首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms underlying experience-dependent plasticity in the brain may depend on the AMPA subclass of glutamate receptors (AMPA-Rs). We examined the trafficking of AMPA-Rs into synapses in the developing rat barrel cortex. In vivo gene delivery was combined with in vitro recordings to show that experience drives recombinant GluR1, an AMPA-R subunit, into synapses formed between layer 4 and layer 2/3 neurons. Moreover, expression of the GluR1 cytoplasmic tail, a construct that inhibits synaptic delivery of endogenous AMPA-Rs during long-term potentiation, blocked experience-driven synaptic potentiation. In general, synaptic incorporation of AMPA-Rs in vivo conforms to rules identified in vitro and contributes to plasticity driven by natural stimuli in the mammalian brain.  相似文献   

2.
Activation of N-methyl-d-aspartate subtype glutamate receptors (NMDARs) is required for long-term potentiation (LTP) and long-term depression (LTD) of excitatory synaptic transmission at hippocampal CA1 synapses, the proposed cellular substrates of learning and memory. However, little is known about how activation of NMDARs leads to these two opposing forms of synaptic plasticity. Using hippocampal slice preparations, we showed that selectively blocking NMDARs that contain the NR2B subunit abolishes the induction of LTD but not LTP. In contrast, preferential inhibition of NR2A-containing NMDARs prevents the induction of LTP without affecting LTD production. These results demonstrate that distinct NMDAR subunits are critical factors that determine the polarity of synaptic plasticity.  相似文献   

3.
Ge WP  Yang XJ  Zhang Z  Wang HK  Shen W  Deng QD  Duan S 《Science (New York, N.Y.)》2006,312(5779):1533-1537
Interactions between neurons and glial cells in the brain may serve important functions in the development, maintenance, and plasticity of neural circuits. Fast neuron-glia synaptic transmission has been found between hippocampal neurons and NG2 cells, a distinct population of macroglia-like cells widely distributed in the brain. We report that these neuron-glia synapses undergo activity-dependent modifications analogous to long-term potentiation (LTP) at excitatory synapses, a hallmark of neuronal plasticity. However, unlike the induction of LTP at many neuron-neuron synapses, both induction and expression of LTP at neuron-NG2 synapses involve Ca2+-permeable AMPA receptors on NG2 cells.  相似文献   

4.
The activation of metabotropic glutamate receptors (mGluRs) leads to long-term depression (mGluR-LTD) at many synapses of the brain. The induction of mGluR-LTD is well characterized, whereas the mechanisms underlying its expression remain largely elusive. mGluR-LTD in the ventral tegmental area (VTA) efficiently reverses cocaine-induced strengthening of excitatory inputs onto dopamine neurons. We show that mGluR-LTD is expressed by an exchange of GluR2-lacking AMPA receptors for GluR2-containing receptors with a lower single-channel conductance. The synaptic insertion of GluR2 depends on de novo protein synthesis via rapid messenger RNA translation of GluR2. Regulated synthesis of GluR2 in the VTA is therefore required to reverse cocaine-induced synaptic plasticity.  相似文献   

5.
The hypothesis that learning occurs through long-term potentiation (LTP)- and long-term depression (LTD)-like mechanisms is widely held but unproven. This hypothesis makes three assumptions: Synapses are modifiable, they modify with learning, and they strengthen through an LTP-like mechanism. We previously established the ability for synaptic modification and a synaptic strengthening with motor skill learning in horizontal connections of the rat motor cortex (MI). Here we investigated whether learning strengthened these connections through LTP. We demonstrated that synapses in the trained MI were near the ceiling of their modification range, compared with the untrained MI, but the range of synaptic modification was not affected by learning. In the trained MI, LTP was markedly reduced and LTD was enhanced. These results are consistent with the use of LTP to strengthen synapses during learning.  相似文献   

6.
Wan J  Poo M 《Science (New York, N.Y.)》1999,285(5434):1725-1728
Electrical activity plays a critical role in shaping the structure and function of synaptic connections in the nervous system. In Xenopus nerve-muscle cultures, a brief burst of action potentials in the presynaptic neuron induced a persistent potentiation of neuromuscular synapses that exhibit immature synaptic functions. Induction of potentiation required an elevation of postsynaptic Ca2+ and expression of potentiation appeared to involve an increased probability of transmitter secretion from the presynaptic nerve terminal. Thus, activity-dependent persistent synaptic enhancement may reflect properties characteristic of immature synaptic connections, and bursting activity in developing spinal neurons may promote functional maturation of the neuromuscular synapse.  相似文献   

7.
Painful stimuli activate nociceptive C fibers and induce synaptic long-term potentiation (LTP) at their spinal terminals. LTP at C-fiber synapses represents a cellular model for pain amplification (hyperalgesia) and for a memory trace of pain. μ-Opioid receptor agonists exert a powerful but reversible depression at C-fiber synapses that renders the continuous application of low opioid doses the gold standard in pain therapy. We discovered that brief application of a high opioid dose reversed various forms of activity-dependent LTP at C-fiber synapses. Depotentiation involved Ca(2+)-dependent signaling and normalization of the phosphorylation state of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. This also reversed hyperalgesia in behaving animals. Opioids thus not only temporarily dampen pain but may also erase a spinal memory trace of pain.  相似文献   

8.
The developmental time course of posttetanic potentiation was studied at an identified chemical synapse. In stage 11 juveniles (3 weeks after metamorphosis), the synaptic connections made by cholinergic neuron L10 onto postsynaptic neurons L2 to L6 were present but showed no posttetanic potentiation. In stage 13 adults (12 weeks after metamorphosis), the same tetanus resulted in an increase of 300 percent in the synaptic potential. A similar pattern was observed at two other identified synapses in the abdominal ganglion. Thus, the initial steps in synapse formation do not include the expression of this plastic capability. Rather, at least 10 weeks is required between the onset of synaptic function and the final expression of mature synaptic properties.  相似文献   

9.
The site of induction of long-term potentiation (LTP) at mossy fiber-CA3 synapses in the hippocampus is unresolved, with data supporting both pre- and postsynaptic mechanisms. Here we report that mossy fiber LTP was reduced by perfusion of postsynaptic neurons with peptides and antibodies that interfere with binding of EphB receptor tyrosine kinases (EphRs) to the PDZ protein GRIP. Mossy fiber LTP was also reduced by extracellular application of soluble forms of B-ephrins, which are normally membrane-anchored presynaptic ligands for the EphB receptors. The application of soluble ligands for presynaptic ephrins increased basal excitatory transmission and occluded both tetanus and forskolin-induced synaptic potentiation. These findings suggest that PDZ interactions in the postsynaptic neuron and trans-synaptic interactions between postsynaptic EphB receptors and presynaptic B-ephrins are necessary for the induction of mossy fiber LTP.  相似文献   

10.
At synapses between cortical pyramidal neurons and principal striatal medium spiny neurons (MSNs), postsynaptic D1 and D2 dopamine (DA) receptors are postulated to be necessary for the induction of long-term potentiation and depression, respectively-forms of plasticity thought to underlie associative learning. Because these receptors are restricted to two distinct MSN populations, this postulate demands that synaptic plasticity be unidirectional in each cell type. Using brain slices from DA receptor transgenic mice, we show that this is not the case. Rather, DA plays complementary roles in these two types of MSN to ensure that synaptic plasticity is bidirectional and Hebbian. In models of Parkinson's disease, this system is thrown out of balance, leading to unidirectional changes in plasticity that could underlie network pathology and symptoms.  相似文献   

11.
Years of intensive investigation have yielded a sophisticated understanding of long-term potentiation (LTP) induced in hippocampal area CA1 by high-frequency stimulation (HFS). These efforts have been motivated by the belief that similar synaptic modifications occur during memory formation, but it has never been shown that learning actually induces LTP in CA1. We found that one-trial inhibitory avoidance learning in rats produced the same changes in hippocampal glutamate receptors as induction of LTP with HFS and caused a spatially restricted increase in the amplitude of evoked synaptic transmission in CA1 in vivo. Because the learning-induced synaptic potentiation occluded HFS-induced LTP, we conclude that inhibitory avoidance training induces LTP in CA1.  相似文献   

12.
Electrical stimulation of axons in the hippocampus with short high-frequency bursts that resemble in vivo activity patterns produces stable potentiation of postsynaptic responses when the bursts occur at intervals of 200 milliseconds but not 2 seconds. When a burst was applied to one input and a second burst applied to a different input to the same target neuron 200 milliseconds later, only the synapses activated by the second burst showed stable potentiation. This effect was observed even when the two inputs innervated completely different regions of the postsynaptic cells; but did not occur when the inputs were stimulated simultaneously or when the second burst was delayed by 2 seconds. Intracellular recordings indicated that the first burst extended the decay phase of excitatory postsynaptic potentials evoked 200 milliseconds later. These results suggest that a single burst of axonal stimulation produces a transient, spatially diffuse "priming" effect that prolongs responses to subsequent bursts, and that these altered responses trigger spatially restricted synaptic modifications. The similarity of the temporal parameters of the priming effect and the theta rhythm that dominates the hippocampal electroencephalogram (EEG) during learning episodes suggests that this priming may be involved in behaviorally induced synaptic plasticity.  相似文献   

13.
Activity-dependent modulation of synaptic efficacy in the brain contributes to neural circuit development and experience-dependent plasticity. Although glia are affected by activity and ensheathe synapses, their influence on synaptic strength has largely been ignored. Here, we show that a protein produced by glia, tumor necrosis factor alpha (TNFalpha), enhances synaptic efficacy by increasing surface expression of AMPA receptors. Preventing the actions of endogenous TNFalpha has the opposite effects. Thus, the continual presence of TNFalpha is required for preservation of synaptic strength at excitatory synapses. Through its effects on AMPA receptor trafficking, TNFalpha may play roles in synaptic plasticity and modulating responses to neural injury.  相似文献   

14.
PSD-95 is a neuronal PDZ protein that associates with receptors and cytoskeletal elements at synapses, but whose function is uncertain. We found that overexpression of PSD-95 in hippocampal neurons can drive maturation of glutamatergic synapses. PSD-95 expression enhanced postsynaptic clustering and activity of glutamate receptors. Postsynaptic expression of PSD-95 also enhanced maturation of the presynaptic terminal. These effects required synaptic clustering of PSD-95 but did not rely on its guanylate kinase domain. PSD-95 expression also increased the number and size of dendritic spines. These results demonstrate that PSD-95 can orchestrate synaptic development and are suggestive of roles for PSD-95 in synapse stabilization and plasticity.  相似文献   

15.
A pertussis toxin-sensitive G protein in hippocampal long-term potentiation   总被引:7,自引:0,他引:7  
High-frequency (tetanic) stimulation of presynaptic nerve tracts in the hippocampal region of the brain can lead to long-term synaptic potentiation (LTP). Pertussis toxin prevented the development of tetanus-induced LTP in the stratum radiatum-CA1 synaptic system of rat hippocampal slices, indicating that a guanosine triphosphate-binding protein (G protein) may be required for the initiation of LTP. This G protein may be located at a site distinct from the postsynaptic neuron (that is, in presynaptic terminals or glial cells) since maximal activation of CA1 neuronal G proteins by intracellular injection of guanosine-5'-O-(3-thiotriphosphate), a nonhydrolyzable analog of guanosine 5'-triphosphate, did not occlude LTP.  相似文献   

16.
Postsynaptic signaling and plasticity mechanisms   总被引:1,自引:0,他引:1  
Sheng M  Kim MJ 《Science (New York, N.Y.)》2002,298(5594):776-780
In excitatory synapses of the brain, specific receptors in the postsynaptic membrane lie ready to respond to the release of the neurotransmitter glutamate from the presynaptic terminal. Upon stimulation, these glutamate receptors activate multiple biochemical pathways that transduce signals into the postsynaptic neuron. Different kinds of synaptic activity elicit different patterns of postsynaptic signals that lead to short- or long-lasting strengthening or weakening of synaptic transmission. The complex molecular mechanisms that underlie postsynaptic signaling and plasticity are beginning to emerge.  相似文献   

17.
Control of synapse number by glia   总被引:1,自引:0,他引:1  
Although astrocytes constitute nearly half of the cells in our brain, their function is a long-standing neurobiological mystery. Here we show by quantal analyses, FM1-43 imaging, immunostaining, and electron microscopy that few synapses form in the absence of glial cells and that the few synapses that do form are functionally immature. Astrocytes increase the number of mature, functional synapses on central nervous system (CNS) neurons by sevenfold and are required for synaptic maintenance in vitro. We also show that most synapses are generated concurrently with the development of glia in vivo. These data demonstrate a previously unknown function for glia in inducing and stabilizing CNS synapses, show that CNS synapse number can be profoundly regulated by nonneuronal signals, and raise the possibility that glia may actively participate in synaptic plasticity.  相似文献   

18.
To elucidate mechanisms that control and execute activity-dependent synaptic plasticity, alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPA-Rs) with an electrophysiological tag were expressed in rat hippocampal neurons. Long-term potentiation (LTP) or increased activity of the calcium/calmodulin-dependent protein kinase II (CaMKII) induced delivery of tagged AMPA-Rs into synapses. This effect was not diminished by mutating the CaMKII phosphorylation site on the GluR1 AMPA-R subunit, but was blocked by mutating a predicted PDZ domain interaction site. These results show that LTP and CaMKII activity drive AMPA-Rs to synapses by a mechanism that requires the association between GluR1 and a PDZ domain protein.  相似文献   

19.
Norepinephrine, briefly superfused during high-frequency stimulation of the mossy fibers in the rat hippocampal slice in vitro, produced a reversible increase in the magnitude, duration, and probability of induction of long-term synaptic potentiation in the CA3 subfield. Similar results were obtained with isoproterenol, whereas propranolol or timolol reversibly blocked long-term potentiation. Norepinephrine had little apparent effect on responses obtained during low-frequency stimulation of the mossy fibers. These data suggest that norepinephrine can mediate long-lasting, frequency-dependent modulation of synaptic transmission in the mammalian brain. Furthermore, the results suggest a plausible mechanism for some of the known associative interactions between synaptic inputs to hippocampal neurons.  相似文献   

20.
Long-term synaptic potentiation in the superior cervical ganglion   总被引:7,自引:0,他引:7  
Brief tetanic stimulation of the preganglionic nerves to the superior cervical ganglion enhances the postganglionic response to single preganglionic stimuli for 1 to 3 hours. This long-term potentiation of transmission through the ganglion is apparently not attributable to a persistent muscarinic action of the preganglionic neurotransmitter, acetylcholine, since neither the magnitude nor the time course of the phenomenon is reduced by atropine. The decay of long-term potentiation can be described by a first-order kinetic process with a mean time constant of 80 minutes. We conclude that long-term potentiation, once considered a unique property of the hippocampus, is in fact a more general feature of synaptic function. This form of synaptic memory may significantly influence information processing and control in other regions of the nervous system, including autonomic ganglia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号