首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
alpha-Glucosidase (AGH) inhibitory study by natural anthocyanin extracts was done. As the result of a free AGH assay system, 12 anthocyanin extracts were found to have a potent AGH inhibitory activity; in particular, Pharbitis nil (SOA) extract showed the strongest maltase inhibitory activity, with an IC(50) value of 0.35 mg/mL, as great as that of Ipomoea batatas (YGM) extract (IC(50) = 0.36 mg/mL). Interestingly, neither extract inhibited the sucrase activity at all. For the immobilized assay system, which may reflect the pharmacokinetics of AGH at the small intestine, SOA and YGM extracts gave more potent maltase inhibitory activities than those of the free AGH assay, with IC(50) values of 0.17 and 0.26 mg/mL, respectively. Both extracts also inhibited alpha-amylase action, indicating that anthocyanins would have a potential function to suppress the increase in postprandial glucose level from starch.  相似文献   

2.
Some Sri Lanka plant stuffs were examined regarding in vitro and in vivo alpha-glucosidase (AGH) inhibitory actions. According to the results, water extracts and methanol extracts of dried fruits of Nelli (Phylanthus embelica), methanol extracts of dried flowers of Ranawara (Cassia auriculata), and water extracts of latex of Gammalu (Pterocarpus marsupium) were found to have a potential AGH inhibitory activity. In particular, Ranawara methanol extract showed the strongest AGH inhibitory activity in vitro preferably on maltase giving an IC(50) value of 0.023 mg/mL and inhibited the maltase activity competitively. As a result of single oral administration of Ranawara (C. auriculata) methanol extract in Sprague-Dawley rats, a significant and potent lowering of blood glycemic response toward maltose ingestion was observed at 30 min after dosing of 5 mg/kg, thus, concurrently suppressed insulin activity. The ED(50) of the extract (4.9 mg/kg) clearly indicated that the antihyperglycemic effect was as potent as that of therapeutic drug, acarbose (ED(50) 3.1 mg/kg).  相似文献   

3.
Four diacylated pelargonidin (Pg: SOA-4 and SOA-6), cyanidin (Cy: YGM-3), and peonidin (Pn: YGM-6) 3-sophoroside-5-glucosides isolated from the red flowers of the morning glory, Pharbitis nil cv. Scarlett O'Hara (SOA), and the storage roots of purple sweet potato, Ipomoea batatas cv. Ayamurasaki (YGM), were subjected to an alpha-glucosidase (AGH) inhibitory assay, in which the assay was performed with the immobilized AGH (iAGH) system to mimic the membrane-bound AGH at the small intestine. As a result, the acylated anthocyanins showed strong maltase inhibitory activities with IC(50) values of <200 microM, whereas no sucrase inhibition was observed. Of these, SOA-4 [Pg 3-O-(2-O-(6-O-(E-3-O-(beta-D-glucopyranosyl)caffeyl)-beta-D-glucopyranosyl)-6-O-E-caffeyl-beta-D-glucopyranoside)-5-O-beta-D-glucopyranoside] possessed the most potent maltase inhibitory activity (IC(50) = 60 microM). As a result of a marked reduction of iAGH inhibitory activity by deacylating the anthocyanins, that is, Pg (or Cy or Pn) sophoroside-5-glucoside, acylation of anthocyanin with caffeic (Caf) or ferulic (Fer) acid was found to be important in the expression of iAGH (maltase) inhibition. In addition, the result that Pg-based anthocyanins showed the most potent maltase inhibition, with an IC(50) value of 4.6 mM, and the effect being in the descending order of potency of Pg > Pn/Cy strongly suggested that no replacement at the 3'(5')-position of the aglycon B-ring may be essential for inhibiting iAGH action.  相似文献   

4.
5.
Tea flavonoids have antitopoisomerase activity and can inhibit cell proliferation. The objectives of this study were to determine the phenolic content of yerba mate tea products (MT) (Ilex paraguariensis) and evaluate their capacity to inhibit topoisomerase I (Topo I) and II (Topo II) activities and oral carcinoma cell proliferation. Total polyphenols of aqueous extracts of dried MT leaves were measured by the Folin-Ciocalteau assay, using chlorogenic (CH) and gallic (GA) acids as standards. Topoisomerase inhibition was determined by a clone-forming assay, which uses yeast (Saccharomyces cerevisiae) strains as a model. Controls included dimethyl sulfoxide (1.66%); camptothecin (50 microg/mL), a Topo I inhibitor; and amsacrine (100 microg/mL), a Topo II inhibitor. Cytotoxicity studies were conducted using a nontumorigenic human keratinocyte cell line HaCaT and two human squamous cancer cell lines (SCC-61 and OSCC-3). MT was found to be a rich source of phenolic compounds. Total polyphenol content of various commercially available traditional MT products ranged from 236 to 490 mg equiv of CH/g of dry leaves. Such levels were significantly different among products depending on their origin (P < 0.001). Higher anti-topoisomerase II activity was observed against JN394t(2-4) strain for Nobleza Gaucha MT (IC50 = 0.43 microg equiv of CH) in comparison to GA (IC50 = 112 mM) and CH (IC50 > 1500 mM). MT showed catalytic anti-topoisomerase activity against Topo II but not against Topo I. In addititon, MT exhibited dose-dependent cytotoxicity against all squamous cell lines tested. In comparison to premalignant cell line HaCaT [28 microg equiv of (+)-catechin mL(-1)], the cell line SCC-61 [21 microg equiv of (+)-catechin mL(-1)] was the most sensitive to MT, resulting in 50% inhibition of net cell growth. It is concluded that MT is rich in phenolic constituents and can also inhibit oral cancer proliferation. The effect on cancer cell proliferation may be mediated via inhibition of topoisomerase II. The lack of correlation between polyphenol content and the inhibition of topoisomerases suggests that the effect of MT on topoisomerase inhibition may be due to other still unidentified biologically active phytochemicals constituents.  相似文献   

6.
Anthocyanidins and precursors or related flavonoids were tested at concentrations from 0.3 to 9.7 mM ( approximately 0.1-3.0 mg/mL) for activity against growth and aflatoxin B(1) biosynthesis by Aspergillus flavus Link:Fr. NRRL 3357. Aflatoxin B(1) production was inhibited by all anthocyanidins tested, and 3-hydroxy compounds were more active than 3-deoxy forms. Monoglycosides of cyanidin were 40% less inhibitory than the aglycon, whereas a monoglucoside and a diglucoside of pelargonidin were 80 and 5%, respectively, as active as the aglycon. Of eight flavonoids tested, only kaempferol was moderately active, whereas luteolin and catechin were weakly inhibitory. Binary combinations of delphinidin and three other aflatoxin inhibitors acted independently of each other. Results with an aflatoxin pathway mutant indicated that anthocyanidin inhibition occurred before norsolorinic acid synthesis.  相似文献   

7.
Dimethyl dicarbonate (DMDC) was added to grape must and to synthetic media and results showed that, at 20 degrees C, 150 mg.L(-)(1) DMDC completely inhibited the fermentation of a grape must that was previously inoculated with 10(6) cells.mL(-)(1) Saccharomyces bayanus and Saccharomyces uvarum. Brettanomyces intermedius, Candida guilliermondii, Hansenula jadinii, Hansenula petersonii, Kloeckera apiculata, Pichia membranaefaciens, and Saccharomyces cerevisiae were inhibited by 250 mg.L(-)(1). Candida valida was inhibited in the presence of 350 mg.L(-)(1), whereas Hanseniaspora osmophila, Saccharomycodes ludwigii, Schizosaccharomyces pombe, and Zygosaccharomyces bailii required 400 mg.L(-)(1). Delay of fermentation (but not inhibition) was noted in the presence of 400 mg.L(-)(1) for the following cultures: Brettanomyces anomalus, Hanseniaspora uvarum, Metschnikowia pulcherrima, Schizosaccharomyces japonicus, Torulaspora delbrueckii, and Zygosaccharomyces florentinus. Acetobacter aceti and Lactobacillus sp. were completely inhibited using 1000 and 500 mg.L(-)(1) DMDC, respectively. The fermentation of a grape must inoculated with 10(6) cells.mL(-)(1) of different wine yeasts was delayed for 4 days after the prior addition of 200 mg.L(-)(1) of DMDC; 200 mg.L(-)(1) DMDC did not show any residual inhibitory effect after 12 h, nor did 300 mg.L(-)(1) 24 h after the addition. In cellar experiments, indigenously contaminated grape musts (with and without skins) showed a delay in fermentation of 48 h after the addition of only 50 mg.L(-)(1) DMDC. The possibility of using DMDC (as pure grade as commercially available) in grape must as a disinfectant for the decontamination of musts indigenously contaminated with wild yeast should be considered seriously, despite its apparent low solubility in water.  相似文献   

8.
alpha-Glucosidase inhibitory profile of catechins and theaflavins   总被引:1,自引:0,他引:1  
To clarify the postprandial glucose suppression effect of flavonoids, the inhibitory effects of catechins and theaflavins against alpha-glucosidase (AGH) were examined in this study. It was initially demonstrated that theaflavins and catechins preferentially inhibited maltase rather than sucrase in an immobilized AGH inhibitory assay system. For the maltase inhibitory effects of theaflavins, the effects were observed in descending order of potency of theaflavin (TF)-3-O-gallate (Gal) > TF-3,3'-di-O-Gal > TF-3'-O-Gal > TF. This suggests that the AGH inhibition induced by theaflavins is closely associated with the presence of a free hydroxyl group at the 3'-position of TF as well as the esterification of TF with a mono-Gal group. In addition, the R-configuration at the 3'-position of TF-3-O-Gal showed a higher inhibitory activity than the S-configuration. As a result of a single oral administration of maltose (2 g/kg) in rats, a significant reduction in blood glucose level was observed at a dose of 10 mg/kg of TF-3-O-Gal, demonstrating for the first time that TF-3-O-Gal can suppress glucose production from maltose through inhibition of AGH in the gut.  相似文献   

9.
This study determined the in vitro inhibitory effects of cocoa extracts and procyanidins against pancreatic α-amylase (PA), pancreatic lipase (PL), and secreted phospholipase A(2) (PLA(2)) and characterized the kinetics of such inhibition. Lavado, regular, and Dutch-processed cocoa extracts as well as cocoa procyanidins (degree of polymerization (DP) = 2-10) were examined. Cocoa extracts and procyanidins dose-dependently inhibited PA, PL, and PLA(2). Lavado cocoa extract was the most potent inhibitor (IC(50) = 8.5-47 μg/mL). An inverse correlation between log IC(50) and DP (R(2) > 0.93) was observed. Kinetic analysis suggested that regular cocoa extract, the pentamer, and decamer inhibited PL activity in a mixed mode. The pentamer and decamer noncompetitively inhibited PLA(2) activity, whereas regular cocoa extract inhibited PLA(2) competitively. This study demonstrates that cocoa polyphenols can inhibit digestive enzymes in vitro and may, in conjunction with a low-calorie diet, play a role in body weight management.  相似文献   

10.
The inhibitory activity of Curcuma longa L. (turmeric) rhizome constituents against sortase A, a bacterial surface protein anchoring transpeptidase, from Staphylococcus aureus ATCC 6538p was evaluated. The activity of the isolated compounds (1-4) was compared to that of the positive control,p-hydroxymecuribenzoic acid (pHMB). The biologically active components of C. longa rhizome were characterized by spectroscopic analysis as the curcuminoids curcumin (1), demethoxycurcumin (2), and bisdemethoxycurcumin (3). Curcumin was a potent inhibitor of sortase A, with an IC50 value of 13.8 +/- 0.7 microg/mL. Bisdemethoxycurcumin (IC50 = 31.9 +/- 1.2 microg/mL) and demethoxycurcumin (IC50 = 23.8 +/- 0.6 microg/mL) were more effective than pHMB (IC50 = 40.6 +/- 1.2 microg/mL). The three isolated compounds (1-3) showed no growth inhibitory activity against S. aureus strain Newman, with minimum inhibitory concentrations (MICs) greater than 200 microg/mL. Curcumin also exhibited potent inhibitory activity against S. aureus cell adhesion to fibronectin. The suppression of fibronectin-binding activity by curcumin highlights its potential for the treatment of S. aureus infections via inhibition of sortase activity. These results indicate that curcumin is a possible candidate in the development of a bacterial sortase A inhibitor.  相似文献   

11.
Ethanol extracts from 15 kinds of marine algae collected from the coast of the Noto Peninsula in Japan were examined for their inhibitory effects on human salivary α-amylase. Four extracts significantly suppressed the enzyme activity. An inhibitor was purified from the extract of Sargassum patens . The compound was a new phloroglucinol derivative, 2-(4-(3,5-dihydroxyphenoxy)-3,5-dihydroxyphenoxy) benzene-1,3,5-triol (DDBT), which strongly suppressed the hydrolysis of amylopectin by human salivary and pancreatic α-amylases. The 50% inhibitory activity (IC(50)) for α-amylase inhibition of DDBT (3.2 μg/mL) was much lower than that of commercially available α-amylase inhibitors, acarbose (26.3 μg/mL), quercetagetin (764 μg/mL), and α-amylase inhibitor from Triticum aestivum (88.3 μg/mL). A kinetic study indicated that DDBT was a competitive α-amylase inhibitor with a K(i) of 1.8 μg/mL. DDBT also inhibited rat intestinal α-glucosidase with an IC(50) value of 25.4 μg/mL for sucrase activity and 114 μg/mL for maltase activity. These results suggest that DDBT, a potent inhibitor of carbohydrate-hydrolyzing enzymes, may be useful as a natural nutraceutical to prevent diabetes.  相似文献   

12.
Neuraminidase is a rational target for influenza inhibition, and the search for neuraminidase inhibitors has been intensified. Mimosine, a nonprotein amino acid, was for the first time identified as a neuraminidase inhibitor with an IC(50) of 9.8 ± 0.2 μM. It was found that mimosine had slow, time-dependent competitive inhibition against the neuraminidase. Furthermore, a small library of mimosine tetrapeptides (M-A(1)-A(2)-A(3)) was synthesized by solid-phase synthesis and was assayed to evaluate their neuraminidase and tyrosinase inhibitory properties. Most of the tetrapeptides showed better activities than mimosine. Mimosine-FFY was the best compound, and it exhibited 50% neuraminidase inhibition at a low micromolar range of 1.8 ± 0.2 μM, whereas for tyrosinase inhibition, it had an IC(50) of 18.3 ± 0.5 μM. The kinetic studies showed that all of the synthesized peptides inhibited neuraminidase noncompetitively with K(i) values ranging from 1.9 -to 7.2 μM. These results suggest that mimosine could be used as a source of bioactive compounds and may have possibilities in the design of drugs as neuraminidase and tyrosinase inhibitors.  相似文献   

13.
AIDS and influenza are viral pandemics and remain one of the leading causes of human deaths worldwide. The increasing resistance of these diseases to synthetic drugs demands the search for novel compounds from plant-based sources. In this regard, the leaves and rhizomes of Alpinia zerumbet, a traditionally important economic plant in Okinawa, were investigated for activity against HIV-1 integrase (IN) and neuraminidase (NA). The aqueous extracts of leaves and rhizomes had IN inhibitory activity with IC(50) values of 30 and 188 μg/mL, whereas against NA they showed 50% inhibition at concentrations of 43 and 57 μg/mL, respectively. 5,6-Dehydrokawain (DK), dihydro-5,6-dehydrokawain (DDK), and 8(17),12-labdadiene-15,16-dial (labdadiene) were isolated from the rhizomes and were tested for enzyme inhibitions. DK and DDK strongly inhibited IN with IC(50) of 4.4 and 3.6 μg/mL, respectively. Against NA, DK, DDK, and labdadiene exhibited mixed type of inhibition with respective IC(50) values of 25.5, 24.6, and 36.6 μM and K(i) values ranging from 0.3 to 2.8 μM. It was found that DDK is a slow and time-dependent reversible inhibitor of NA, probably with a methoxy group as its functionally active site. These results suggest that alpinia could be used as a source of bioactive compounds against IN and NA and that DK and DDK may have possibilities in the design of drugs against these viral diseases.  相似文献   

14.
Isolation and identification of the inhibitors of butyrylcholinesterase (BChE), obtained from the extracts of roots and fruits of Angelica archangelica L., are reported. Our results confirmed the weak inhibitory effect of Angelica roots on acetylcholinesterase activity. BChE inhibition was much more pronounced at a concentration of 100 μg/mL for hexane extracts and attained a higher rate than 50%. The TLC bioautography guided fractionation and spectroscopic analysis led to the isolation and identification of imperatorin from the fruit's hexane extract and of heraclenol-2'-O-angelate from the root's hexane extract. Both compounds showed significant BChE inhibition activity with IC(50) = 14.4 ± 3.2 μM and IC(50) = 7.5 ± 1.8 μM, respectively. Only C8-substituted and C5-unsubstituted furanocoumarins were active, which could supply information about the initial structures of specific BChE inhibitors.  相似文献   

15.
Inhibitory effects of oolong tea polyphenols on pancreatic lipase in vitro   总被引:10,自引:0,他引:10  
Fifty-four polyphenols isolated from tea leaves were evaluated for their inhibitory activities against pancreatic lipase, the key enzyme of lipid absorption in the gut. (-)-Epigallocatechin 3-O-gallate (EGCG), which is one of major polyphenols in green tea, showed lipase inhibition with an IC50 of 0.349 microM. Moreover, flavan-3-ol digallate esters, such as (-)-epigallocatechin-3,5-digallate, showed higher activities of inhibition on lipase with an IC50 of 0.098 microM. On the other hand, nonesterified flavan-3-ols, such as (+)-catechin, (-)-epicatechin, (+)-gallocatechin, and (-)-epigallocatechin, showed zero and/or the lowest activities against pancreatic lipase (IC50 > 20 microM). These data suggested that the presence of galloyl moieties within the structure was required for enhancement of pancreatic lipase inhibition. It is well-known that flavan-3-ols are polymerized by polyphenol oxidase and/or heating in a manufacturing process of oolong tea. Oolonghomobisflavans A and B and oolongtheanin 3'-O-gallate, which are typical in oolong tea leaves, showed strong inhibitory activities with IC50 values of 0.048, 0.108, and 0.068 microM, respectively, even higher than that of EGCG. The oolong tea polymerized polyphenols (OTPP) were prepared for the assay from oolong tea extract, from which the preparation effectively subtracted the zero and/or less-active monomeric flavan-3-ols by preparative high-performance liquid chromatography. The weight-average molecular weight (Mw) and number-average molecular-weight (Mn) values of OTPP were 2017 and 903, respectively, by using gel permeation choromatography. OTPP showed a 5-fold stronger inhibition against pancreatic lipase (IC50 = 0.28 microg/mL) by comparison with that of the tannase-treated OTPP (IC50 = 1.38 microg/mL). These data suggested that the presence of galloyl moieties within their chemical structures and/or the polymerization of flavan-3-ols were required for enhancement of pancreatic lipase inhibition.  相似文献   

16.
Inhibitory effects of nine dibenzylbutyrolactone lignans on a human matrix metalloproteinase, matrilysin, were examined. All of the lignans examined inhibited matrilysin with the IC(50) values ranging from 50 to >280 microM. Matairesinol, which has the basic structure of the other lignans, showed the weakest inhibition. Lignans with methylenedioxy ring(s) or a hydroxyl group at the C5-position inhibited matrilysin more strongly than matairesinol. 5-Hydroxypluviatolide, which has both a methylenedioxy ring and a hydroxyl group at the C5-position, was the most potent inhibitor (IC(50) = 50 microM), suggesting that the introduction of these two elements might enhance synergistically the inhibitory activity of lignans. 5-Hydroxypluviatolide inhibited matrilysin in a competitive manner, and its inhibitory effect was greatly suppressed by the presence of another competitive inhibitor, dimethyl sulfoxide. The precursors of matairesinol, coniferyl alcohol and secoisolariciresinol, had no inhibitory activity, indicating that the dibenzylbutyrolactone structure is essential for the inhibition. It has been shown that lignans have the potential to inhibit matrilysin, and the knowledge of their structure-activity relationship might be beneficial to developing selective inhibitors for matrix metalloproteinases.  相似文献   

17.
Crocetin (CRT) and dimethylcrocetin (DMCRT) are derived from crocins which are found in the stigmas of saffron (Crocus sativus L.), while safranal is the main component of saffron's essential oil. The aim of the present study was to examine their interaction with human serum albumin in aqueous solution at physiological conditions using constant protein concentration and various ligand contents. FT-IR and UV-visible spectroscopic methods were used to determine the ligands' binding mode, the binding constant, and the effects of ligand complexation on protein secondary structure. Structural analysis showed that crocetin, dimethylcrocetin, and safranal bind nonspecifically (H-bonding) via protein polar groups with binding constants of Kcrt =2.05 (+/-0.30) x 103 M-1, Kdmcrt = 9.60 (+/-0.35) x 104 M-1, and Ksaf = 2.11 (+/-0.35) x 103 M-1. The protein secondary structure showed no major alterations at low ligand concentrations (1 microM), whereas at higher content (1 mM), decrease of alpha-helix from 55% (free HSA) to 43-45% and increase of beta-sheet from 17% (free HSA) to 18-22% and random coil 7% (free HSA) to 10-14% occurred in the ligand-HSA complexes. The results point to a partial unfolding of protein secondary structure at high ligand content. The antioxidant activity of CRT, DMCRT, and safranal was also tested by the DPPH* antioxidant activity assay, and their IC50 values were compared to that of well-known antioxidants such as Trolox and butylated hydroxy toluene (BHT). The IC50 values of CRT and safranal were 17.8 +/- 1 microg/mL and 95 +/- 1 microg/mL, respectively, while the inhibition of DMCRT reached a point of 38.8%, which corresponds to a concentration of 40 microg/mL, and then started to decrease. The IC50 values of Trolox and BHT were 5.2 +/- 1 microg/mL and 5.3 +/- 1 microg/mL, respectively.  相似文献   

18.
Two monohydroxamates of l-aspartic acid beta-hydroxamate (AAH) and l-glutamic acid gamma-hydroxamate (GAH) were used for testing antioxidant and angiotensin converting enzyme (ACE) inhibitory activities in comparison with those of asparagine and glutamine, respectively. The half-inhibition concentrations, IC(50), of scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) were 36 and 48 microM and against superoxide radicals were 18.99 and 6.33 mM, respectively, for AAH and GAH. However, no activities of asparagine and glutamine were found. AAH and GAH also exhibited activities against peroxynitrite-mediated dihydrorhodamine 123 oxidations and hydroxyl radical-mediated DNA damage. For ACE inhibitory activities, the IC(50) values were 4.92 and 6.56 mM, respectively, for AAH and GAH. The ACE hydrolyzed products on the TLC chromatogram also confirmed the inhibitory activities of the two amino acid hydroxamates on ACE. When 1.23 mM AAH was added, AAH showed competitive inhibitions against ACE, and the apparent inhibition constant (K(i)) was 2.20 mM.  相似文献   

19.
The antiviral activity of methylated alpha-lactalbumin (Met-ALA), methylated and ethylated beta-lactoglobulins (Met- and Et-BLG) was evaluated against acyclovir (ACV)-sensitive and -resistant strains of herpes simplex virus type 1 (HSV-1) and compared to that of ACV and L-polylysines (4-15 kDa) using fixed or suspended Vero cell lines. Esterified whey proteins and their peptic hydrolyzates displayed protective action against HSV-1, which was relatively lower than that induced by ACV or L-polylysines. The higher activity of L-polylysines was maintained against an ACV-resistant strain of HSV-1, whereas ACV lost much of its activity. The mean 50% inhibitory concentration (IC50) was about 0.8-0.9 microg/mL for L-polylysines against ACV-sensitive and -resistant strains of HSV-1 when using two concentrations of virus (50% and 100% cytopathic effect, CPE). The IC50 values of ACV against the sensitive strain of HSV-1 were 3 and 15 microg/mL when using the low and high concentrations of virus, respectively. When using 50% CPE, IC50 values for esterified whey proteins ranged from 20 to 95 microg/mL, depending on the nature of the ester group, the degree of esterification, and the nature of the protein. Using the real-time PCR technique, it was shown that Met-ALA inhibited HSV-1 replication.  相似文献   

20.
One known, (2R)-(12Z,15Z)-2-hydroxy-4-oxoheneicosa-12,15-dien+ ++-1-yl acetate (1), and two novel compounds, persenone A (2) and B (3), have been isolated from avocado fruit (Persea americana P. Mill), as inhibitors of superoxide (O(2)(-)) and nitric oxide (NO) generation in cell culture systems. They showed marked inhibitory activities toward NO generation induced by lipopolysaccharide in combination with interferon-gamma in mouse macrophage RAW 264.7 cells. Their inhibitory potencies of NO generation (1, IC(50) = 3.6; 2, IC(50) = 1.2; and 3, IC(50) = 3.5 microM) were comparable to or higher than that of a natural NO generation inhibitor, docosahexaenoic acid (DHA; IC(50) = 4.3 microM). Furthermore, compounds 1-3 and DHA markedly suppressed tumor promoter 12-O-tetradecanoylphorbol-13-acetate-induced O(2)(-) generation in differentiated human promyelocytic HL-60 cells (1, IC(50) = 33.7; 2, IC(50) = 1.4; 3, IC(50) = 1.8; and DHA, IC(50) = 10.3 microM). It is notable that they were found to be suppressors of both NO- and O(2)(-)-generating biochemical pathways but not to be radical scavengers. The results indicate that these compounds are unique antioxidants, preferentially suppressing radical generation, and thus may be promising as effective chemopreventive agent candidates in inflammation-associated carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号