首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
为获取畜牧自主移动机器人在规模化养殖场中的位置信息,提出一种基于二维码(AprilTag)的建图与定位算法.利用在机器人上的单目相机对布置在环境中AprilTag进行观测,并融合轮式里程计对机器人运动的测量,基于扩展卡尔曼滤波(EKF)估计出机器人的状态,在此基础上推算每张AprilTag在全局坐标系中的位姿.在回环前...  相似文献   

2.
研究开发了一种自动导航果园用履带式移动机器人,作为果园精细化作业的移动平台.机器人采用基于曲柄滑块机构原理的导航方式,以导航机构检测的姿态角和位置角作为输入量设计了模糊PID控制器.试验表明,机器人以0.15m/s的速度直线行走时,最大跟踪误差小于0.02m;机器人转弯半径为2m时,最大跟踪误差小于0.05m.  相似文献   

3.
基于机器视觉的农业机器人运动障碍目标检测   总被引:5,自引:0,他引:5  
在农业移动机器人平台上运用机器视觉技术检测作业环境中是否存在运动障碍目标时,机器人自身运动会与障碍目标运动叠加在一起.为此,首先在移动机器人平台上连续采集两帧图像,提取其特征点并加以匹配;然后应用双线性模型描述对应特征点在图像之间的运动特性,并用最小二乘法对模型参数进行最优估计,得到两帧图像之间的变换矩阵;最后利用此变换矩阵补偿前帧图像来消除机器人自身运动的影响,再与后帧图像作帧差,在线检测出运动障碍目标.实验结果表明,该方法仅依据图像信息即可有效地检测出农业机器人导航环境中存在的运动障碍目标.  相似文献   

4.
为解决果园苹果采后运输设备自主导航模式单一、无法在任意点起步或停车等问题,设计了一种双导航模式小型果园运输机器人,可根据需求选择行人引领导航或定点导航。根据选择的导航模式,采用基于OpenPose人体姿态识别的目标跟踪控制方法或基于RTK-GNSS(Real time kinematic-global navigation satellite system)的距离-方向控制方法,实现果园环境下的行人引领导航和定点导航。该运输机器人以额定负载为200 kg、速度为0.5 m/s的条件参数在果园自主作业时,行人引领导航模式下目标跟踪误差平均值小于9 cm,其标准差小于4 cm;定点导航模式下到达目标点的相对误差小于13 cm,其标准差小于1.5 cm,绝对误差小于7 cm,其标准差小于0.5 cm;定点导航模式下机器人急停避障的行驶路径与理想行驶路径间的横向偏差小于56 cm,航向偏差小于8°。试验结果表明,该机器人能满足果园自主运输和安全避障的需求。  相似文献   

5.
温室机器人道路识别与路径导航研究——基于红外测距   总被引:1,自引:0,他引:1  
针对温室内移动机器人的应用需求,提出了一种基于红外线测距的温室机器人自主导航算法,并使用模糊算法对导航误差进行控制,实现了温室机器人的精确自主移动功能。温室机器人导航过程中,当红外线接收管接受到红外线信号时,会产生一个光强电流,电流放大后可以输出一个模拟电压;根据电压值,通过编程计算,利用电压和距离的对应关系,可以得到机器人和标志物的距离误差;距离信息通过串口传输到PC机上,PC机利用模糊控制原理对距离误差进行判断,发出控制指令。实验测试发现:机器人导航的距离偏差平均值为-1.28cm,均方差为2.68,超调较小,可以实现较为精确的导航。  相似文献   

6.
为实现温室草莓采摘机械化和自动化,设计并制作一种应用于日光温室的草莓采摘机器人。该机器人能实现自主路径规划,行走过程中识别成熟草莓并完成采摘。设计以ROS分布式计算系为主控制网络,以激光雷达进行移动机器人的地图构建与定位,双目深度相机实现对成熟草莓的识别和定位,搭载柔性仿生夹爪6自由度机械臂实现目标草莓抓取和放置。设计机器人软件平台,使用改进A*算法实现自主路径规划和导航避障;利用R-FCN目标检测网络和双目视觉技术实现成熟草莓检测及定位。结果表明:该草莓采摘机器人可实现目标检测及定位,检测到的草莓坐标与机器人手爪坐标的误差在4 mm以下,成熟草莓识别率为95%,满足采摘要求。  相似文献   

7.
针对插秧机器人机器视觉导航路径检测鲁棒性差、受杂草和翻土影响严重的问题,提出一种基于标记分水岭算法的视觉导航路径检测方法。首先,采用灰度化处理、直方图均衡化和中值滤波对目标秧苗列和目标田埂进行预处理;然后,利用标记分水岭算法对识别目标进行图像分割,并通过均值法采集导航路径特征点集;最后,使用最小二乘法将特征点拟合成导航路径。试验结果表明,相比传统分水岭法和区域生长法,本文的导航路径检测方法具有最好的识别效果,在秧苗列和田埂上的检测精度分别达到93.4%和96.6%。  相似文献   

8.
随着我国信息化技术的逐渐提高,机械自动化、集成电路、智能控制系统和测试计量等行业得到了快速发展,使得移动机器人达到了一个全新的高度,农业机器人也因此被广泛应用。在机器人众多研究问题中,全方位视觉的目标识别与跟踪一直是比较复杂并较难解决的问题。为此,基于全方位的自主导航技术,根据农业机器人工作特点和运动特性,建立了机器人工作空间的环境模型,提出了一种陆标导航和运动目标跟踪系统的视觉伺服方案,开发了以DSP控制器为核心的全方位视觉图像处理系统。试验结果表明:所设计的农业机器人全方位视觉目标识别与跟踪系统精准度高,可靠性和实时性强,各项性能指标优。  相似文献   

9.
针对单一传感器地图构建时存在环境表征不充分,无法为移动机器人自主导航提供完整环境地图等问题,本文通过将激光雷达与深度相机获取的环境信息进行互补融合,构建出更完整精确的栅格地图。首先,对传统ORB-SLAM2算法进行增强,使其具备稠密点云地图构建、八叉树地图构建以及栅格地图构建等功能。其次,为验证增强后ORB-SLAM2算法的性能,在fr1_desk1数据集和真实场景下进行测试,数据显示增强后ORB-SLAM2算法绝对位姿误差降低52.2%,相机跟踪轨迹增长14.7%,定位更加精准。然后,D435i型深度相机采用增强型ORB-SLAM2算法,激光雷达采用的Gmapping-Slam算法,按照贝叶斯估计的规则进行互补融合构建全局栅格地图。最后,搭建实验平台进行验证,并分别与深度相机和激光雷达2个传感器建图效果进行对比。实验结果表明,本文融合算法对周围障碍物的识别能力更强,可获取更完整的环境信息,地图构建更加清晰精确,满足移动机器人导航与路径规划的需要。  相似文献   

10.
基于强化学习的农业移动机器人视觉导航   总被引:3,自引:0,他引:3  
以强化学习为基础,结合模糊逻辑理论研究了农业移动机器人通过自主学习获取导航控制策略的方法。首先使用机器视觉检测环境障碍并获取障碍物相对于移动机器人的方向和距离信息。然后应用强化学习设计了机器人自主获取导航控制策略方法,使机器人能够不断适应动态变化的导航环境。最后基于模糊逻辑离散化连续的障碍物方向和距离信息,构建了离散化的环境状态,并据此制定了自主导航学习Q值表。在自制的轮式移动机器人平台上开展了试验,结果表明机器人可以在实际导航环境中自动获取更优的导航策略,完成预期的导航任务。  相似文献   

11.
自主式移动机器人导航研究现状及其相关技术   总被引:8,自引:2,他引:8  
对国内外移动机器人智能导航研究中采用的几种导航方式进行了对比,对近几年发展起来的并已在移动机器人导航研究领域中得到应用的相关技术进行了论述,对自主式移动机器人导航技术的发展进行了展望,提出导航系统的智能结构与多传感器相结合的视觉组合导航、网络控制和虚拟现实技术的应用是该领域的主要发展方向。  相似文献   

12.
李进  陈无畏 《农业机械学报》2012,43(6):19-24,152
为提高导航路径识别的鲁棒性和实时性,采用了分区阈值二值化、噪声点搜索及滤波等图像处理方法,并对导航路径进行分区逐段识别;在路径跟踪方面,在获取的导航路径图像中选取远端路径和近端路径,以远端路径和近端路径的方位偏差量作为确定目标路径的依据,使提取的导航参数能适应导航路径的变化。根据四轮智能车辆模型进行路径跟踪仿真计算。在此基础上,采用两块数字信号处理器,对基于路径导航的视觉智能车辆进行了设计和试验验证。试验结果表明采用该方法设计的智能车辆具有较好的路径识别和跟踪控制效果。  相似文献   

13.
基于定向摄像头的大拱棚运输车视觉导航研究   总被引:1,自引:0,他引:1  
针对大拱棚中运输车导航问题,提出了一种适用性更高的导航方法。为了规避叶间空隙对Hough直线变换精度造成的影响,使用道路尽头横向中心点作为导航信息标定点,搭建摄像头云台使得摄像头视轴始终与道路平行。使用色度法对作物与道路进行分割处理,通过面积筛选所得的轮廓点集,能够准确计算出道路尽头的横向中心点像素坐标,从而得到运输车的位姿信息。通过运动学建模对运输车进行了轨迹仿真,得到了运输车不同速度下对识别误差的动态响应。基于Raspberry Pi平台搭建了导航信息提取装置,在不同道路长度的拱棚中对比了本文方法与Hough变换法的识别精度,并使用不同类型摄像头进行了静态导航信息提取实验,同时在不同速度进行了运输车的直线行驶实验。静态实验表明,相比于传统Hough变换,该导航方法能够显著提高识别精度,使用长焦摄像头比普通摄像头识别精度平均提高了25.7%,导航线平均识别偏差为2.4cm,检测速率为240ms/f,具有较高的精度和实时性。行驶实验表明,该导航方法在不同速度下均能保证较小的稳态误差,能够满足生产要求。  相似文献   

14.
温室移动机器人导航和避障模糊控制   总被引:3,自引:2,他引:3  
对适用于温室农业生产的移动机器人导航和避障进行了研究,采用模糊控制技术对温室移动机器人的控制算法进行研究。利用单片机作为控制核心,研制了一种模糊控制器,并在移动机器人模型上进行了实验。实验证明,该模糊控制算法在一定程度上能够满足温室移动机器人控制的需要。  相似文献   

15.
周俊  张鹏  刘成良 《农业工程》2010,(12):254-258
GPS广泛用于农业机械导航研究中,其定位误差信号一般存在明显的自相关性,不能满足组合导航中常用的卡尔曼滤波算法观测噪声为高斯白噪声的要求。为此,建立了GPS定位误差AR模型,结合卡尔曼估计结果来预测和修正GPS定位误差,再将修正后的GPS定位信息应用于组合导航中的卡尔曼滤波过程。试验结果表明,无论GPS接收机是在静止还是在运动条件下,处理后的定位误差信号自相关性都明显降低,近似为白噪声;目标路径直线时的最大跟踪误差约为0.15 m,为曲线时,最大跟踪误差约为0.3 m。该方法为低精度GPS应用于农业机械导航提供了可行途径。  相似文献   

16.
温室移动机器人导航和避障模糊控制   总被引:6,自引:1,他引:6  
对适用于温室农业生产的移动机器人导航和避障进行了研究,采用模糊控制技术对温室移动机器人的控制算法进行研究。利用单片机作为控制核心,研制了一种模糊控制器,并在移动机器人模型上进行了实验。实验证明,该模糊控制算法在一定程度上能够满足温室移动机器人控制的需要。  相似文献   

17.
为提高林果园移动机器人导航系统的精确性与鲁棒性,提出一种基于激光雷达三维点云的果园行间高低频双源信息融合实时导航方法。首先,喷雾机器人搭载三维激光雷达采集两侧果树点云信息,对原始点云数据进行直通滤波、降采样和统计滤波等预处理,保留感兴趣区域内果树冠层点云;然后,将分别基于高频更新的牛顿插值算法和低频更新的非线性支持向量机(Non-linear support vector machine, NSVM)算法拟合的行间导航线进行互补融合;最后,在导航线切换时,对融合后导航线的稳定性进行优化,并使用三次B样条算法使导航线平滑。实验结果表明:融合优化后的导航线最大曲率为0.048 m-1,平均曲率为0.018 m-1;分别以0.5 m/s和1.0 m/s的行驶速度对融合优化后的导航线进行跟踪,绝对横向偏差最大值分别为0.104 m和0.130 m,平均值分别为0.053 m和0.049 m,说明该导航方法能够满足作业装备在果园行间自主导航作业的需求,为喷雾机器人在果园环境中的自主导航提供技术参考。  相似文献   

18.
基于光照色彩稳定性分析的温室机器人导航信息获取   总被引:2,自引:0,他引:2  
针对温室环境下视觉导航存在光照波动影响问题,从应用可行性角度,研究了一种基于光照色彩稳定性的导航信息获取方法.分析了温室导航线图像在颜色空间的色彩特征分布,建立了光照分析模型,以提高不同光照条件下的导航线提取适应性.提出g、Cr、Cb色彩分量组合的导航线分割方法,实现了导航信息有效快速识别.采用基于导航参考点的改进Hough变换拟合导航路径,通过几何关系获得导航侧向位移和角度偏差作为导航参数.温室环境下随机拍摄150幅不同光照导航图像进行识别算法验证,导航线平均识别率为93.9%.导航实验结果表明,导航线获取方法平均耗时约95 ms,在运行速度低于1.5 m/s时最大路径跟踪误差小于6 cm,满足视觉导航实时性和准确性的要求.  相似文献   

19.
综合考虑3种主要系统误差对轮式移动机器人直行与旋转所带来的影响,对传统UMBmark方法做出改进,采用双正六边形回路终点的方向误差代替传统双正四边形回路位置误差,标定系统误差。通过激光跟踪仪测出点的信息绘制轨迹,对比分析得出,所提方法能有效提高移动机器人定位精度,与未标定前相比,精度提高3倍左右。  相似文献   

20.
基于最小二乘法的温室番茄垄间视觉导航路径检测   总被引:10,自引:0,他引:10  
针对温室非结构作业环境和复杂背景下作业机器人路径识别检测问题开展研究。在HSI颜色空间分析番茄垄间道路图像在各分量的分布特性,提出了基于机器视觉的垄间加热管敏感区域提取方法,依据I分量直方图采用最大类间方差法进行图像自适应阈值分割,对分割后二值图像利用目标区域的边缘提取算法获得导航离散点簇。根据最小二乘法原理对导航离散点簇拟合得到2条加热管边缘线,在此基础上给出中心导航基准线检测算法,并针对光照不均和作物遮挡对导航路径检测进行了实验。实验表明,与Hough变换算法相比,该算法简单快速,对光照不均具有良好的鲁棒性,能够准确提取目标敏感区域的边缘信息,对不同遮盖率番茄垄间导航路径提取正确率达91.67%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号