首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melatonin is known to protect sperm against freezing-inflicted damage in different domestic species. The aim of the study was to evaluate the effect of supplementation of semen extender with melatonin on the quality and DNA integrity of cooled and frozen/thawed rabbit spermatozoa. We also investigated whether the addition of melatonin to the semen extender could improve the fertility of rabbit does artificially inseminated with frozen/thawed semen. Semen samples collected from eight rabbit bucks were pooled and then diluted in INRA-82 supplemented either with (0.5, 1.0 or 1.5 mM) or without (0.0 mM) melatonin. Diluted semen was cooled at 5°C for 24 hr. For cryopreservation and based on the first experiment's best result, semen samples were diluted in INRA-82 in the presence or absence of 1.0 mM melatonin and then frozen in 0.25 ml straws. Following cooling or thawing, sperm quality and DNA integrity were evaluated. Furthermore, the fertility of frozen/thawed semen was investigated after artificial insemination. Supplementation of semen extender with 1.0 mM melatonin improved (p < .05) motility, viability, membrane and acrosome integrities in cooled semen compared with other groups. Sperm quality and DNA integrity were higher (p < .05) in frozen/thawed semen diluted in 1.0 mM melatonin-supplemented extender than in the control group. Conception and birth rates were higher in does inseminated with 1.0 mM melatonin treated semen compared with the controls. In conclusion, supplementation of semen extender with 1.0 mM melatonin improved the quality of cooled and frozen/thawed rabbit spermatozoa. Melatonin can preserve DNA integrity and enhance the fertility of frozen/thawed rabbit spermatozoa.  相似文献   

2.
The use of cholesterol‐loaded cyclodextrin (CLC) on semen cryopreservation has been related with better sperm viability in several species; however, the effect on fertility is not known in donkey semen. Ejaculates (n = 25) from five donkeys were diluted in S‐MEDIUM with 0, 1, 2 or 3 mg of CLC/120 × 106 spermatozoa. Semen was frozen, and thawed samples were evaluated by computer‐assisted sperm analyser system (CASA), supravital test, hyposmotic swelling test and fluorescent dyes to assess the integrity of sperm membranes. Mares (n = 60) were inseminated with frozen‐thawed semen treated with the doses of 0 or 1 mg CLC. Percentages of sperm with progressive motility and with functional plasma membrane were greater (p < 0.05) in the CLC‐treated groups than in the control. Percentages of intact plasma membrane and intact plasma membrane and acrosome detected by fluorescent dyes were also greater (p < 0.05) in CLC‐treated groups. Although no difference (p > 0.05) in conception rates was detected between groups (control, 3/30, 10%; CLC‐treated, 1/30, 3.3%), fertility was low for artificial insemination programs in mares. Therefore, we firstly demonstrated that frozen semen treated with CLC in S‐MEDIA extender before freezing improves the in vitro sperm viability, but semen treated or not with CLC in S‐MEDIUM extender results in a very low conception rate in mares inseminated with thawed donkey semen.  相似文献   

3.
This study investigates the effects of iodixanol supplementation in varied concentrations to Tris egg yolk (TEY) extender on the quality and fertilization ability of frozen–thawed sperm of Thai native bulls. Each ejaculate was divided into four different groups, as follows: sperm were treated with TEY extender (control group) and TEY extender supplemented with three different concentrations of iodixanol (1.25%, 2.50% and 5.00%). Semen straws were frozen in liquid nitrogen vapor. After thawing, sperm motility characteristics, viability, plasma membrane integrity and acrosome integrity were determined. Also, frozen–thawed spermatozoa from all groups were used for in vitro fertilization and artificial insemination (AI) in natural estrus Thai native cows. The results showed that the post‐thaw quality of the 2.50% iodixanol group was superior to the other iodixanol groups (< 0.05). However, iodixanol had no beneficial effect on post‐thaw sperm in vitro fertilization ability and pregnancy rate after AI (> 0.05). It can be concluded that the supplementation of 2.50% iodixanol extender significantly improves the progressive motility, viability, plasma membrane integrity and acrosome integrity of cryopreserved semen from Thai native bulls, but it has no beneficial effect on in vitro fertilization ability and pregnancy rate after AI.  相似文献   

4.
The aim of this study was to investigate the effect of initial cooling time at 5°C during semen cryopreservation on post‐thaw quality and reproductive performance of rabbit semen. Pooled semen samples (n = 6) were divided into two subsamples and cooled at 5°C for 45 or 90 min. After cooling, the semen samples were diluted to a ratio of 1:1 (v:v) with a freezing extender composed of Tris‐citrate‐glucose (TCG) containing 16% of dimethylsulfoxide and 0.1 mol/L sucrose. The semen was subsequently loaded in 0.25 ml straws, equilibrated at 5°C and frozen in liquid nitrogen vapor. After thawing, sperm motility, viability, osmotic resistance, acrosome and DNA integrity were assessed. Our results indicate that the longer cooling time, that is, 90 min before cryopreservation significantly improves sperm post‐thaw viability, motility and fertility. In fact, reproductive performances obtained with semen frozen after a 90 min cooling time were similar to those produced by fresh semen insemination. Hence, the present research provides an effective freezing protocol for rabbit semen that will allow for the creation of a sperm cryobank for the conservation of Italian rabbit genetic resources, as well as the use of frozen semen doses in commercial farms.  相似文献   

5.
This study was designed to investigate the effects of feeding‐protected conjugated linoleic acid (CLA) on the semen production and sperm freezability in Holstein bulls. Twelve bulls were randomly assigned to two groups (n = 6 per group). Bulls received the normal diet (control group) or the normal diet top‐dressed with 50 g of CLA (treated group) for 10 weeks. The control group received 40 g/day calcium soap of fatty acid. Fresh and post‐thaw semen quality was assessed on ejaculates collected at the 0, 4, 6, 8 and 10 week of supplementation. Semen evaluations including sperm concentration, motion characteristics (subjective and computer‐assisted), viability (Eosin–Nigrosin), membrane integrity (hypo‐osmotic swelling test) and abnormality were conducted. Semen volume, sperm concentration and total sperm output were not affected by dietary treatment (p > .05). The proportion of spermatozoa with abnormal morphology in fresh semen significantly increased (p < .05) in the CLA‐fed group compared to control group. Also, in CLA‐fed group, the proportion of post‐thaw spermatozoa with abnormal morphology at week 10 of trial was significantly higher in CLA than control group (p < .05). Progressive motility tended to be increased in the CLA‐fed group, although dietary supplementation did not affect other CASA parameters or viability in fresh and frozen‐thawed sperm. In this study, CLA supplementation had little positive effect on fresh or post‐thaw sperm quality of Holstein bulls.  相似文献   

6.
During the cryopreservation process, the level of polyunsaturated fatty acids, especially docosahexaenoic acid (DHA), in the sperm plasma membrane decreases significantly because of lipid peroxidation, which may contribute to sperm loss quality (i.e. fertility) of frozen–thawed semen. The aim of this study was to investigate the effect of supplementation of DHA (fish oil) in freezing extender II on frozen–thawed semen quality. Semen from 20 boars of proven motility and morphology, were used in this study. Boar semen was split into four groups, in which the lactose–egg yolk (LEY) extender used to resuspend the centrifuged sperm pellet was supplemented with various levels of fish oil to reach DHA level of 1X (group I, control, no added fish oil), 6X (group II), 12X (group III) and 18X (group IV). Semen solutions were frozen by using a controlled rate freezer. After cryopreservation, frozen semen was thawed and evaluated for progressive motility, viability by using SYBR‐14/Ethidiumhomodimer‐1 (EthD‐1) staining and acrosome integrity by using FITC‐PNA/EthD‐1 staining. There was a significantly higher (p < 0.001) percentage of progressive motility, viability and acrosome integrity in DHA (fish oil) supplemented groups than control group. Generally, there seemed to be a dose‐dependent effect of DHA, with the highest percentage of progressive motility, viability and acrosome integrity in group‐III. In conclusion, supplementation of the LEY extender with DHA by adding fish oil was effective for freezing boar semen as it resulted in higher post‐thaw plasma membrane integrity and progressive motility.  相似文献   

7.
To improve the Boer goat semen quality during cryopreservation process, three experiments were carried out to investigate the effect of (i) different concentration of ascorbic acid supplementation (ii) rate of cooling with chilled semen characteristics and (iii) method of freezing on post‐thaw Boer goat sperm using Tris‐based extender. Ascorbic acid at 8.5 mg/ml improved the sperm parameters (motility, integrity of membrane and acrosome, morphology and viability), compared to control in cooled samples (p < 0.05). With regard to other concentrations and post‐thawed parameters, ascorbic acid at 2.5–8.5 mg/ml led to higher percentages of sperm motility and integrities of membrane and acrosome when compared to control (p < 0.05). Slow cooling rises to higher percentages of sperm motility, acrosome integrity and viability, in comparison with fast cooling, in terms of cooled and frozen samples (p < 0.05). Programmable freezing method produced the higher percentages of sperm motility, integrities of membrane and acrosome and viability when compared to the freezing method of polystyrene box during goat sperm freezing (p < 0.05). In conclusion, chilled and post‐thawed sperm quality of Boer goat was improved when a Tris‐based extender supplemented with ascorbic acid was used at stages of different cooling rates and freezing methods.  相似文献   

8.
The objective of this study was to compare different extenders for post‐thaw in vitro sperm function and in vivo fertility of buffalo semen. Accordingly, sperm of 30 ejaculates extended in egg yolk (TRIS with 20% egg yolk; EY), two soya lecithin‐based (SL‐1; AndroMed® and SL‐2; Bioxcell®) and a liposome‐based extender (LS; OptiXcell®) were tested. The post‐thaw semen was evaluated for computer‐assisted sperm analysis (CASA), sperm viability, membrane and acrosome integrity, DNA integrity and acrosome reaction and first service pregnancy rate (FSPR) in a fixed‐time artificial insemination programme. Total motility and VCL were the only CASA‐based parameters that exhibited significantly higher (p < .05) percentage in LS among these extenders. Post‐thaw percentage of acrosome integrity (55.9 ± 1.4, 58.1 ± 2.0, 55.8 ± 2.0, 56.6 ± 2.3) and DNA integrity (68.8 ± 2.0, 69.2 ± 2.3, 71.3 ± 2.1, 69.1 ± 2.1) did not differ (p > .05) in EY, SL‐1, SL‐2 and LS extender, respectively. However, a variable response in terms of efficacy of different extenders for sperm viability and plasma membrane integrity was observed. Assessment of inducibility of acrosome reaction showed significant differences between extenders (51.9 ± 2.1, 44.3 ± 2.4, 46.1 ± 2.3 and 58.1 ± 3.1%, respectively, for EY, SL‐1, SL‐2 and LS). Furthermore, field trials revealed significantly higher (p < .05) FSPR of LS‐extended semen as compared to that for EY, SL‐1 and SL‐2 extender (46.3%, 41.2%, 31.2% and 29.7%, respectively). It is concluded that the liposome‐based extender is more effective than egg yolk‐ and soya lecithin‐based extenders and may be used for cryopreservation of buffalo semen in the future.  相似文献   

9.
Stallion semen cryopreservation is often associated with poor post-thaw sperm quality. Sugars act as nonpermeating cryoprotectants. The aim of the present study was to evaluate the cryoprotective effect of trehalose on stallion sperm quality and field fertility rates subjected to cooling and freeze–thaw process. Semen samples were collected from six Arabian stallions, divided into five different treatments in a final concentration of 100 × 106 sperm/mL by using INRA-82 extender containing 0, 25, 50, 100, and 200 mM of trehalose then subjected to both cold storage and cryopreservation. Sperm motility, acrosome, plasmatic membrane, and DNA integrity were analyzed, and 57 mares were used to evaluate the field fertility of chilled and frozen-thawed semen. Results showed that the extender containing 100 mM trehalose only increased the functional acrosomal, plasma membrane, and DNA integrities. The inclusion of 50 mM trehalose in semen extender resulted in significantly (P < .05) increased post-thaw total motility compared to the control group, and chilled semen achieved higher pregnancy rates compared to the frozen-thawed one. Pregnancy rate of mares inseminated with frozen-thawed semen (P < .05; 46.15% vs. 36.36%, respectively) was lower than those inseminated with chilled semen (76.47% vs. 68.75%, respectively) but higher than control. In conclusion, addition of 50 mM trehalose yielded the highest quality stallion semen after cooling and post-thawing in terms of motility, integrities of acrosome, membrane, and DNA as well as improved field fertility.  相似文献   

10.
本试验皆在研究添加不同浓度大豆卵磷脂(SL)冷冻保存东佛里生奶绵羊精液的效果。我们在Tris基础稀释液中,添加18%蛋黄为对照组,添加0.5%、1%、1.5%、2%、2.5%SL设为试验组,检测冷冻精液解冻后的精子活率和顶体完整率。结果显示,添加0.5%、2.5% SL冷冻稀释液稀释的精液,解冻后精子活率和顶体完整率与其他组之间存在显著差异(P<0.05);添加18%蛋黄和1%~2% SL冷冻稀释液稀释的精液,冷冻解冻后精子活率和顶体完整率之间无显著差异(P>0.05);添加18%蛋黄和1.0%~1.5% SL冷冻稀释液稀释后的精液,进行人工授精后母羊的妊娠率与对照组无显著差异(P>0.05)。因此,大豆卵磷脂可以作为冷冻保护剂用于东佛里生奶绵羊精液的冷冻保存,其最佳添加浓度为1~2%(g/L)。  相似文献   

11.
The objective was to assess the influence of polyunsaturated fatty acid supplementation on the quality of fresh, cooled, and frozen-thawed stallion semen. Ten stallions received their normal diet (control group) or normal diet plus 150 mL of polyunsaturated fatty acid (PUFA) linseed-based oil (PUFA group). Semen was collected every 15 days during 60 days. Stallions were reversed across the treatments after a sixty-day interval. Semen was evaluated at 2, 6, 12, and 24 hours after cooling and 24 hours after freezing. Motility (MOT), vigor, membrane viability, morphology, acrosome integrity, and osmotic tolerance test (OTT) were evaluated. In the frozen-thawed semen, sperm dynamic characteristics were analyzed by computer-assisted sperm analysis and thiobarbituric acid reactive substances (TBARs) determined. The effects of treatment, time, semen type, and their interactions were submitted to PROCMIX (SAS) and means compared by the Tukey test. There was no treatment effect on the quality of fresh and cooled semen. However, frozen-thawed semen MOT, vigor, and OTT were superior (P < .05) in control compared to PUFA group. An interactive effect of sample day by treatment was observed, such that, TBARs increased over time (P = .002) in the PUFA group after 15, 30, 45, and 60 days from the beginning of supplementation. Thus, sperm may become more susceptible to the reactive oxygen species, probably due to the incorporation of polyunsaturated fat in the cell membrane. The addition of PUFA-enriched oil may be an alternative for improving frozen-thawed semen quality by increasing its MOT and resistance to osmotic changes to which sperm cells are submitted during the freezing process.  相似文献   

12.
The dilution effect and effect of restoring seminal plasma (SP) proportion in diluted semen were determined in chilled Asian elephant sperm. Semen was collected from eight males, and samples with ≥30% motile sperm were used in the study. Tris‐glucose‐egg yolk extender (TE) was used for cooled storage at 4°C for 48 hr. In experiment 1 (n = 18), semen was diluted to 1:1, 1:3, 1:7 and 1:15 with TE (volume per volume). There were no significant changes in sperm viability and sperm with normal acrosome integrity among dilutions, but sperm motility and motility velocities were greater (p < .05) in the 1:1 dilution than those of the 1:7 and 1:15 dilutions at 48 hr of storage. In experiment 2, supplemented SP was derived from elephants and stallions. In experiment 2.1, diluted semen (1:7 dilution) was restored with SP to obtain a 1:2 proportion (n = 8). Sperm motility, viability and sperm with normal acrosome integrity were similar among treatments, but motility velocities were greater (p < .05) with stallion SP at 48 hr of storage. In experiment 2.2, diluted semen (1:15 dilution) was restored with SP to obtain a 1:3 proportion (n = 10). Sperm viability and sperm with normal acrosome integrity were similar among treatments at 48 hr of storage. However, sperm motility and motility velocities were greater (p < .05) with stallion SP than those of others. In conclusion, elephant sperm motility was affected by a dilution effect and restoration of SP proportion with stallion SP, but not with elephant SP, could improve motility in chilled highly diluted sperm.  相似文献   

13.
The aim of the present study was to evaluate the effect of sperm selection by single-layer centrifugation (SLC) performed before freezing on sperm quality after thawing of Fleckvieh bull semen. Ejaculates from 22 bulls were collected by artificial vagina and divided into two aliquots. One aliquot (control sample) was diluted with Steridyl® and frozen over nitrogen vapour in a Digitcool freezer (IMV Technologies). Sperm from the second aliquot (SLC sample) was selected using the SLC technique with Bovicoll colloid and then frozen over nitrogen vapour in a Digitcool freezer. After thawing, both samples (control and SLC) were evaluated by computer-aided sperm analysis (CASA; SCA 6.4 System; Microptic S.L) for sperm motility parameters. Integrity of the plasma membrane (viability), high mitochondrial membrane potential (HMMP) and acrosome integrity were assessed using a Guava® easyCyte flow cytometer (IMV Technologies). Morphological examination of spermatozoa was performed by Differential Interference Contrast microscopy (Leica DMi8). Morphological examination of live, immobilized spermatozoa was analysed under high magnification (≥6,600×). After thawing, the mean sperm viability of the control sample was 51.57%, compared to 40.37% for the SLC sample (p < .01). HMMP was higher (p < .01) in the control sample (40.37% versus 28.96%), and the mean of live spermatozoa with damaged acrosome was significantly higher (p < .03) in the SLC sample (1.63% versus 1.95%). The mean percentage of motile spermatozoa was 80.17% in the control sample, compared to 75.14% in the SLC sample (p < .0195), and rapid subpopulation reduced from 20.08% to 8.99% (p < .0001) after SLC. Percentage of hyperactivated sperm decreased from 12.23% to 4.28% (p < .0001) after SLC. Given the overall results, the sperm quality of thawed Fleckvieh bull semen was not improved when sperm were selected by SLC before freezing.  相似文献   

14.
This study assessed the effect of oral supplementation with the primary antioxidants and fatty acids involved in spermatogenesis (L-carnitine, selenium, vitamin E, omega-3, and omega-6) on the seminal quality in fresh, cooled, and frozen semen of stallions (n = 8), using a randomized design. The animals were divided into Group I (n = 4) and Group II (n = 4) for a 30-week experiment. The two groups alternated between nutraceutical supplementation and a placebo over the course of the experiment. Semen collections were performed in two sets: once in the middle of the experiment, before the two groups switched treatments, and once at the end. The volume, appearance, sperm concentration, spermatozoa kinetics, and membrane integrity of fresh semen were evaluated. The spermatozoa kinetics and membrane integrity of cooled (for 24, 36, and 48 hours) and frozen semen were also evaluated. No differences were observed in volume, appearance, and sperm concentration between treatment and control. However, compared with placebo, nutraceutical supplementation increased (P < .05) total motility, trajectory speed, as well as plasma and acrosomal membrane integrity in spermatozoa from fresh semen. In cooled semen, nutraceutical treatment also increased (P < .05) total motility, speed, and membrane integrity of spermatozoa compared with the control. In frozen semen, supplementation increased (P < .05) spermatozoa progressive motility and plasma membrane integrity. Our results suggest a positive, synergistic effect of the antioxidant L-carnitine and selenium on spermatozoa kinetics. Similarly, the increase in plasma and acrosomal membrane integrity could be attributed to higher concentrations of polyunsaturated fatty acids (a key cell-membrane component), combined with the prevention of excess lipid peroxidation by antioxidants. In conclusion, supplementation with nutraceuticals containing fatty acids and antioxidants improved the quality of fresh, cooled, and frozen stallion semen. Therefore, nutraceutical use should increase the success of artificial insemination with cooled and cryopreserved semen.  相似文献   

15.
Metformin is clinically used to treat diabetes. Given its role‐impacting metabolism, metformin has been also added to semen cryopreservation media showing specie‐dependent effects. We aimed to investigate metformin effects in both fresh (38.5°C for 2, 24 hr) and refrigerated (17°C for 10 days) boar spermatozoa. Metformin (2 hr) does not affect fresh sperm viability, membrane lipid organization nor acrosome integrity. However, metformin (24 hr) blocks sperm ΔΨm and significantly reduces % motile spermatozoa (65%), % progressive spermatozoa (50%), % rapid (100%), velocities VCL (69%), VSL (86%), VAP (78%) and motility coefficients. Metformin‐including extender does not modify sperm viability, membrane lipid organization or acrosome integrity. Furthermore, it significantly reduces high ΔΨ‐population spermatozoa at refrigeration day 4. Metformin also significantly reduces sperm motility during refrigeration. Summarizing, metformin inhibits both boar sperm ΔΨ and motility in any sperm condition studied: fresh and refrigerated. These findings dissuade metformin as an additive to improve boar sperm quality.  相似文献   

16.
【目的】试验旨在研究以褪黑素和地诺前列腺素组成的复合添加剂对奶牛性控冻精解冻后精子质量及奶牛人工授精后受胎率的影响。【方法】30份奶牛性控冻精样均分为2组:试验组和对照组,试验组添加由24 ng/mL褪黑素、1.5 mg/mL地诺前列腺素及精液稀释液组成的250 μL复合添加剂,对照组添加250 μL精液稀释液,试验组和对照组均与解冻后的奶牛性控冻精按照1∶1(V/V)进行混合,室温孵育0、2及4 h,通过免疫荧光染色分析精子活率、顶体完整率、高能线粒体活性精子比率;对216头青年奶牛和82头头胎奶牛输精后通过28 d早孕检测来确定受胎率情况。【结果】与对照组相比,经复合添加剂处理0 h的性控冻精活率、顶体完整率及高能线粒体活性精子比率均无显著变化(P>0.05);经复合添加剂处理2 h的性控冻精活率、顶体完整率、高能线粒体活性精子比率均显著升高(P<0.05);经复合添加剂处理4 h的性控冻精活率和顶体完整率均无显著变化(P>0.05),高能线粒体活性精子比率显著升高(P<0.05)。在输精试验中,试验组青年奶牛和头胎奶牛中的受胎率分别为65.22%和48.21%,均显著高于对照组(P<0.05)。【结论】以褪黑素和地诺前列腺素组成的复合添加剂可以促进解冻后奶牛性控冻精精液品质以及青年奶牛和头胎奶牛输精后的受胎率。  相似文献   

17.
试验旨在探究公猪精液冷冻保存对其精子功能的影响。取长白猪的鲜精和优质冻精,用精子分析仪检测精子的运动能力,台盼蓝染色检测精子活率,体外受精(IVF)试验检测卵裂率与囊胚率,采用不同功能检测试剂盒检测冻精和鲜精的顶体完整率、线粒体膜通道孔(MPTP)活性、线粒体膜电位(MMP)、线粒体活性、线粒体氧化应激活性氧(ROS)以及精子DNA完整性,实时荧光定量PCR检测弱精子症相关蛋白基因SMCPTEKT3、DNAH1、TCTE3的表达。结果表明,与猪鲜精相比,猪冻精的活率及活力均显著降低(P<0.05),冻精的顶体完整率也明显下降(P<0.05);冻精的卵裂率和囊胚率显著低于鲜精(P<0.05);精子线粒体功能分析结果显示,冻精的MPTP相对荧光单位值(RFU)、线粒体膜电位荧光比率以及线粒体活性光密度(OD)值均显著低于鲜精(P<0.05);精子线粒体ROS检测发现,冻精的RFU值显著高于鲜精(P<0.05);精子DNA完整性检测结果显示,冻精拖尾率显著高于鲜精(P<0.05);而弱精子症相关蛋白基因的表达与鲜精相比,差异不显著(P>0.05)。综上所述,冷冻导致猪精子活率、活力、线粒体功能、DNA完整性下降,最终使得冷冻精液精子的受精能力降低。  相似文献   

18.
Attempting to contribute to the development of a more objective morphological evaluation of dog spermatozoa, in this study the indices of multiple sperm defects (multiple abnormalities index [MAI]; teratozoospermic index [TZI]; sperm deformity index [SDI]) were calculated following the World Health Organization (WHO) guidelines. In Experiment I, the concordance of MAI, TZI and SDI with the proportions of morphologically normal spermatozoa (MNS) was evaluated in fresh ejaculated spermatozoa (dogs = 47). In Experiment II, the potential role of indices as prognostic values was assessed in spermatozoa of different origin and treatment (fresh ejaculated: n = 6; fresh epididymal: n = 6; frozen‐thawed ejaculated: n = 6) by their correlation with different semen parameters (motility, membrane integrity and acrosome status) and with an in vitro sperm function test. Samples with different proportions of MNS showed different values of SDI, the index that better represented the decline of sperm morphology in both fresh and frozen‐thawed samples (Exp. I and II; p < 0.05). No correlations between indices and semen parameters were observed (Exp. II), but when samples were evaluated collectively, negative correlations (SDI‐motility, p = 0.01; SDI‐acrosome integrity, p = 0.002) were found. Including all the defects of each spermatozoon, SDI might be a useful index during morphological analysis and better discriminates the increase in multiple defects. A more objective morphological evaluation for dog spermatozoa was achieved by the WHO method, and in vitro tests allowed to elucidate the validity of SDI as prognostic indicator of in vitro fertilizing potential.  相似文献   

19.
Cryopreservation process reduces lipids and phospholipids from buffalo bull spermatozoa. It was therefore hypothesized that supplementation of fatty acid to extender may improve the post‐thaw quality of buffalo semen. The objective was to evaluate the effect of arachidic acid supplementation in extender on post‐thaw quality of buffalo bull (Bubalus bubalis) spermatozoa. Semen was collected from three adult Nili‐Ravi buffalo bulls of similar age group with artificial vagina (42°C) for 3 weeks (replicate). Qualified semen ejaculates (n = 18) were split into four aliquots and diluted in triscitric acid extender containing 0.0 (control), 5.0, 10.0 and 20.0 ng/ml at 37°C having approximately 50 × 106 spermatozoa/ml. Diluted semen was cooled to 4°C in 2 h and equilibrated for 4 h at 4°C. Cooled semen was filled in 0.5‐ml straws at 4°C, kept on liquid nitrogen vapours for 10 min and plunged in liquid nitrogen for storage. Thawing of frozen semen was performed after 24 h at 37°C for 30 s. Sperm progressive motility (%) was improved in a dose‐dependent manner by supplementing arachidic acid at 5.0, 10.0 and 20.0 ng/ml compared with control. Structural and functional integrity of sperm plasma membrane (%), number of acrosome‐intact live sperm (%) and sperm chromatin integrity (%) were better (p < 0.05) in extender having 5.0 ng/ml of arachidic acid compared with control. At 10.0 ng/ml, these values did not vary (p > 0.05) from those at 5.0 ng/ml. Further improvement in structural and functional integrity of sperm plasma membrane, number of acrosome‐intact live sperm and chromatin integrity was observed at 20.0 ng/ml of arachidic acid in extender. In conclusion, arachidic acid supplementation in extender improved the post‐thaw quality parameters of cryopreserved Nili‐Ravi buffalo bull spermatozoa. Among the arachidic acid concentrations studied, maximum improvement in post‐thaw semen quality parameters was observed at 20.0 ng/ml.  相似文献   

20.
Artificial insemination (AI) is one of the most widely used reproductive technologies, and there is considerably interest in commercializing this technology in camels. Storage of semen extender frozen (at -20 °C) is of considerable interest to scientists working with camels, as transportation of diluents at refrigeration temperature is not always possible given the hot, arid and remote conditions that dromedary camels exist in. Therefore, this study was conducted to compare the fertility of fresh camel semen, after dilution in fresh or frozen-thawed green buffer (GB), after AI into single and multiple ovulating female camels. No differences were observed in any sperm characteristics (motility, membrane integrity, acrosome integrity or morphology) when semen was diluted in fresh or frozen-thawed GB (p>0.05). Sperm motility was increased by dilution (fresh: 70.7 ± 4.9% and frozen: 68.8 ± 3.1%) compared with the motility of sperm in neat semen (35 ± 2.85%; p<0.05), and sperm motility changed from oscillatory to forward progressive after dilution. Pregnancy rates were higher (p<0.05) for single ovulating camels inseminated with semen diluted in fresh (72.7%) compared with frozen-thawed GB (27.3%), and fertilization rates were also higher (p<0.05) for multiple ovulating camels inseminated with semen diluted in fresh (83.3%) compared with frozen-thawed GB (11.1%). These results clearly demonstrate the detrimental effect of freezing and thawing semen diluent on the fertility of fresh camel semen. However, further studies are required to elucidate the mechanism responsible for this reduction in fertility. Moreover, these results demonstrate that the fertility of fresh camel semen diluted in fresh GB is high enough to be considered commercially viable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号