首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 81 毫秒
1.
During summer 2001, leaf samples were collected from seven beech stands that are part of the Italian network of permanent monitoring plots (CONECOFOR). In each plot, sun leaves from the upper crown were collected from five trees and subjected to chemical analysis (C, N, P, S, K, Ca and Mg) and morphological analysis (area, dry mass, thickness and thickness of individual tissues). Based on the measurements, nutrient ratios (N/C, N/K, N/P, N/Ca, N/Mg, K/Ca, Mg/Ca), sclerophylly indices (leaf mass per area (LMA) and leaf density (LD)) and nitrogen content per leaf area unit (NLA) were determined. Stomatal density was also measured. Among stands, leaf area was smallest and sclerophylly (indicated as LMA) was greatest in the southernmost stands and under drought conditions. Reduced leaf area and increased LMA also appeared to be strongly related to tropospheric ozone concentrations, whereas crown transparency was related mainly to site factors such as rainfall and temperature and, to a lesser extent, ozone concentration. The southernmost stands had a lower N/C ratio than the more northern stands, suggesting that the apoplastic fraction of cells within the leaf played a greater role. In the northern stands (especially at Lombardy and in Piedmont) where ozone concentrations were high, nutrient ratios were unbalanced and the high value of LMA appeared to be related primarily to the contribution of plasmatic components. Overall, leaf morphology was most sensitive to climate stress at the southern plots and to environmental pollution (nitrogen deposition and tropospheric ozone concentration) at some of the northern plots.  相似文献   

2.
Liu X  Tyree MT 《Tree physiology》1997,17(3):179-185
Soil and root characteristics were contrasted between a "declining" and a "healthy" sugar maple (Acer saccharum Marsh.) stand in Vermont, USA. The declining stand had lower basal area increment and more crown dieback than the healthy stand. Soil pH and base cation content were lower and soil water content was higher at the site of the declining stand than at the site of the healthy stand, whereas soil temperature did not differ significantly between the sites. In live fine roots, concentrations of K and Ca were marginally (P < 0.07) lower in the declining than in the healthy stand, whereas concentrations of N, P, Mg, and Al were not significantly different (P = 0.13 to 0.87) between stands. Starch and soluble sugar concentrations of fine and coarse roots did not differ significantly between stands, indicating that crown dieback did not affect carbohydrate supply to the roots in the declining stand. Throughout the growing season, the standing live and dead root biomass were significantly higher in the declining stand than in the healthy stand, indicating that more carbon was allocated to roots and that root turnover was higher in the declining stand than in the healthy stand.  相似文献   

3.
Raulier F  Bernier PY  Ung CH  Boutin R 《Tree physiology》2002,22(15-16):1147-1156
The spatially inexplicit or functional multilayer models used to predict canopy transpiration or photosynthesis are based on the assumption that closed stands show less functional variability than structural variability, because foliage tends to arrange itself in space to optimize the capture of light. To validate this assumption, we compared the structural and functional properties, and the measured and modeled transpiration fluxes of two sugar maple (Acer saccharum Marsh.) stands of comparable leaf mass but differing in height and diameter distributions. One stand was characterized by a well-developed single-layer canopy, whereas the other stand had a multilayered canopy and a stem diameter distribution of the classical inverse-J shape. Stand differences in height and diameter distribution, and canopy gap fraction, were highly significant. There were minor but significant differences in leaf mass and leaf mass per unit leaf area (LMA) distributions. We found no differences in tree-level relationships between basal area and either transpiration flux or sapwood area. We compared measurements of stand transpiration with transpiration estimates obtained from a multilayer gas exchange model, in which only the nonspatial inputs, leaf area index and LMA frequency distribution described stand structure. For both stands, modeled values of daily transpiration closely followed measured values (r(2) = 0.94). These results support use of the nonspatially explicit approach to estimating canopy gas exchange, especially if the intent is to scale-up to larger portions of the landscape.  相似文献   

4.
Liang N  Tang Y  Okuda T 《Tree physiology》2001,21(14):1047-1055
Cuttings of the southeast Asian tropical rain forest tree species, Pongamia pinnata (L.) Pierre were raised in growth chambers providing a photosynthetic photon flux density (PPFD) of 60 micromol m(-2) s(-1) with either a low or a high red:far-red light ratio (LR and HR, repectively). The chambers were supplied with air containing CO(2) at a concentration of either 400 (LR4 and HR4, respectively) or 800 micromol mol(-1) (HR8 and LR8, respectively). After 4 months, leaf morphology and photosynthetic characteristics were determined. Relative to HR4, the LR4 treatment increased leaf area and total chlorophyll concentration (Chl) by 24 and 25%, respectively, but reduced leaf mass per unit area (LMA) by 19%. Elevated [CO(2)] significantly increased leaf area and LMA but did not affect Chl of LR or HR plants. Leaf nitrogen concentration was unaffected by the red:far-red light ratio but decreased significantly in seedlings in the elevated [CO(2)] treatment. Photosynthesis measured in situ under the growth conditions of ambient light and [CO(2)] (A(amb)) was 30% lower on an area basis and 14% lower on a mass basis in LR4 plants than in HR4 plants. Elevated [CO(2)] reduced the activity of ribulose-1,5-bisphosphate carboxylase/oxygenase and thus decreased light-saturated photosynthetic rate in both HR and LR plants. Elevated [CO(2)] increased mean leaf area and decreased respiration rates in both LR and HR plants. The LR8 plants had significantly higher A(amb) than LR4 plants, but similar A(amb) to HR8 plants.  相似文献   

5.
不同林龄樟子松叶片养分含量及其再吸收效率   总被引:28,自引:0,他引:28  
树木叶片的养分再吸收效率能够反映树木对养分保存、利用以及对养分贫瘠环境的适应能力。以科尔沁沙地东南缘章古台地区樟子松人工林为研究对象,分析了11、20、29、45年生树木叶片的基本特征、养分含量及其再吸收效率。结果表明:叶片衰老后其质量和面积明显减少;叶片凋落前的平均养分含量没有表现出随樟子松年龄增加而出现有规律的变化;凋落叶片中的N、P、K、Mg含量表现出随年龄增加而增加的趋势,而Ca的趋势与之相反;11年生和20年生的樟子松叶片N、P、K的再吸收效率相似,都显著高于29年生和45年生樟子松(P<0.05),而樟子松叶片对Mg的再吸收效率表现出随年龄增大而显著降低,Ca随叶片的衰老而不断累积,再吸收效率表现为负值,20年生的樟子松叶片Ca再吸收效率最大,11年生和45年生最低。樟子松叶片的N、P、K、Mg养分再吸收效率随年龄增加而降低的趋势表明,随年龄增加樟子松对贫瘠养分生境的适应能力逐渐降低,反映了樟子松养分保存方面的衰退特征。  相似文献   

6.
Long-term (40 years) effects of two soil amelioration techniques [NPKMgCa fertilization + liming; combination of PKMgCa fertilization, liming, tillage, and introduction of lupine (Lupinus polyphyllus L.)] on chemical topsoil properties, stand nutrition, and stand growth at two sites in Germany (Pfaffenwinkel, Pustert) with mature Scots pine (Pinus sylvestris L.) forest were investigated. Both sites are characterized by base-poor parent material, historic N and P depletion by intense litter-raking, and recent high atmospheric N input. Such sites contribute significantly to the forested area in Central Europe. Amelioration resulted in a long-term increase of pH, base saturation, and exchangeable Ca and Mg stocks in the topsoil. Moreover, significant losses of the forest floor in organic carbon (OC) and nitrogen stocks, and a decrease of the C/N ratio in the topsoil were noticed. The concentrations and stocks of OC and N in the mineral topsoil increased; however, the increases compensated only the N, but not the OC losses of the forest floor. During the recent 40 years, the N nutrition of the stands at the control plots improved considerably, whereas the foliar P, K, and Ca concentrations decreased. The 100-fascicle weights and foliar concentrations of N, P, Mg, and Ca were increased after both amelioration procedures throughout the entire 40-year period of investigation. For both stands, considerable growth acceleration during the recent 40 years was noticed on the control plots; the amelioration resulted in an additional significant long-term growth enhancement, with the NPKMgCa fertilization liming + being more effective than the combination of PKMgCa fertilization, liming, tillage, and introduction of lupine. The comprehensive evaluation of soil, foliage, and growth data revealed a key relevance of the N and P nutrition of the stands for their growth, and a change from initial N limitation to a limitation of other growth factors (P, Mg, Ca, and water).  相似文献   

7.
Foliar mineral concentration may provide a basis for monitoring the consequences of long-term environmental changes, such as eutrophication and acidification of soils, or increase in atmospheric CO(2) concentration. However, analytical drifts and inter-tree and year-to-year variations may confound environmental effects on long-term changes in foliar mineral concentration. We have characterized the relative effects of these potentially confounding factors on foliar carbon, nitrogen, phosphorus, calcium, potassium, magnesium and manganese concentrations in 118 pure beech (Fagus sylvatica L.) stands, sampled in 1969-71 and 1996-97. Interannual fluctuations of these elements were quantified in a subset of six beech stands monitored for 5 years. Intercalibration between the methods used at each sampling period for nitrogen and phosphorus analyses showed significant, but low, relative differences (0.8 and 3.3% for N and P, respectively). Based on inter-tree variability, elements could be arranged in four groups: C (constant), N and P (low variability), K and Ca (medium variability), Mn and Mg (high variability). Inter-tree coefficients of variation were 2, 6, 8, 15, 18, 22 and 27%, respectively. Year-to-year fluctuations increased in the order N, P, Mg, K, Ca, and Mn coefficients of variation of 4, 4, 7, 9, 11, 15 and 29%, respectively). Between the two sampling periods, foliar N concentration increased 12%, whereas decreases were observed for P (-23%), Mg (-38%) and Ca (-16%). Ratios of N/P, N/K and N/Mg increased by 42, 19 and 77%, respectively. These changes were larger than the interannual variations for P, Mg, N/P, N/Mg and Mg/Ca. Decreasing concentrations of P and cations were particularly marked for trees growing on acidic soils, whereas the positive N trend did not depend on soil type. Both increasing atmospheric CO(2) concentrations and acidification of forest soils could contribute to decreasing P and cation concentrations in foliage. The increase in foliar N concentration with time suggests a nitrogen deposition effect. Whatever the causes of these changes, the large shift in element ratios indicates an accelerating imbalance between nitrogen and cation status.  相似文献   

8.
We examined Pinus aristata Engelm. stands in four locations in Colorado: Almagre Mountain, Black Mountain, Goliath Peak and Quartzville. All stands are located at 3200-3700 m and face south-southeast. We measured maximum mass-based assimilation rates (A(max)) and nitrogen (N) and phosphorus (P) foliar concentrations on six foliar age classes, from which instantaneous photosynthetic N- and P-use efficiencies (PNUE and PPUE, respectively) and P:N ratios were estimated. Leaf mass per area (LMA) was also determined for each foliar age class from each site. Foliar age, P and N concentrations, and the P:N ratio explained the most variation in A(max) when data from all sites were combined. Leaf mass per area did not vary with foliar age class. Both P and N limit A(max), although P appears to be more limiting. The critical P:N ratio is approximately 0.12. Results for Black Mountain differed from the other sites, as A(max) was not correlated with age and was negatively correlated with LMA and P. Current findings showed no evidence of N saturation at the Front Range sites (Almagre Mountain and Goliath Peak); however, because P is a limiting nutrient, increased anthropogenic N availability at sites in the Front Range may cause adverse effects on photosynthesis, and perhaps growth, in the future.  相似文献   

9.
Despite its recent expansion in eastern US forests, red maple (Acer rubrum L.) generally exhibits a low leaf photosynthetic rate, leaf mass per unit area (LMA) and leaf nitrogen concentration ([N]) relative to co-occurring oaks (Quercus spp.). To evaluate these differences from the perspective of leaf energy investment, we compared leaf construction cost (CC) and leaf maintenance cost (MC) with leaf photosynthetic rate at saturating photon flux density and ambient CO2 partial pressure (Amax) in red maple and co-occurring red oak (Quercus rubra L.) and chestnut oak (Quercus prinus L.). We also examined relationships among leaf physiological, biochemical and structural characteristics of upper-canopy leaves of these three species at lower (wetter) and upper (drier) elevation sites of a watershed in the Black Rock Forest, Cornwall, NY, USA. Although A(max), leaf [N], leaf carbon concentration ([C]) and LMA were significantly less in red maple than in either oak species at both sites, CC per unit leaf area of red maple was 28.2 and 35.4% less than that of red oak at the lower and upper site, respectively, and 38.8 and 32% less than that of chestnut oak at the lower and upper site, respectively. Leaf MC per unit leaf area, which was positively associated with leaf CC (r2 = 0.95), was also significantly lower in red maple than in either oak species at both sites. When expressed per unit leaf area, A(max) was positively correlated with both CC (r2 = 0.65) and MC (r2 = 0.59). The cost/benefit ratio of CC/Amax of red maple was significantly less than that of chestnut oak at the lower site, however, CC/A(max) did not exhibit any significant interspecific differences at the upper site. Expressed per unit leaf area, CC was correlated positively with LMA (r2 = 0.90), leaf [N] (r2 = 0.97), and leaf [C] (r2 = 0.89), and negatively correlated with leaf molar carbon to nitrogen ratio (r2 = 0.92). Combined with red maple's general success in many oak-dominated forests, our findings suggest that reduced leaf-level photosynthetic capacity and related leaf characteristics in red maple are partially balanced by lower energy and resource requirements for leaf biomass construction and maintenance, which could enhance the competitive success of this species.  相似文献   

10.
Differences in sensitivity to soil conditions across tree species and developmental stage are important to predicting forest response to environmental change. This study was conducted to compare elemental concentrations in leaves, stems, and roots of (1) sugar maple (Acer saccharum Marsh.) seedlings vs. mature trees and (2) mature sugar maple vs. mature American beech (Fagus grandifolia Ehrh.) in two sites that differ in soil base saturation and pH. Both sites are located in Huntington Forest, NY, USA; one site (hereafter ‘H’) has higher soil pH and Ca, Mg, and Mn concentrations than the other site (hereafter ‘L’). Sugar maple growth at H (14.8 cm2 year−1 per tree) was much greater than at L (8.6 cm2 year−1 per tree), but the growth of beech was not different between the two sites. Leaves, roots, and stem wood of mature beech trees and sugar maple seedlings and mature trees were sampled for nutrient analysis. Foliar Ca, K, and Al concentrations were positively correlated with soil elements, but Mn concentrations were negatively correlated. Sugar maple differed more than beech between sites in foliar K and Mn concentrations. Root Mg and P concentrations reflected soil chemistry differences, in contrast to foliar concentrations of Mg and P, which were indistinguishable between the sites. In sugar maple, seedlings differed more than in mature trees in nutrient concentrations in roots, especially for Mg and Mn. Although beech was not as responsive to nutrient availability as sugar maple in foliar and root nutrient concentrations, Ca and Mg concentrations in beech wood were higher in H (52% higher for Ca and 68% higher for Mg), while sugar maple did not differ between sites. Sugar maple regeneration failure on acidic soils in the same region is consistent with our finding that sugar maple seedlings were very sensitive to nutrient availability. This sensitivity could ultimately contribute to the replacement of sugar maple by American beech in regions of low pH and base cations if base cation leaching by anthropogenic deposition and tree harvesting continues.  相似文献   

11.
Residual effects, after 5 years, of four site preparation treatments: (1) cut and leave; (2) cut, leave and burn; (3) chop and burn; (4) shear, pile, burn and disk; originally applied in regenerating Pinus taeda L. plantations on three soils in eastern Texas; were evaluated by determining soil bulk density, organic matter, total nitrogen and extractable P, K, Mg, Ca and foliar P, K, Ca and Mg concentrations. By the fifth growing season, surface soil (0–8 cm) properties did not vary significantly except for N and Ca concentrations which were lowest for soils on the shear, pile, burn and disk treatments. Increased N and Ca concentrations for the shear, pile, burn and disk treatment below the 0–8 cm depth indicated the lower surface concentrations were a residual effect of disking. Foliar nutrient concentrations did not differ significantly except for foliar N concentrations which were lower for trees on the shear, pile, burn and disk plots.Residual treatment effects on stand development were evaluated by measuring fifth year stand density, stem diameter at breast height (1.4 m) and total height. Although the parameters were not significantly different, stands on the shear, pile, burn and disk treatment tended to have more stems of larger size than the other treatments.  相似文献   

12.
Cermák J 《Tree physiology》1998,18(11):727-737
Vertical distributions of leaf dry mass (M(d)) and leaf area (A(f)) were related to relative irradiance (I(r); I(r) above the stand = 1) in closed-canopy, old-growth stands of the floodplain forest in southern Moravia composed largely of Quercus, Fraxinus and Tilia species. Foliage area and mass at any given canopy height were converted to solar equivalent leaf area (A(s)) and mass (M(s)) by multiplying actual values at a given level in the canopy by the relative irradiance at that position. Stand leaf area index (LAI) was 5 (7 including shrub and herb layer), and solar equivalent parameters reached about 25% of that amount. In all species, vertical profiles of both relative irradiance and leaf dry mass to area ratio (LMA) were sigmoidal and the two variables were linearly related. The dominant, upper canopy species had a larger proportion of solar equivalent foliage than suppressed understory species. For individual trees of all species, the upper canopy had a larger proportion of solar equivalent foliage than the lower canopy. Light compensation points at both the leaf and whole-tree level were defined according to leaf or tree position, size and structure. I conclude that optimization of A(s) for forest stands may be used as a basis for determining thinning schedules and evaluating tree survival after damage to tree crowns by various factors.  相似文献   

13.
Effects of enhanced nitrogen deposition on nutrient foliar concentrations and net photosynthesis of sugar maple (Acer saccharum Marsh.), American beech (Fagus grandifolia Ehrh) and red spruce (Picea rubens Sarg.) were evaluated at the Bear Brook Watershed in Maine (BBWM). The BBWM is a paired-watershed forest ecosystem study with one watershed treated since 1989 with bimonthly dry ammonium sulfate ((NH4)2SO4) additions at a rate of 25.2 kg N ha−1 year−1, while the other watershed serves as a reference. The (NH4)2SO4 treatment resulted in significant increases in foliar N concentrations for all three species and significant reductions in foliar Ca, Mg and Zn concentrations for American beech and red spruce. Treatment effects on foliar concentrations of other nutrients were not significant in any species. Despite higher N concentrations in all species, only treated sugar maple showed significantly higher photosynthetic rates. The non-response in net photosynthesis to higher foliar N in American beech and red spruce might be attributed to their low foliar Ca and/or Mg concentrations. Higher net photosynthetic rates in sugar maple might be explained by the higher foliar N and by the ability of this species to maintain an adequate Ca and Mg supply. Results suggested that nutrient imbalances due to inadequate supply of Ca and Mg might have counteracted a potential increase in net photosynthesis induced by higher N concentrations in American beech and red spruce.  相似文献   

14.
Foliar mineral contents of hemlock stands in coastal and Cascade Mountain zones of the Pacific Northwest were studied to determine the effect of urea fertilization on foliar nutrients. The results demonstrate that mineral concentrations vary among foliage age classes, stands, and zones. Concentrations of N, P, K, Ca, Mg, Al, Mn, Fe, Cu, Zn and B were significantly higher in the Cascade Mountain stands than in the coastal stands. Urea fertilization significantly increased the N content in all age classes of foliage but reduced the concentrations of P, Ca, Mg, Mn, Fe, Al and B, especially in coastal stands. The poor response of coastal stands to urea fertilization, therefore, is probably due to further reduction in already low foliar levels of essential nutrients other than N.  相似文献   

15.
Factors influencing red expression in autumn foliage of sugar maple trees   总被引:1,自引:0,他引:1  
We evaluated factors influencing the development of autumn red coloration in leaves of sugar maple (Acer saccharum Marsh.) by measuring mineral nutrient and carbohydrate concentrations, water content, and phenology of color development of leaves from 16 mature open-grown trees on 12 dates from June through October 1999. Mean foliar nutrient and carbohydrate concentrations and water content were generally within the range published for healthy sugar maple trees. However, foliar nitrogen (N) concentrations were near deficiency values for some trees. The timing and extent of red leaf coloration was consistently correlated with both foliar N concentrations and starch or sugar concentrations, which also varied with N status. Leaves of trees with low foliar N concentrations turned red earlier and more completely than those of trees with high foliar N concentrations. Low-N trees also had higher foliar starch concentrations than high-N trees. During the autumn development of red leaf coloration, foliar starch, glucose and fructose concentrations were positively correlated with red leaf color expression. At peak red expression, the concentrations of glucose, fructose, sucrose and stachyose were all positively correlated with red color expressed as a percent of total leaf area.  相似文献   

16.
Concentrations of foliar N, P, S, K, Ca, and Mg were studied in relation to stand age, tree growth, site index, and soil nutrient amounts for natural white spruce stands on a wide range of site conditions in the sub-boreal spruce zone of British Columbia, Canada. While Ca was sufficient in every sampled stand, relatively widespread deficiency in N was diagnosed. Deficiencies of other nutrients were diagnosed only on wet to very wet sites. Foliar N, P and K were negatively correlated with stand age and positively correlated with height and diameter growth. White spruce site index was positively correlated with foliar nutrients, and their relationships were quantified using a quadratic function. Foliar nutrients, except Ca, are positively correlated with soil nutrients measured in routine chemical analysis, and their relationships were quantified using Mitscherlich's function. It is recommended that the existing standards need to be modified should they be applied to nutrient diagnosis in natural white spruce stands. These standards appear too high for N and too low for P, K, and Ca.  相似文献   

17.
Specific leaf area (SLA) and leaf area index (LAI) were estimated using site-specific allometric equations for a boreal black spruce (Picea mariana (Mill.) BSP) fire chronosequence in northern Manitoba, Canada. Stands ranged from 3 to 131 years in age and had soils that were categorized as well or poorly drained. The goals of the study were to: (i) measure SLA for the dominant tree and understory species of boreal black spruce-dominated stands, and examine the effect of various biophysical conditions on SLA; and (ii) examine leaf area dynamics of both understory and overstory for well- and poorly drained stands in the chronosequence. Overall, average SLA values for black spruce (n = 215), jack pine (Pinus banksiana Lamb., n = 72) and trembling aspen (Populus tremuloides Michx., n = 27) were 5.82 +/- 1.91, 5.76 +/- 1.91 and 17.42 +/- 2.21 m2 x kg-1, respectively. Foliage age, stand age, vertical position in the canopy and soil drainage had significant effects on SLA. Black spruce dominated overstory LAI in the older stands. Well-drained stands had significantly higher overstory LAI (P < 0.001), but lower understory LAI (P = 0.022), than poorly drained stands. Overstory LAI was negligible in the recent (3-12 years old) burn sites and highest in the 70-year-old burn site (6.8 and 3.0 in the well- and poorly drained stands, respectively), declining significantly (by 30-50%) from this peak in the oldest stands. Understory leaf area represented a significant portion (> 40%) of total leaf area in all stands except the oldest.  相似文献   

18.
Leaf mass per unit area (LMA) and internal leaf anatomy often affect net gas exchange because of their effects on internal CO2 conductance to the site of carboxylation, internal shading, competition for CO2 among carboxylation sites, nitrogen concentration and its partitioning. To evaluate effects of LMA and leaf anatomy on CO2 assimilation, water-use efficiency (WUE) and nitrogen-use efficiency (NUE), we measured LMA, leaf thickness, the thickness of mesophyll components, and gas exchange rates at ambient CO2 concentration in leaves of six woody deciduous and evergreen species with different leaf life spans. In two species, CO2 assimilation was also estimated at saturating CO2 concentrations. There were interspecific differences in all morphological variables studied. Long-lived leaves had higher LMA and were thicker than short-lived leaves. Species with high LMA had low assimilation rates and NUE, both in ambient and saturating CO2 concentrations. Thus, in species with high LMA, assimilation was reduced by non-stomatal limitations, possibly because of a lower allocation of N to the photosynthetic machinery than in species with low LMA. Within a species, thicker leaves tended to have a lower tissue density. In intraspecific comparisons under field conditions, increasing internal air volume had positive effects on WUE, probably because of enhanced internal CO2 conductance to the site of carboxylation. We conclude that, in interspecific comparisons, different patterns of N partitioning strongly influence NUE, whereas in intraspecific comparisons, internal leaf anatomy is a key factor regulating resource-use efficiency.  相似文献   

19.
We used whole-tree, open-top chambers to expose 13-year-old loblolly pine (Pinus taeda L.) trees, growing in soil with high or low nutrient availability, to either ambient or elevated (ambient + 200 micromol mol-1) carbon dioxide concentration ([CO2]) for 28 months. Branch growth and morphology, foliar chemistry and gas exchange characteristics were measured periodically in the upper, middle and lower crown during the 2 years of exposure. Fertilization and elevated [CO2] increased branch leaf area by 38 and 13%, respectively, and the combined effects were additive. Fertilization and elevated [CO2] differentially altered needle lengths, number of fascicles and flush length such that flush density (leaf area/flush length) increased with improved nutrition but decreased in response to elevated [CO2]. These results suggest that changes in nitrogen availability and atmospheric [CO2] may alter canopy structure, resulting in greater foliage retention and deeper crowns in loblolly pine forests. Fertilization increased foliar nitrogen concentration (N(M)), but had no consistent effect on foliar leaf mass (W(A)) or light-saturated net photosynthesis (A(sat)). However, the correlation between A(sat) and leaf nitrogen per unit area (N(A) = W(A)N(M)) ranged from strong to weak depending on the time of year, possibly reflecting seasonal shifts in the form and pools of leaf nitrogen. Elevated [CO2] had no effect on W(A), N(M) or N(A), but increased A(sat) on average by 82%. Elevated [CO2] also increased photosynthetic quantum efficiency and lowered the light compensation point, but had no effect on the photosynthetic response to intercellular [CO2], hence there was no acclimation to elevated [CO2]. Daily photosynthetic photon flux density at the upper, middle and lower canopy position was 60, 54 and 33%, respectively, of full sun incident to the top of the canopy. Despite the relatively high light penetration, W(A), N(A), A(sat) and R(d) decreased with crown depth. Although growth enhancement in response to elevated [CO2] was dependent on fertilization, [CO2] by fertilization interactions and treatment by canopy position interactions generally had little effect on the physiological parameters measured.  相似文献   

20.
A comparison is made between a big-leaf model (i.e., without details of the canopy profile) and two multilayer models (i.e., with details of the canopy profile) to estimate daily canopy photosynthesis of a sugar maple (Acer saccharum Marsh.) stand. The first multilayer model uses the distribution of leaf area by leaf mass per unit area (LMA) classes, the observed relationships between the parameters of a photosynthesis-irradiance curve and LMA, and the relationship between relative irradiance and LMA to estimate canopy photosynthesis. When compared with this model, the big-leaf model underestimates daily canopy photosynthesis by 26% because of an assumed proportionality between photosynthetic capacity and relative irradiance, a proportionality that is inconsistent with our data. The bias induced by this assumption is reduced when the big-leaf model is compared with the second multilayer model which, in addition to the assumptions made for the first multilayer model, accounts for the sunlit and shaded fractions of leaf area. The residual bias is almost eliminated when the big-leaf model is run using a weekly averaged irradiance. It is likely, however, that this is the result of a compensating bias that, in this particular case, compensates for the initial bias introduced by the proportionality assumption. It is also shown that canopy photosynthesis can be represented by spatially inexplicit multilayer models that use leaf mass per area as a covariable to describe leaf characteristics and environment. Such models represent an interesting alternative to the biased big-leaf approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号