首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wirtz KW 《Tree physiology》2003,23(3):181-190
Carbon allocation and regulation of specific leaf area (sigma) define key processes underlying the adaptation of plants to varying habitats. In this study, the general principles governing adaptation and a dynamic optimality model of plant adaptation are reviewed. The central new elements of this model are: (i) differential root carbon costs for maintaining a defined nutrient status; (ii) a simple formula for optimal sigma at steady-state as a function of nitrogen (N) status and irradiance; and (iii) generic rules for the time propagation of adapting traits. The model was applied to a large data set compiled by Ingestad et al. (1995) and McDonald et al. (1986a, 1986b) for birch seedlings (Betula pendula Roth) during stationary logarithmic growth and during transient changes in response to a range of irradiances and nutrient supply rates. In the stationary case, large variations in the fraction of leaf dry mass to total dry mass (f(L)), sigma and N concentration were simulated with high accuracy. The independently calibrated model described the temporal response of seedlings following a sharp decrease in N supply, which includes phenomena such as the temporary C accumulation in leaves and damped oscillations in N concentration. Dynamics in sigma were more sensitive to variation in light than in N supply. Nevertheless, adaptive adjustments in f(L), sigma and N concentration were strongly coupled, underlining the relevance of a whole-plant perspective when modeling plant growth and regulation. The high coincidence between model calculations and measured values supports the notion that plant acclimation can be both understood and predicted as a growth-optimizing mechanism.  相似文献   

2.
A model was developed that simulated photosynthesis, growth and allocation in tree seedlings. The model was parameterized with data from experiments on seedlings of sycamore (Acer pseudoplatanus L.), Sitka spruce (Picea sitchensis (Bong) Carr.) and young birch trees (Betula pendula Roth.). In these experiments, CO2 concentration ([CO2]) and nutrient addition rate were varied. Parameters quantifying nutrient uptake, translocation and starch synthesis were fitted, based on data from control treatments. Elevated [CO2] and low-nutrient treatments were then used to test the predicted response of growth and allocation against observations. The model accurately predicted total seedling growth in the elevated [CO2] treatments. A response of growth to elevated [CO2] was seen in the birch and sycamore experiments, but not in the Sitka spruce, because of photosynthetic down-regulation. Predictions of allocation were reasonably accurate in the birch and Sitka spruce experiments, but were notably poorer in the sycamore experiments, possibly because of differences in sink strength between root and shoot. In the birch and sycamore experiments, little change in allocation with elevated [CO2] was observed or predicted. This was ascribed to the relative values of K(Tc) and K(Tn), the translocation coefficients that determine the sensitivity of allocation to carbon and nitrogen uptake rates, respectively. Growth and allocation in the low-nutrient treatments were poorly predicted by the model. In Sitka spruce, it was suspected that the photosynthetic parameters measured in August 1994 had been higher earlier in the season, before nutrients became depleted. In sycamore, the discrepancies were thought to relate to differences in sink strength between root and shoot that could not be described by the model.  相似文献   

3.
Heiskanen  Juha  Rikala  Risto 《New Forests》1998,16(1):27-42
Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth.) seedlings were grown in containers filled with growth media based on medium-textured sphagnum peat, coarse perlite and fine sand. The seedlings were then planted into fine and coarse sandy soils in 2.2 l pots, which were subjected to two water-content treatments (only one for birch). After the seedlings had grown five weeks in a greenhouse, rooting into the surrounding soil and shoot growth were measured. Addition of perlite and sand to peat medium slightly affected rooting; thus suggesting minor effects on seedling establishment. However, nitrogen concentration of the seedlings varied between growth media and correlated positively with rooting into the soil. The particle size and water content of the soil affected considerably rooting of the seedlings. Seedling height at the time of planting did not affect rooting or shoot growth. The fact that the fewest out-grown roots occurred in the dry fine sandy soil, suggests that dry soil together with high strength and resistance to root penetration reduce rooting and water uptake by container seedlings most and may thus cause water and nutrient stresses to seedlings after outplanting.  相似文献   

4.
Scots pine (Pinus sylvestris L.) seedlings of a provenance from northern Sweden were cultivated hydroponically for 7 weeks in a climate chamber. The nutrient solution contained either 2.5 (low-N) or 50 (high-N) mg N l(-1) with other essential elements added in a fixed optimal proportion to the nitrogen. After 5 and 7 weeks, the seedlings were analyzed for growth, total nitrogen and other essential nutrients, protein and free amino acids. Low-N seedlings grew more slowly and had higher root/shoot ratios than high-N seedlings. With respect to total nitrogen, the effect of the lower nutrient supply was mainly on the nitrogen content of the whole plant and the allocation of nitrogen among tissues, not on tissue nitrogen concentration. This was also the case for potassium, phosphorus, calcium and magnesium. The proportions by weight among these macronutrients in the whole seedlings were similar in both nutrient regimes. The proportion and concentration of sulfur were significantly lower in low-N seedlings than in high-N seedlings, because of a lower net uptake of sulfur than of other macronutrients. The shoot, needles and stem of low-N seedlings had higher concentrations of free amino acids and lower concentrations of protein than the shoot, needles and stem of high-N seedlings. Arginine dominated the pool of free amino acids in the low-N seedlings, whereas glutamine predominated in the high-N seedlings. We conclude that Scots pine seedlings accumulated soluble nitrogen as arginine when net protein synthesis was limited by factors other than nitrogen availability. Nutritional imbalance, as revealed by growth characteristics and a suboptimal proportion and concentration of sulfur in the seedlings, probably affected synthesis of S-amino acids, resulting in the diversion of assimilated nitrogen to arginine instead of protein.  相似文献   

5.
Scots pine (Pinus sylvestris L.) seedlings were grown in containers filled with peat, using two different fertilizers and three different fertilizer regimes. Seedling shoot and root growth and shoot content of nitrogen, potassium and phosphorus were followed in the nursery and after outplanting in the field. Attempts to regulate growth rate by an exponential nutrient supply were not successful, but the root/shoot ratio was influenced by the fertilization regime. Internal nitrogen concentration was stable only for seedlings with low relative growth rate, while seedlings with high nutrient supply in the nursery showed strong nutrient dilution in the shoot after planting.  相似文献   

6.
在不同光照梯度(55.44%自然全光照、21.12%自然全光照、3.47%自然全光照和0.86%自然全光照)的人工遮荫条件下,研究了不同光照强度对臭椿Ailanthus altissima幼苗早期生长的影响。结果表明:移栽后约3个月的臭椿幼苗株高、基径、复叶数、主根长、单株叶面积、总干质量、根冠比、相对生长率和净同化率等生长参数均以55.44%自然全光照处理最大,分别为77.30 cm、13.82 mm、17.80、67.20 cm、4 852.22 cm2、60.57 g、0.24、49.76×10-3g.d-1和5.62×10-5g.cm-2d-1,而且随着光照强度的减弱而减小。研究结果可为臭椿苗木繁育与造林实践提供参考。  相似文献   

7.
光照强度对青冈栎容器苗生长和生理特征的影响   总被引:4,自引:0,他引:4  
研究不同光照强度(100%,60%,40%,20%,5%透光率)青冈栎容器苗形态和生理特征.结果表明:不同光照强度下,青冈栎容器苗地径、生物量、质量指数等参数差异达显著水平,其值由高到低分别为100%,60%,40%,20%,5%处理.随着透光率的增加,Chla/Chlb,Car/Chl、根质量比、比叶质量呈现上升趋势,色素(Chla,Chlb,Car)含量、比叶面积、叶质量比呈现下降趋势.遮荫明显增加青冈栎叶片电子传递的量子效率(ΦPSⅡ)和光化学猝灭系数(qP),全光照处理青冈栎叶片ΦPSⅡ只有0.131,而5%光强的处理中叶片ΦPSⅡ达到0.701,5%光强的处理中叶片qP为0.925,全光照下的处理中叶片qP为0.32.遮荫降低非光化学猝灭系数(NPQ),全光照处理青冈栎叶片非光化学猝灭系数NPQ为2.54,而5%透光率处理非光化学猝灭系数为0.16.随着透光率的提高,青冈栎叶片丙二醛( MDA)含量呈现下降趋势,游离脯氨酸含量(Pro)呈上升趋势.青冈栎为喜阳性树种,但也具有耐荫性.  相似文献   

8.
Potassium (K) and magnesium (Mg) are essential macro-nutrients, but little is known about how they are cycled within plants. Stable isotope studies have shown that the internal cycling of nitrogen (N) is independent of current nutrient supply in temperate tree species. This is ecologically significant because it allows trees to produce rapid shoot growth in spring independent of current soil N uptake. We used stable isotopes to quantify N, K and Mg in new shoots of Sitka spruce (Picea sitchensis (Bong.) Carr.) seedlings and to compare the relative contributions from current uptake and internal cycling. Two-year-old Sitka spruce seedlings were labeled with (15)N, (41)K and (26)Mg in an abundant or a limited supply for one growing season. The trees were repotted in the subsequent dormant season to prevent further root uptake of enriched isotopes and provided with an abundant or a limited supply of unlabeled nutrients until they were harvested in early summer of the following year. The supply was switched for half the trees in the second year to create four nutrient regimes. Enrichment of (15)N, (41)K and (26)Mg in current-year growth was attributed to internally cycled N, K and Mg uptake from the previous year. The internal cycling of N, K and Mg in new growth was significantly affected by the first-year nutrient treatments. The second-year nutrient supply affected the growth rates of the trees, but had no effect on the amounts of N, K or Mg contributed from internal cycling. Thus, internal cycling of K and Mg in Sitka spruce are, like that of N, independent of current nutrient supply.  相似文献   

9.
In a 4-year study, we investigated changes in leaf physiology, crown morphology and whole-tree biomass allocation in seedlings and saplings of shade-tolerant sugar maple (Acer saccharum Marsh.) and intermediate shade-tolerant yellow birch (Betula alleghaniensis Britt.) growing in natural understory light (0.5 to 35% of full sunlight) or in understory light reduced by 50% with shade nets to simulate the effect of gap closure. Leaf physiological parameters were mainly influenced by the light gradient, whereas crown morphological and whole-tree allocational parameters were mainly influenced by tree size. No single physiological, morphological or allocational trait was identified that could explain the difference in shade tolerance between the species. Yellow birch had higher growth rates, biomass allocation to branches and leaf physiological plasticity and lower crown morphological plasticity in unmodified understory light than sugar maple. Sugar maple did not display significant physiological plasticity, but showed variation with tree size in both crown morphology and whole-tree biomass allocation. When sugar maple was small, a greater proportion of whole-tree biomass was allocated to roots. However, physiological differences between the species decreased with decreasing light and most morphological and allocational differences tended to disappear with increasing tree size, suggesting that many species differences in shade-tolerance are expressed mainly during the seedling stage. Understory trees of both species survived for 4 years under shade nets, possibly because of higher plasticity when small and the use of stored reserves when taller.  相似文献   

10.
Betula alnoides is a fast-growing hardwood species grown in large plantations in Southeast Asia and South China. Nitrogen requirements for producing robust seedlings, growth and nutrient dynamics were investigated using exponential fertilization treatments. Root collar diameter, height, dry mass and nutrient contents of seedlings increased exponentially in all fertilization treatments as time progressed. Moreover, with water soluble fertilizer (Plant Products plus microelements N–P2O5–K2O: 20–20–20), 300 mg N seedling?1 was adequate. Vector analysis revealed that P was the most responsive nutrient element, followed by N and K. Dilutions of N and K were evident in the plants without N addition, which induced initial P sufficiency and then luxury consumption probably due to the antagonistic interaction between N and P. However, deficiencies of N, P and K were mostly observed in all exponential regimes during the experiment because seedling growth rate exceeded nutrient uptake rate, inferring that further study on improving the nutrient uptake efficiency is needed. Analysis of relationships among nutrient supply, dry mass, N content and N concentration demonstrated that 100–400 mg N seedling?1 induced sufficiency to luxury consumption of nitrogen without significant change in dry mass, and 400 mg N seedling?1 is recommended to apply for nutrient loading of seedlings before outplanting. The findings will help improve seedling quality and enhance the production of robust seedlings for plantation forestry of this species.  相似文献   

11.
Seedlings of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) and western red cedar (Thuja plicata J. Donn ex D. Don) were grown at high (250 mg l(-1)) and low (20 mg l(-1)) nitrogen (N) supply for a year. Before the second growing season, half of the seedlings in each nutrient treatment were allocated to the other treatment. Half of the seedlings in each nutrient treatment then had all growing points removed. Biomass and N, phosphorus (P) and potassium (K) concentrations of old and new shoots and roots were measured three times in the second year to test the interaction of current-year and previous-year nutrient supply on biomass and nutrient allocation in these two species with different growth habits. Pruned seedlings served as controls. Unpruned seedlings of both species increased in height throughout the second growing season, except for Douglas-fir in the N250 --> N20 treatment. Repeated pruning did not prevent new shoot growth, but resulted in a 12 to 52% reduction in biomass of new shoots and new and old roots. Seedlings receiving a low N supply in the first growing season were more severely affected by pruning than seedings receiving a high N supply. Growth was reduced more by pruning in western red cedar than in Douglas-fir. Concentrations of N, P and K were higher in pruned seedlings than in unpruned seedlings. Although dry weights of all plant parts in all treatments increased throughout the second growing season, some retranslocation of N, P and K was observed from old shoots of both species in the N250 --> N20 and N20 --> N20 treatments after August. Quantities of N, P and K retranslocated were greatest in seedlings grown the previous year in the high-N treatment.  相似文献   

12.
Red pine seedlings were grown for 16 weeks under contrasting fertilizat (conventional, exponential) and moisture (wet, moist, dry) regimes to assess preconditioning effects of treatments on biomass production, nutrient uptake and allocation, and water relations. Growth, nutrient status, and water relations were affected more by moisture availability than by fertilization regime. Exponential fertilization under limited irrigation lowered shoot/root mass ratio, increased root nutrient reserves, and enhanced drought avoidance compared to conventional fertilization regimes. Drought treatments decreased nutrient uptake in the shoots of both fertilization regimes by 24%, but increased nutrient accumulation in the roots by 39% in the exponential regime compared to 17% in the conventional. These results may explain improved outplanting performance noted for exponentially fertilized container stock.  相似文献   

13.
Containerized red pine (Pinus resinosa Ait.) seedlings were grown over a 16-week rotation at different irrigation treatments to assess moisture stress on plant growth and nutrition, and to evaluate container capacity as a guide for irrigation. Wet, moist and dry moisture regimes were induced by watering trees to the container capacity weight of the growing medium after declining to respective 92, 73 and 57% of this reference weight. The seedlings received the same amount of fertilizer over the growth period. Maximum shoot and root growth was attained under the wet moisture regime, but biomass was reduced 21 and 43% for the moist and dry regimes. Plant nutrient concentrations were not significantly affected by watering treatment, and vector diagnosis of dry matter production and element composition indicated that macronutrients were non-limiting. Seedling nutrient uptake however, was significantly diminished by moisture stress which was attributed to decreased root growth and lower mass flow and diffusion of nutrients when moisture availability was reduced in the peat rooting media. Container capacity was found to be a sensitive reference for judging the watering requirements of greenhouse-grown containerized seedlings. The method can be relatively easily applied on an operational basis.  相似文献   

14.
Gardiner ES  Krauss KW 《Tree physiology》2001,21(15):1103-1111
Two-year-old cherrybark oak (Quercus pagoda Raf.) seedlings raised in full or partial (27%) sunlight were flooded for 30 days to study the effects of light availability and root inundation on photosynthetic light response. Compared with seedlings receiving full sunlight, seedlings receiving partial sunlight developed leaves with 90% greater blade area, 26% less mass per unit volume, and 35% lower nitrogen (N) concentration per unit area, leading to a 15% reduction in leaf photosynthetic capacity when carbon exchange rates were based on blade area. However, when carbon exchange rates were based on leaf mass, leaves acclimated to partial sunlight exhibited a 15% greater photosynthetic capacity realized primarily through an increased initial slope of the photosynthetic light response (A/PPFD) curve and increased net photosynthesis at leaf saturation (Amax). Short-term flooding increased leaf mass per unit area more than 19%, reduced foliar N concentrations per unit dry mass by 19%, and initiated reductions in Amax and apparent quantum yield (phi) of seedlings in both light regimes. Greatest impairment of Amax (56% area basis, 65% mass basis) and phi (40%) were observed in leaves receiving full sunlight, and the declines were concomitant with a 35% decrease in chlorophyll concentration. Flooding also depressed instantaneous photosynthetic N-use efficiency (PPNUE) such that Amax decreased 54%, and the initial slope of PPNUE/PPFD curves decreased 33 and 50% for leaves acclimated to partial and full sunlight, respectively. The A/PPFD patterns indicated that the magnitude of flood-induced inhibition of the photosynthetic mechanism of cherrybark oak seedlings is determined partly by the light environment.  相似文献   

15.
One-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were grown hydroponically in a growth chamber to investigate the effects of low and high nutrient availability (LN; 0.25 mM N and HN; 2.50 mM N) on growth, biomass allocation and chemical composition of needles, stem and roots during the second growing season. Climatic conditions in the growth chamber simulated the mean growing season from May to early October in Flakaliden, northern Sweden. In the latter half of the growing season, biomass allocation changed in response to nutrient availability: increased root growth and decreased shoot growth led to higher root/shoot ratios in LN seedlings than in HN seedlings. At high nutrient availability, total biomass, especially stem biomass, increased, as did total nonstructural carbohydrate and nitrogen contents per seedling. Responses of stem chemistry to nutrient addition differed from those of adult trees of the same provenance. In HN seedlings, concentrations of alpha-cellulose, hemicellulose and lignin decreased in the secondary xylem. Our results illustrate the significance of retranslocation of stored nutrients to support new growth early in the season when root growth and nutrient uptake are still low. We conclude that nutrient availability alters allocation patterns, thereby influencing the success of 2-year-old Norway spruce seedlings at forest planting sites.  相似文献   

16.
Aphalo  P.J.  Rikala  R.  Sánchez  R.A. 《New Forests》1997,14(3):167-177
The objective of the experiment described here was to assess the effect of the synthetic growth regulator CCC on the quality of containerised silver birch seedlings. The time course of stem elongation during the growing season, the morphology and size of the seedlings at the end of the growing season, and the growth potential after winter storage were measured and the following results obtained: (1) Stem height, root-collar diameter and total dry weight of the seedlings were decreased by CCC. (2) Stem-height:root-collar-diameter ratio was slightly decreased and root weight ratio was increased by CCC. (3) Stem flexibility was not significantly affected by CCC, although it was significantly correlated with total plant dry weight and with the stem-height:root-collar-diameter ratio. (4) Root-growth potential was decreased at high doses of CCC while shoot growth potential was not affected.  相似文献   

17.
Cai ZQ  Poorter L  Han Q  Bongers F 《Tree physiology》2008,28(8):1277-1285
Lianas differ from trees in many life history characteristics, and we predicted that they are phenotypically more responsive to environmental variation than trees. We analyzed responsiveness to light and nutrient availability of five Bauhinia species (three lianas and two trees). Seedlings were grown in a shade house in two light regimes (5 and 25% of full sunlight) and two nutrient supply regimes (field soil and N fertilization equivalent to 100 kg ha(-1)), and important growth-related physiological and morphological plant parameters were measured. Light availability affected most of the measured variables, whereas N addition had only weak effects. In the four light-demanding species (two lianas and two trees), relative plant biomass growth rate increased and specific leaf area (SLA) decreased with increased light availability, whereas a shade-tolerant liana did not respond. Leaf N concentration and light-saturated photosynthetic rate per unit leaf area increased in response to increased irradiance or soil N in the light-demanding tree species and the shade-tolerant liana, but not in the two light-demanding lianas. The light-demanding lianas also had higher SLA and leaf mass ratio, resulting in a higher leaf area ratio (LAR) in high light, whereas the light-demanding trees did not. Across all treatments, mean plasticity indices of physiological and morphological traits, and all traits combined were similar among the studied species. Plasticity was higher in response to light than to N, indicating that light is the main factor controlling seedling responses of the studied species. Although lianas and trees did not differ in mean plasticity in response to light and N, the light-demanding lianas were phenotypically less plastic in LAR and in photosynthetic rates and biomass allocation than the trees. Light and N interacted in their effects on most physiological variables, but the consequences for relative growth rate differed little among species. We conclude that, contrary to our predictions, lianas were no more responsive to variation in light and N availability than trees.  相似文献   

18.
Abstract

Exponential nutrient loading has been used to improve nursery fertilizer uptake efficiency of conifer seedlings, but the technique has received little attention in the culture of temperate deciduous hardwoods. This study examined responses of northern red oak (Quercus rubra L.) and white oak (Q. alba L.) seedlings to modified exponential nitrogen loading during bareroot nursery culture using a broad range of nutrient supply from 0 to 3.35 g nitrogen (N) per plant per season for 18 weeks in Indiana, USA. Seedling growth and nutritional parameters followed a curvilinear pattern that ranged from deficiency to toxicity with increased fertilization consistent with trends depicted in the proposed model for nutrient loading. Fertilization increased plant dry mass by 113–260% for red oak and 49–144% for white oak. Severe nutrient deficiency occurred under indigenous soil fertility, and limited phosphorus and potassium uptake were found to inhibit seedling growth at higher N supply. The sufficiency and optimum rates were determined to be 0.84 and 1.68 g N per seedling per season, respectively, under the current cultural conditions. Fertilization at 1.68 g N per plant increased N content by 40% in red oak and 35% in white oak. This approach may be used to help refine nursery fertilization practices in hardwood culture to produce high-quality seedlings for field planting.  相似文献   

19.
Aphalo PJ  Rikala R 《Tree physiology》2006,26(9):1227-1237
Silver birch (Betula pendula Roth) seedlings were grown individually in containers arranged in rows radiating from a central point (Nelder plot) at densities spanning the range from 207 to 891 plants m(-2). Height of one set of seedlings was measured at weekly intervals and additional seedlings were harvested each week for dry mass and leaf area measurements. Height and shoot:root dry mass ratio increased with plant density. Seedling-to-seedling variability in dry mass, but not height, increased with increasing plant density. The red to far-red (R:FR) photon ratio in horizontally propagated radiation decreased with increasing density, even when plant densities and leaf area index values were low. In a separate experiment, elongating internodes of seedlings were irradiated locally by red and far-red light emitting diodes and stem elongation measured. Far-red light markedly increased stem elongation, suggesting that changes in light quality sensed by growing internodes are involved in the observed responses to growth density.  相似文献   

20.
Grassi G  Minotta G 《Tree physiology》2000,20(10):645-652
Norway spruce seedlings (Picea abies Karst.) were grown in low light for one year, under conditions of adequate and limiting nutrition, then transferred to high light. Three months after transfer we measured photosynthesis, leaf nitrogen concentration, leaf chlorophyll concentration and leaf mass per area (LMA) of current-year and 1-year-old shoots; silhouette area ratio (SAR, the ratio of shoot silhouette area to projected needle area) was also measured in current-year shoots. At the foliage level, the effects of light and nutrient treatments differed markedly. Light availability during foliage expansion primarily affected LMA and SAR (morphological acclimation at the needle and shoot level, respectively). By contrast, nutrient supply in high light affected photosynthetic capacity per unit of leaf tissue (physiological acclimation at the cellular level) but did not affect LMA and SAR. The capacity for shade-sun acclimation in foliage formed before transfer to high light differed greatly from that of foliage formed following the transfer. The morphological inflexibility of mature needles (measured by LMA) limited their shade-sun acclimation potential. In contrast, at high nutrient supply, shoots that developed just after the change in photosynthetic photon flux density largely acclimated, both morphologically and physiologically, to the new light environment. The acclimation response of both current- and 1-year-old shoots was prevented by nutrient limitation. Analysis of growth at the whole-plant level largely confirmed the conclusions drawn at the shoot level. We conclude that nutrient shortage subsequent to the opening of a canopy gap may strongly limit the acclimation response of Norway spruce seedlings. Successful acclimation was largely related to the plant's ability to produce sun foliage and adjust whole-plant biomass allocation rapidly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号