pregnancy rates in postpartum beef cows resulting from fixed-time AI (FTAI) at 54 or 66 h after administration of the CO-Synch + controlled internal drug-release (CIDR) protocol. Cows (n = 851) at 2 locations over 2 yr (yr 1, n = 218 and 206; and yr 2, n = 199 and 228 at the 2 locations, respectively) were stratified by age, BCS, and days postpartum to 1 of 2 FTAI intervals. Cows were administered GnRH (100 mug, i.m.) and were equipped with a CIDR insert (1.38 g of progesterone) on d 0. Controlled internal drug-release inserts were removed 7 d later at the time PGF(2alpha) (25 mg, i.m.) was administered (d 7). Continuous estrus detection was performed at location 2 by using the HeatWatch Estrus Detection System; the transmitters were fitted at the time of PGF(2alpha) and removed at the time of AI. Artificial insemination was performed at predetermined fixed times [54 h (FTAI 54; n = 424) or 66 h (FTAI 66; n = 427) after PGF(2alpha)] and all cows were administered GnRH (100 mug, i.m.) at AI. Two blood samples were collected on d -10 or -8 and immediately before treatment initiation to determine the pretreatment estrous cyclicity status of cows [progesterone >/=0.5 ng/mL (FTAI 54, 288/424 = 68%; FTAI 66, 312/427 = 73%; P = 0.07)]. Pregnancy rates were greater (P < 0.01) among cows that exhibited estrus than among those that did not (123/163 = 76% and 150/270 = 56%, respectively). There were no treatment x location interactions within year (P > 0.10) for age, days postpartum, or BCS; thus, the results were pooled for the respective treatments. Pregnancy rates were greater for FTAI 66 than FTAI 54 (P = 0.05; 286/426 = 67% vs. 257/424 = 61%, respectively). Pregnancy rates resulting from FTAI did not differ between year (P = 0.09), farm (P = 0.80), AI sire (P = 0.11), or technician (P = 0.64). There was no difference between pregnancy rates resulting from FTAI based on pretreatment cyclicity status (P = 0.30), and there was no difference between treatments in final pregnancy rates (P = 0.77). In summary, pregnancy rates resulting from FTAI following CO-Synch + CIDR at 66 h were greater than those resulting from FTAI at 54 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号